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Abstract

Visual processing in the primate brain is highly organized along the ventral visual pathway, 

although it is still unclear how categorical selectivity emerges in this system. While many theories 

have attempted to explain the pattern of visual specialization within the ventral occipital and 

temporal areas, the biased connectivity hypothesis provides a framework which postulates 

extrinsic connectivity as a potential mechanism in shaping the development of category selectivity. 

As the posterior parietal cortex plays a central role in visual attention, we examined whether the 

pattern of parietal connectivity with the face and scene processing regions is closely linked with 

the functional properties of these two visually selective networks in a cohort of 60 children ages 9 

to 12. Functionally localized face and scene selective regions were used in deriving each visual 

network’s resting-state functional connectivity. The children’s face and scene processing networks 

appeared to show a weak network segregation during resting state, which was confirmed when 

compared to that of a group of gender and handedness matched adults. Parietal regions of these 

children showed differential connectivity with the face and scene networks, and the extent of this 

differential parietal-visual connectivity predicted individual differences in the degree of 

segregation between the two visual networks, which in turn predicted individual differences in 

visual perception performance. Finally, the pattern of parietal connectivity with the face 

processing network also predicted the foci of face-related activation in the right fusiform gyrus 

across children. These findings provide evidence that extrinsic connectivity with regions such as 

the posterior parietal cortex may have important implications in the development of specialized 

visual processing networks.
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1. Introduction

The visual system is known to be topographically organized in the primate brain, with 

increases in both complexity of stimulus selectivity and size of receptive field moving 

downstream along the ventral visual pathway (Mishkin & Ungerleider, 1982; Van Essen & 

Gallant, 1994). Functional specialization of visual areas has been observed for many 

complex object categories, such as faces, scenes, objects, word forms, and number forms 

(Cohen et al., 2000; Epstein & Kanwisher, 1998; Kanwisher, McDermott, & Chun, 1997; 

Shum et al., 2013). For simplicity, our discussion focuses on the face processing network. 

Though most study results were generated by comparing face and scene processing 

networks, some general principles are likely shared across other object domains at the 

network level. The nature of face specialization in the visual cortex and how it develops has 

been a matter of debate over a period of decades (see Grill-Spector, Weiner, Kay, & Gomez, 

2017 for full review). To extend the previous studies of local mechanisms, we examined a 

potential extrinsic mechanism on the emergence of visual processing networks in children 

ages 9–12.

1.1 Local mechanisms in visual selectivity and topography

Previous studies have found distinguishable local or regional structural and functional 

properties between visual areas. Four different cytoarchitectonic regions were defined in the 

fusiform gyrus (FG1–4) in postmortem human brains (Caspers et al., 2013; Lorenz et al., 

2017). These specialized cellular architectures are thought to provide the basis for particular 

computations in the inferotemporal regions which result in specialized responses to objects 

and faces. A recent study combining fMRI and cytoarchitectonic approaches further 

suggested that not only does the PPA have distinct cytoarchitecture from the FFA, the two 

distinct clusters of the FFA in the fusiform gyrus (pFus/FFA-1 and mFus/FFA-2) are 

separable in accordance with the cytoarcitectually defined subregions (FG1–4) (Weiner et 

al., 2017). Due to the limitation of the postmortem study approach, a direct link between 

regionally specific cellular architecture and face selective activation has yet to be 

established.

Nonetheless, neuroimaging measures of local variations in cellular composition and in 

conjunction with BOLD signal selectivity have provided supporting results. For instance, 

local structural properties such as decreased T1 relaxation, increased local fractional 

anisotropy, decreased mean diffusivity, and lower cortical thickness were found to be related 

to more selective BOLD responses in the inferotemporal cortex and better performance in 

face perception (Gomez et al., 2017, 2015; McGugin, Van Gulick, & Gauthier, 2016).

Exactly what computations the local architecture is allowing for is currently unclear or 

unspecified by most models. A recent set of neuroimaging studies modeling receptive field 
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properties provides a potential clue. Using the population receptive field (pRF) method, it 

was shown that the FFA receptive field properties are both less eccentric and larger than 

earlier visual regions, which may reflect a potential outcome of integration across the 

features of the face (Kay, Weiner, & Grill-Spector, 2015). A computational model of 

feedforward integration of features onto a complex face filter (e.g. a prototype) demonstrated 

a relatively good fit to the BOLD responses in face specialized regions in the infertemporal 

cortex (Kay & Yeatman, 2017). It’s been theorized, on the basis of this type of computation, 

that particular topography emerges along the inferotemporal cortex due to the competition 

for representational resources with regard to receptive fields (Behrmann & Plaut, 2013; 

Malach, Levy, & Hasson, 2002).

1.2 Extrinsic mechanisms in visual selectivity and topography

Beyond the local biases of visual processing, the anatomy of the visual system also suggest 

that extrinsic connectivity can shape visual selectivity (Kravitz, Saleem, Baker, Ungerleider, 

& Mishkin, 2013). Extrinsic mechanisms may explain certain results that are puzzling if 

only local properties are considered. For one, the receptive fields in the inferotemporal 

change in size and eccentricity on the basis of task demand (Kay et al., 2015). Such dynamic 

effects are more likely resulting from some extrinsic influence, rather than local processing 

constraints. Indeed, the feedforward model of BOLD responses in the ventral pathway 

showed an increased fit when considering extrinsic connectivity from the posterior parietal 

cortex (Kay & Yeatman, 2017). Further, visual specialization has been demonstrated for 

object categories of very similar demand of visual resources, such as the word form and 

number form areas (Cohen et al., 2000; Shum et al., 2013). The role of extrinsic connectivity 

in visual organization has been proposed multiple times throughout the literature (Hannagan, 

Amedi, Cohen, Dehaene-Lambertz, & Dehaene, 2015; Johnson, 2011; Kravitz et al., 2013; 

Palmeri, Wong, & Gauthier, 2004). It was postulated that a region or a set of regions may 

develop a particular functional specialization because of the constraint of the pattern of their 

anatomical connectivity with the rest of the brain. This has been referred to as the “Biased 

Connectivity Hypothesis” to address the differential emergence of the visual word form area 

and the number form area (Hannagan et al., 2015).

One way for extrinsic connectivity to provide information regarding behaviorally relevant 

stimulus qualities is through enhancing certain features of the attended object (Goldstone, 

2003). Such extrinsic connectivity would afford the ventral visual regions to gain stimulus 

selectivity above and beyond what would be predicted by the feedforward models alone, 

indicated by evidence demonstrating that lower order features do not fully explain activity 

patterns in categorically selective visual association regions (Proklova, Kaiser, & Peelen, 

2016). A direct demonstration of visual representation shift from feature to categorical was 

found in the monkey lateral intraparietal area (LIP) across learning, with a high fidelity 

sensory signal at early learning that shifts into a categorical signal as a decision task was 

learned (Sarma, Masse, Wang, & Freedman, 2016). While it is unclear how and to what 

extent extrinsic connectivity contributes to the specific topographic layout of functional 

specialization, there is some preliminary evidence that extrinsic connectivity patterns 

(including the posterior parietal) can predict the spatial topography of visually selective 
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regions in the inferotemporal cortex during development (Osher et al., 2016; Saygin et al., 

2016).

1.4 Posterior Parietal Cortex as a possible extrinsic mechanism in shaping selective 
visual processing

In this study, we focused on the potential roles of posterior parietal connectivity on visual 

specialization in children, as it is well recognized that the posterior parietal cortex plays an 

important role in both spatial and object attention (Buschman & Miller, 2007; Egly, Driver, 

& Rafal, 1994; Silver, 2005). Its close anatomical connections with both the inferotemporal 

and frontal regions put the posterior parietal cortex in a unique position for modulating 

visual processing and action planning (Blatt, Andersen, & Stoner, 1990; Kravitz, Saleem, 

Baker, & Mishkin, 2011; Seltzer & Pandya, 1984). There is some evidence of differential 

anatomical connectivity along the parietal lobe to different visual processing regions in 

nonhuman primates, along the infereotemporal cortex and within the thalamus (Cavada & 

Goldman-Rakic, 1989; Schmahmann & Pandya, 1990; Seltzer & Pandya, 1984). While the 

exact homology between monkey and human parietal cortices is contested (Culham & 

Kanwisher, 2001; Husain & Nachev, 2007; Orban, 2016; Orban, Van Essen, & Vanduffel, 

2004), human neuroimaging studies have demonstrated a parcellation in the posterior 

parietal cortex resembles that of the nonhuman primates. For instance, both human angular 

gyrus and monkey area 7a show dense connections with parahippocampal gyrus, both 

human supramarginal gyrus and monkey area 7b show dense connections with 

supplementary motor cortex, and both the human superior parietal lobule/intraparietal sulcus 

(SPL/IPS) and monkey area LIP show dense connections with the superior colliculus 

(Rushworth, Behrens, & Johansen-Berg, 2006). Both monkey areas 7a (tentative human 

AG), and monkey area LIP (tentative human SPL/IPS) demonstrate connections to both 

parahippocampal gyrus and across the inferotemporal cortex (Blatt et al., 1990; Seltzer & 

Pandya, 1984), providing the potential to modulate responses along categorically selective 

cortex in the inferotemporal cortex.

Mounting evidence supports that the posterior parietal cortex plays a particular role in 

transforming high fidelity stimulus representation to representations that can direct action, 

from action oriented object representation (Shmuelof & Zohary, 2005) to reward driven 

stimulus categorization during learning (Sarma et al., 2015). Such top-down processes have 

been implicated in theoretical models of visual specialization (Goldstone, 2003). The 

primary role of posterior parietal cortex indeed has been suggested to be top-down control of 

visual processing and memory (Dolan et al. 1997; Eger et al. 2007). Intriguingly, category 

selective responses to visual stimuli have been consistently observed for LIP neurons 

(Janssen, Srivastava, Ombelet, & Orban, 2008; Sereno & Maunsell, 1998; Swaminathan & 

Freedman, 2012) and reported for posterior parietal regions in humans (Konen & Kastner, 

2008; Vuilleumier, Henson, Driver, & Dolan, 2002). Hence, some suggested that it is the 

connectivity between the dorsal and ventral visual areas that give rise to integrated object 

representation in the brain and this representation is used for action planning (Helbig, Graf, 

& Kiefer, 2006; Singh-Curry & Husain, 2009).
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1.5 Visual specialization and parietal maturation during childhood

Visual specialization shows multiple trajectories across development. Global topology of the 

inferotemporal cortex seems to be intact at a young age (Golarai, Liberman, & Grill-Spector, 

2017; Golarai, Liberman, Yoon, & Grill-Spector, 2010), as young as 3–8 months old (Deen 

et al., 2017), which may reflect more fundamental organizations, such as animacy/inanimacy 

(Kriegeskorte et al., 2008). However, the degree of selectivity, the size of the selective 

clusters, and the stability of location of the face processing network develop from childhood 

through adolescence (Deen et al., 2017; Golarai et al., 2017, 2010; Scherf, Behrmann, 

Humphreys, & Luna, 2007). Indeed, while visual experience seems necessary for the 

development of face selective cortex (Arcaro, Schade, Vincent, Ponce, & Livingstone, 

2017), this does not seem to be the case for animacy/inanimacy categorization in the 

inferotemporal cortex (Mahon, Anzellotti, Schwarzbach, Zampini, & Caramazza, 2009; 

Mahon & Caramazza, 2011).

In particular, fMRI studies of early adolescents also revealed weak or no suprathreshold 

activation at the group level for faces in the inferotemporal cortex in comparison to that of 

young adults (Aylward et al., 2005; Scherf et al., 2007). The precise developmental 

timecourses of these networks are hard to determine as most previous studies are cross 

sectional. Nonetheless, largescale systematic analyses of event-related potential (ERP) data 

in response to face perception have identified two periods of accelerated development, ages 

8–11 and 14–15 (Taylor, Batty, & Itier, 2004).

Interestingly, the earlier period of development of ERP signals corresponds with the age 

range just prior to which fMRI studies find stable enough topology across children to 

produce significant adult-like clusters at the group level (Aylward et al., 2005; Golarai et al., 

2007; Scherf et al., 2007). Across these studies, both size and intensity of fusiform gyrus 

activation predicts the variance in performance in face recognition tasks across children 

(Golarai et al., 2007; Scherf et al., 2007). Scene specific topology, on the other hand, seems 

to have a much less protracted development, with children 5–8 years old potentially already 

demonstrating adult like patterns in the right parahippocampal gyrus (Golarai et al., 2007; 

Scherf et al., 2007).

At the same time, the parietal lobe is going through significant development. More 

specifically, the maturation of the lateral parietal cortex shows a spatial gradient, superior/

medial to inferior/lateral, with the lateral parietal regions reaching peak grey matter volume 

around 8.5 years and superior/medial regions at an earlier age (Giedd et al., 1999; Gogtay et 

al., 2004). A similar pattern was replicated in a more recent study of surface area of the 

parietal cortex (Jernigan, Brown, Bartsch, & Dale, 2016). These findings on the 

developmental gradient of the posterior parietal cortex, along with its close anatomical 

connections with inferotemporal cortex, put it in the critical position to contribute to the 

specialization of visual processing networks in children. We therefore used it as a good first 

candidate for testing the biased connectivity hypothesis.
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1.6 Present study: posterior parietal cortex and visual specialization in children

In this study, we examined whether and how the pattern of posterior parietal functional 

connectivity with the visual networks is related to the functional properties of categorically 

selective networks in the ventral visual pathway in mid to late childhood. FMRI data were 

acquired from a group of children ages 9 to 12, a potential age range in which face 

selectivity starts to stabilize with the coincidental development of the parietal lobe, while 

they performed a visual stimulus matching task and during resting state (with no explicit 

task). We expected to find differential functional connectivity between the superior/medial 

and inferior/lateral parietal areas and the face and scene processing networks in these 

children. We further tested whether children’s network distance between the face and scene 

network, which seems to differ from an adult sample, is related to their connectivity with the 

posterior parietal cortex. Lastly, we explored whether the spatial location of the right FFA is 

dependent on the pattern parietal-face network connectivity in the same group of children. 

Our results suggest that a stable connectivity pattern between posterior parietal cortex and 

inferotemporal visual processing regions stabilizes their functional location and network 

properties, supporting the biased connectivity hypothesis in this group of children.

2. Methods

We utilized a face and house identity matching task to functionally localize face and scene 

selective regions of interest. We then examined the resting state network properties of these 

face and scene regions in these children as well as a group of adults for comparison. To 

address the main question on the relationship between parietal connectivity and visual 

network organization, we examined whether the organization of the face and scene networks 

varies by their connectivity strength with particular parcels of the parietal lobe, and to what 

extent this relationship can explain the observed age group differences in face and scene 

network organization. To further specify the function of parietal connectivity, we tested the 

extent to which the pattern of parietal connectivity can predict individual differences in the 

spatial location of the rFFA, which is a very specific prediction from the “Biased 

Connectivity Hypothesis”.

2.1 Subjects

We collected behavioral and fMRI data from a community sample of 80 children. These 

children were a subsample of the 559 children enrolled in the Stony Brook Temperament 

Study (see Olino, Klein, Dyson, Rose, & Durbin, 2010). They were recruited from the 

community through commercial mailing lists, were screened for any major medical 

conditions, and were required to have at least one English speaking biological parent. After 

exclusion based on excessive motion artifacts in either the resting state or task state scans (< 

2/3 of data remaining), a total of 60 participants (29 Female), ages 9–12 (M = 10.23, SD = 

0.95) remained in the final fMRI data analysis. Due to computer error, usable behavioral 

data from the stimulus identity matching task were retained for only 43 participants; thus 

only these individuals were included in the behavioral data analysis and across-subject 

correlations between fMRI measures and task performance. Informed consent was obtained 

from the parental guardians of the children in accordance to the Stony Brook University 

Institutional Review Board.
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For comparison purposes in the network segregation analysis, we utilized the resting-state 

fMRI data of a gender and handedness matched group of 60 adults from the Cambridge 

Buckner subset of the 1000 Connectomes Project (Biswal et al., 2010) with an attempt to 

match the age variance of our child sample, ages 20–23 (M = 21.17, SD = 0.96) (See Table 

S1 for a detailed list of subjects).

2.2 General and fMRI Procedures

On the day of scanning, prior to any data collection, each child was acclimated to the 

scanning environment in a mock scanning session (MRI simulator of Model number: 

PST-100355, Psychological Software Tools, USA). During both the mock and the actual 

scanning procedure, foam pads were used to reduce head movement.

During fMRI, we first collected the resting state data over two sessions (each ~6 minutes) 

separated by a structural acquisition. Participants were instructed to keep their gaze at the 

center of three concentric circles, so the condition was the same as mock scanning. 

Afterwards, the participants performed the stimulus identity matching task during fMRI (see 

below).

2.3 Stimulus Identity Matching Task during fMRI

Each child participant performed three iterations of four types of task blocks that lasted 16 

seconds each in one of the two pseudo-random orders (Fig. 1A). These task blocks were 

interleaved with 14-sec of fixation. The four different block conditions were defined by the 

stimulus type: neutral faces, sad faces, happy faces, and houses. At the beginning of each 

block, there was a one second warning period, in which the fixation cross changed in color 

from black to blue cuing the starting of the block, followed by four trials (two match trials 

and two non-match trials). Each trial began with a fixation cross that lasted 600 ms followed 

by the simultaneous presentation of two images for 3000 ms, in which participants made a 

button press to indicate whether the two images were identical or different. To assure 

compliance we monitored the participants’ eye position utilizing an Eyelink 1000 eye-

tracking system (SR Research Ltd., Mississauga, ON, Canada). Data from this task were 

previously reported in an earlier paper from our group (Kann, O’Rawe, Huang, Klein, & 

Leung, 2017).

2.4 Image Data Acquisition

All images from the children involved in this study were acquired in a Siemens Trio 3 T 

scanner. For each child, high resolution structural images were acquired using the following 

MPRAGE sequence: slices = 176, TR = 2400 ms, TE = 3.16 ms, flip angle = 8°, matrix size 

= 256 × 256, FOV = 256 × 256 mm, voxel resolution = 1 × 1 × 1 mm3. Afterwards, inplane 

T2-weighted structural images were collected in the axial-oblique plane, aligned to the AC-

PC with the following parameters: slices = 37, TR = 6450 ms, TE = 88 ms, flip angle = 

120°, matrix size = 256 × 256, FOV = 256 × 256, voxel resolution = 1 × 1 × 3.5 mm3. 

During both resting and task-state sessions, T2*-weighted axial-oblique images, in the same 

orientation of the inplane images, were acquired using the EPI sequence with the following 

parameters: slices = 37 (interleaved), TR = 2000 ms, TE = 30 ms, flip angle = 90°, matrix 

size = 64 × 64, FOV = 224×224 mm, resolution = 3.5 × 3.5 × 3.5 mm3. All children 
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completed two resting state sessions with a total of ~11.7 minutes of data collected (350 

volumes) and a total of ~6.2 minutes of task data (186 volumes).

The adult image data from the Cambridge Buckner sample included: T1-weighted structural 

images (MPRAGE: slices = 192, matrix size = 144 × 192, resolution = 1.20 × 1.00 × 1.33 

mm3) and resting-state functional images (EPI: 47 interleaved axial slices, TR = 3000 ms, 

resolution = 3.0 × 3.0 × 3.0 mm3, about 6 minutes of data with 119 volumes).

2.5 Image Preprocessing

Images were preprocessed with SPM8 (http://www.fil.ion.ucl.ac.uk/spm8/) and CONN 

(http://www.alfnie.com/software/conn). Prior to analysis, images were slice time corrected, 

realigned to the temporally middle volume according to a 6 parameter rigid body 

transformation. Structural images were coregistered with the mean functional image, 

segmented, and then normalized to a standard space utilizing the MNI template using both 

linear and nonlinear transformations. Functional images were then normalized utilizing the 

same parameters as the structural normalization. Finally, the images were smoothed to a 6 

mm FWHM Gaussian kernel.

For functional connectivity analysis of the resting state data, additional preprocessing steps 

were performed. A nuisance regression was constructed to regress out the following 

confounding variables: 6 motion parameters up to their second derivatives, scans with 

excessive motion (Euclidean Norm > 0.5 || Global Signal (z) > 3.0), effects of block onset, 

modeled physiological signal generated through aCompCor of the white matter and CSF 

voxels, and the linear drift. The residuals from this nuisance regression were then filtered 

utilizing a bandpass between the frequencies of 0.008 and 0.09 Hz and despiked. We chose 

not to regress out the global signal in order to retain the interpretability of negative 

correlations (Murphy, Birn, Handwerker, Jones, & Bandettini, 2009). That is, negative 

correlations should represent a true inverse relationship between regions.

2.6 General Linear Model for task data and ROI selection

With the task data, a General Linear Model (GLM) was constructed using SPM8 (https://

www.fil.ion.ucl.ac.uk/spm/software/spm8/). Each stimulus condition was modelled in the 

GLM as a regressor using a boxcar function convolved with the canonical hemodynamic 

response function. The 6 motion parameters and volumes with high motion (Euclidean 

Norm > 0.5 || Global Signal (z) > 3.0) were entered into the model as covariates of no 

interest. Beta values were estimated for each voxel for each condition. The estimated 

parameters of this model were utilized to generate the contrasts of interest (face vs. scene) 

which were then used for ROI selection.

Functional regions of interest (ROIs) of face and scene related regions were defined using 

two approaches. First, the children’s second level face vs scene contrasts were used. 

Spherical ROIs of a 5-mm radius (volume = 19 voxels) around the peak coordinates of 

activation clusters at the group level within several canonical regions in the face and scene 

networks. All the face and scene related regions were identified at p < .001. Second, a set of 

unbiased ROIs were defined using Neurosynth meta-analyses (Yarkoni, Poldrack, Nichols, 

Van Essen, & Wager, 2011), with the exception of the anterior temporal face patch (ATFP) 
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which was chosen from a separate meta-analysis (Von Der Heide, Skipper, & Olson, 2013), 

as the ATFP was not revealed in the Neurosynth meta-analysis. Functional network 

connectivity analyses were conducted using each set of ROIs. All results were qualitatively 

replicated across the two sets of ROIs. Thus, we reported results from the ROIs defined 

using our stimulus matching task as the focus of this study is on the children.

To study how parietal connectivity contributes to the variance in functional location of the 

rFFA, we further selected the ROIs for each individual subject using an automated 

procedure. First, to generate a large search volume, layers of voxels were added to the initial 

group FFA cluster (from the Face > House contrast as described above), until it reached at 

least 400 voxels. This accreted version of the group cluster served as the search volume for 

each individual child participant. For each individual, the top 30% of voxels within the 400 

voxel search volume were selected followed by outlier removal. The remaining clusters were 

weighted based on a linear combination of the following factors: closeness to group 

coordinate, average beta value for cluster, and cluster size. The cluster with the highest z-

score was selected, and then a sphere was drawn around its centroid coordinate. This 

procedure, in comparison to selecting top 10% or top 20% of voxels, or picking peak 

coordinates instead of the centroid, produced a tighter ROI probabilistic distribution, and 

increased the overall correlation between contralateral homologs (i.e.. rFFA and lFAA) (Fig 

S1).

Five posterior parietal parcels were defined in each hemisphere using the Automated 

Anatomical Labeling atlas (AAL) (Tzourio-Mazoyer et al., 2002), including the left and 

right: angular gyrus (AG), supramarginal gyrus (SMG), precuneus (PCu), inferior and 

superior parietal lobules (IPL and SPL) (Fig. S2). We selected all available posterior parietal 

parcels within the AAL atlas for the anatomical driven approach to examine differential 

connectivity of parietal areas with the two visual selective networks.

2.7 Resting-State Functional Connectivity: ROI-based and voxel-based analyses

Time series correlation analyses were applied to the preprocessed resting-state fMRI data 

(see above). For each subject, the mean cleaned time courses were extracted from each ROI 

within the face and scene networks and the posterior parietal cortex. Next, the mean signals 

from the ROIs were correlated with each other generating a k x k order correlation matrix 

for each subject where k is the number of ROIs. Each element of this matrix was then 

transformed using Fisher’s Z transformation to make them amenable to group analysis. Prior 

to any quantifications, each subject’s Fisher’s Z matrix were split into positive and negative 

connectivity matrices. The negative connectivity matrices were absolute valued to ensure 

symmetric computations.

We first calculated several summary measures to quantify the relationships within and 

between networks for the face and scene networks in the children (and the adult sample for 

reference). To quantify the within network strength for each subject, we averaged all the 

Fisher’s Z values between each of the unique bivariate relationships within a network (Fig. 

1B, black arrows). This measure provides a metric for the strength of the intrinsic 

connectivity of a predefined network (i.e. how much it is acting like a network). 

Analogously, between network connectivity was quantified by averaging the connections 
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between two networks. This provides a metric that was used to quantify the distance 

between two networks. The distance between two networks, or network segregation, can be 

thought of as the a network marker for the specialization of networks (Rubinov & Sporns, 

2010).

We then quantified the connectivity strength that an extrinsic ROI (i.e. parietal areas) has 

with the face and scene networks for each subject, by averaging all the Fisher’s Z values 

between the extrinsic ROI and each node of the network (Fig 1B, red arrows). For each 

extrinsic ROI, the ROI to face/scene network connectivity strength values were averaged 

across the two hemispheres to produce a single index for that particular ROI. Finally, we 

utilized the correlation between these two measures, extrinsic ROI-network connectivity and 

intrinsic network connectivity, as a benchmark index of the influence of an extrinsic ROI has 

on the face/scene network (Fig. 1B, right table). For example, if the extent to which a certain 

parietal ROI connects to the face network predicts the face network’s intrinsic network 

connectivity strength, we would say that the extent to which the face network is acting like a 

coherent network is dependent on that parietal ROI’s connectivity. We utilized the five AAL 

parietal parcels described above to explore for parietal influences on intrinsic network 

connectivity in the face and scene networks. To correct for the multiple analyses for 

modulatory effects, we set FWE = .05 given the 5 independent sets of statistical tests. 

However, our results remain consistent even when correcting more conservatively for each 

correlation (2 per region, 10 tests in total).

We also repeated the extrinsic connectivity analyses to the whole brain. The same metrics 

described above were applied to each to the voxel, generating voxel-wise network 

correlation maps (the extent to which every voxel in the brain correlates on average with 

each network) as well as voxel-wise maps of the correlations between the network 

correlation at each voxel and each network’s intrinsic network connectivity strength. This 

was to confirm that our ROI results replicate at the voxel level, as the parietal parcels are 

large and likely functionally heterogeneous to some extent. We also used the whole brain 

face network correlation maps from this analysis to examine the relationship between 

patterns of parietal connectivity with the face network and the spatial location of the rFFA in 

individual subjects.

2.8 Correlation between spatial location of rFFA and parietal connectivity

In accordance with the predictions of the biased connectivity hypothesis we further tested if 

the spatial location of the functionally defined rFFA would depend on parietal connectivity. 

We performed a partial least squares (PLS) regression, a technique which maximizes the 

covariance between two multivariate sets of data. We extracted the top two components from 

a PLS regression of the parietal portion of the voxel-face network connectivity strength 

maps, from the whole brain connectivity maps described above (section 2.7), in predicting 

the location of each subject’s rFFA centroid (x, y, z). The parietal-visual network 

connectivity patterns were then visualized by plotting them in a two dimensional heat map 

collapsing across the D-V dimension and then characterized by their correlation to the ROI-

Network correlation strength measures. Participants were then split into two groups for each 

component based on positive and negative PLS scores; then each subject’s centroid location 

O’Rawe et al. Page 10

Neuropsychologia. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



was plotted, color coded by low or high PLS score. This latter step provided further 

visualization and quantification on how different functional connectivity patterns between 

the parietal cortex and the face network constrain the location of the functionally defined 

rFFA.

3. Results

3.1 Behavioral results, and face and scene related activations

Behavioral responses of the children during the stimulus matching task were less accurate at 

face matching (M = 0.75, SD = 0.20) than house matching (M = 0.88, SD = 0.11), t(42) = 

−6.23, p < .001 (Fig. 1C), though the average response time between face (M = 1418.47 ms, 

SD = 206.92 ms) and scene (M = 1371.90 ms, SD = 231.73 ms) conditions were more 

comparable, t(42) = 1.99, p = 0.053. A closer examination of the distributions revealed that 

the children’s accuracy on face trials exhibited a bimodal distribution, though this 

performance heterogeneity was not driven by a particular face condition as the bimodal 

distribution was observed for each condition (Fig. 1C).

The children’s fMRI data from the stimulus matching task revealed a subset of the typical 

nodes of the face processing network, including the bilateral FFA, bilateral superior 

temporal sulcus (STS), and bilateral anterior temporal face patch (ATFP) in the face > scene 

contrast (Fig 1D, see Table 1 for list of coordinates and Supplemental Table 2 for full list of 

suprathreshold clusters). Among these face related activations, only STS and ATFP in the 

right hemisphere the reached cluster level significance threshold in the group contrast map 

(FDR corrected p < .05), suggesting a relatively weak or variable face processing network in 

these children shown in the previous literature (Aylward et al., 2005; Scherf et al., 2007). 

(Note: The spatial distribution of activation patterns was similar among the three face 

conditions; data not shown). In addition, since we observed bimodality of the behavioral 

data, the sample was separated by performance using a median split, and a two-sample t-test 

was used to confirm that the high and the low performers showed similar activation patterns.

Using the house > face contrast, the typical nodes of the scene processing network were 

identified in these children. Significant activation clusters were found in bilateral transverse 

occipital sulci (TOS), retrosplenial cortices (RSC), and parahippocampal gyri (PPA) (FDR < 

0.05; see Fig. 1D and Table 1 for list of coordinates and Table S2 for a list of all 

suprathreshold clusters).

3.2 Strength of functional connectivity within and between Face and Scene networks 
during resting state Fmri

We examined the resting-state Fmri functional connectivity patterns of the face and scene 

networks in the children and adult samples using the ROIs defined in the child sample’s 

group contrasts (Table 1). While there were little to no differences in within network 

connectivity between the child and adult samples in either the intrinsic face or scene network 

(p’s > .25), differences emerged in the relationship between these two networks (Fig. 2). In 

comparison to the adults, the two visual networks showed a lower between-network negative 

connectivity in the children, t(118) = −3.54, p < .001 but a comparable between-network 
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positive connectivity pattern, t(118) = −1.80, p = .07, suggesting that these visual networks 

are less segregated in children. Qualitatively similar results were obtained when utilizing 

meta-analytic ROIs, with the primary difference between adults and children being between-

network negative connectivity. We then wanted to examine whether this putative 

developmental difference in the face and scene processing networks, decreased distance in 

children, can be explained by extrinsic parietal connectivity. To do so, we first sought to 

identify regions of the posterior parietal cortex that differentially influence each of the 

processing networks in the children. Then we examined whether this differential influence 

could explain the network distances in the children.

3.3 Differential posterior parietal functional connectivity with face and scene networks

We quantified the relationship between the 5 different parcels of the posterior parietal lobule 

and the face and scene processing networks in children. Three out of the 5 parcels, Pcu, AG, 

and SPL, accounted for a significant amount of variance in the intrinsic connectivity of the 

face and scene processing networks of children (see Fig. S3A for Pcu, IPL, and SMG data).

The Pcu connectivity showed a significant correlation with the intrinsic connectivity of both 

visual networks, predicting the strength of intrinsic face network connectivity (r = 0.48, 

pFWE < .001) and the intrinsic scene network connectivity strength (r = 0.78, pFWE < .001). 

Nevertheless, the Pcu demonstrated a quantitative bias towards the scene network (z = 

−2.71, pFWE < .05) (Fig. S3B).

The AG showed a significantly stronger relationship with the face network than the scene 

network (z = 3.73, pFWE < .001), with AG-network connectivity strength significantly 

predicting the intrinsic face network connectivity strength (r = 0.62, pFWE < .001) but not the 

scene network (r = 0.03, pFWE = 1.00) (Fig. 3A, left).

In contrast, the SPL demonstrated a stronger relationship with the scene network, with the 

SPL-Scene network connectivity strength strongly predicting the scene network intrinsic 

connectivity (r = 0.60, pFWE < .001). The SPL-Face network connectivity strength 

contributed only a modest proportion of the variance in the intrinsic face network 

connectivity (r = 0.30, pFWE = .09). This difference was not significant after correction for 

multiple comparisons (z = −2.01, pFWE = .11), but was when the outliers (determined by 

Cook’s d) were removed (z = −3.04, pFWE < .01) (Fig. 3A, right).

3.4 Parietal-visual network connectivity, visual network distance, and behavioral 
performance

We further examined to what extent the AG and SPL connectivity may account for the 

reduced network distance between the face and scene networks in these children (see Fig. 

2C). Multiple regression analyses revealed that the parietal-visual functional connectivity 

significantly predicted face-scene network distance, for both positive and negative between-

network connectivity, F(4,55) = 7.63, p < .001 and F(4,55) = 4.72, p < .001, respectively 

(Table 2). In particular, visual network’s connectivity with the “non-preferential” parietal 

areas predicted a reduction in network distance of the two visual networks; that is, greater 

SPL-Face network connectivity strength was associated with stronger positive between-

network connectivity (b = 0.327, p< .001) and weaker negative between-network 
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connectivity (b = −0.148, p < .05; Fig. 3B right) of the face and scene networks. The AG-

Scene network connectivity effects followed a similar pattern (b = 0.122, p = 0.14; b = 

−0.122, p < .05; Fig. 3B left). In contrast, greater “preferred” AG-Face network connectivity 

strength was associated with stronger negative connectivity between the face and scene 

networks (b = 0.095, p < .05).

Furthermore, face-scene network distance predicted performance on both the face and house 

trials. Greater positive connectivity between the face and scene networks predicted poorer 

performance on both face (r = −.37, p < .05) and house trials (r = −.34, p < .05) (Fig. 4A, 

4B). Further, greater negative connectivity between the two visual networks predicted better 

performance on house trials (r = .30, p < .05) (Fig. 4C). While the correlation between 

negative between-network connectivity and the children’s performance on face trials did not 

reach statistical significance (r = .20, p = .20), it was numerically in the same direction.

Taken together, the AG and SPL demonstrated both a qualitative and quantitative difference 

in their influence on the visual network’s intrinsic connectivity, showing preferential parietal 

influences on the face and scene processing networks, with AG showing preferential 

influence over the face processing network and the SPL showing preferential influence over 

the scene processing network. This differential influence accounted for a significant amount 

of variance in the distances between the face and scene processing networks, the putative 

developmental difference identified earlier.

3.5 Voxel-wise replication of the relationship between parietal connectivity on the face 
and scene network’s intrinsic connectivity strength

To confirm that the differential effect of parietal connectivity on the intrinsic connectivity of 

the face and scene networks were not an artifact of averaging time-series within the large 

parietal parcels, we replicated the results using individually-defined face/scene ROIs in a 

voxel-by-voxel whole brain analysis. First we calculated the average connectivity between 

each node in the two visual networks and every voxel in the rest of the brain (Fig. 5A). 

Then, analogous to the analysis in Figure 3A, for each voxel, for each voxel, we calculated 

the correlation between the strength of voxel-visual network connectivity and the strength of 

intrinsic network connectivity for each visual network across subjects. Figure 5A displays 

the voxels that show a significant correlation between voxel-visual network connectivity and 

positive intrinsic network connectivity for the face network (red) and the scene network 

(blue). The spatial distribution of the differential parietal effect is consistent with the seed-

based analysis. When quantifying the parietal connectivity effect by averaging across the 

voxels within the AAL parcels, the largest difference in the effect of parietal connectivity on 

face network and scene network connectivity again can be seen in AG and SPL, respectively 

(Fig. 5B).

3.6 Predicting rFFA location from parietal connectivity: PLS Regression

As previous studies have suggested that the face selective regions shift in location with 

development (Scherf et al., 2007), here we tested the possibility that the parietal connectivity 

with the face network may shape the location of the rFFA. We used a PLS regression to 

predict the spatial coordinates of each subject’s rFFA activation centroid from their pattern 
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of parietal-face network connectivity (Fig. 6A). The first two components extracted from 

this analysis accounted for 24.92% of the variance in parietal-face network connectivity, and 

31.26% of the variance in rFFA location.

More specifically, the Component 1 PLS scores were closely associated with intrinsic face 

network connectivity (r = 0.53, p < .001), suggesting again that parietal connectivity is 

important for maintaining connectivity within the face network (Fig. 6B). While Component 

1 scores were positively correlated with all parietal ROI-face network connectivity strengths 

(pFWE’s < .05), the AG-face network connectivity showed the strongest effect (r = 0.79, 

pFWE < .001) (Fig 6C, top). Component 2 scores, however, only significantly positively 

correlated with SMG-face network connectivity strength (r = 0.36, pFWE < .05) (Fig 6C, 

bottom).

Examining participants with high and low component scores allows us to parse out the 

corresponding effects of parietal connectivity on rFFA location. Splitting participants based 

on whether they had a positive or negative score on each of the component yielded the 

following groups High Component 1 (n = 30), Low Component 1 (n = 30), High Component 

2 (n = 37), and Low Component 2 (n = 23). We compared their rFFA centroid locations, and 

found that those in the High Component 1 group showed a more posterior and ventral rFFA 

centroid location than the Low Component 1 group, t(58) = −2.00, p < .05, t(58) = −3.92, p 

< .001, respectively (Fig 6C, Bottom Right). Those within the High Component 2 group also 

showed a more posterior rFFA location, t(58) = −2.64, p < .05 (Fig 6C, Bottom Right).

4. Discussion

To study the role of extrinsic parietal connectivity in the emergence of functional 

specialization in the ventral visual cortex during late childhood or early adolescence, we 

analyzed the relationship between face/scene network’s pattern of connectivity with the 

various posterior parietal regions. We then examined how this connectivity pattern related to 

the degree of intrinsic network connectivity within and network segregation between the two 

visual networks in a group of children ages 9 to 12. Our findings suggest that the lower 

negative connectivity between the two visual networks (i.e. less segregation) was closely 

linked with their differential connectivity with angular gyrus and superior parietal lobule, 

and that the children’s performance on the visual discrimination task was associated with the 

degree of visual network distance. These findings map well onto the developmental time 

course in the extant literature (Gogtay et al., 2004; Scherf et al., 2007). In a more direct 

support for the biased connectivity hypothesis, our data revealed that the variation in the 

functional location of the rFFA can be predicted by the parietal-visual network connectivity 

patterns.

4.1 Role of the posterior parietal cortex in selective visual processing

Our findings suggest that the posterior parietal areas’ differentially connectivity with the 

face and scene processing networks may have implications for the development of their 

specialization. There are several possible reasons why the parietal lobe may be important for 

the development of specialization. Given the parietal lobe’s anatomical connections between 

both frontal and visual cortices, it’s in a unique position to integrate sensory information and 
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task goal (Kravitz et al., 2011). Transformations of spatial information into many reference 

frames (e.g. eye-centered to head-centered to body-centered) within the parietal lobule 

provides a hint that one of the main parietal computations is perhaps for the purpose of 

preparing stimulus related information to be acted upon (Avillac, Denève, Olivier, Pouget, & 

Duhamel, 2005; Xing & Andersen, 2000). Indeed, through learning, representation of 

stimulus direction in the LIP neurons transforms from a state that is consistent with the 

incoming sensory information to a form that is consistent with the task goal (Sarma, Masse, 

Wang, & Freedman, 2015). This type of representation would be optimal for guiding the 

organization and development of visual specialization, tuning processing to ensure fast and 

efficient goal attainment. This type of feedback has been suggested in previous theoretical 

models of visual specialization (Goldstone, 2003), though the suggestion has been 

anatomically agnostic. Our results hint that the parietal cortex may be the anatomical locus, 

and this locus varies within the cortex on the basis of the physical constraints of its 

connectivity. In addition to potential feedback regarding task relevant features, the parietal 

cortex may also provide architecture for unique computations, such as numerical processing 

(Knops, Piazza, Sengupta, Eger, & Melcher, 2014; Park, Park, & Polk, 2013), which may 

also produce unique feedback to shape selectivity.

Recent neuroimaging findings also revealed potential roles of the posterior parietal in 

shaping visual perception. For example, a recent study examining motion-based scene 

segregation during a bistable perception task provides an interesting alternative explanation 

regarding the parietal cortex’s role in visual selectivity development. They demonstrated a 

differential involvement of the AG and SPL, with the AG responding to “default” 

perceptions of scene segregation, and SPL responding to alternative segregations. Given the 

current results, an alternative explanation is that the AG’s role is in guiding perception of 

highly learned holistic patterns, as opposed to the SPL which may play a role in segregating 

more novel patterns (Grassi, Zaretskaya, & Bartels, 2018). While this explanation is 

somewhat consistent with our results (SPL-Face connectivity predicting less segregated 

networks), it doesn’t fully account for the data (AG-Scene connectivity predicting less 

segregated networks). However, if it is the case, this provides novel predictions regarding the 

timecourse of parietal connectivity with the development of visual category specialization. 

That is, early development should be tracked by relatively stronger functional connectivity 

from SPL to areas of specialization, while late development should be tracked by stronger 

functional connectivity from AG to areas of specialization.

It’s important to note that our results are also consistent with previous studies examining 

verbal development. Recent work has demonstrated the importance of the development of 

parieto-temporal connectivity in the development of normal and abnormal literacy within 

children of similar ages (Lee, Booth, & Chou, 2016; Morken, Helland, Hugdahl, & Specht, 

2017). Given the convergent cross-modality evidence, it seems likely that the development 

of the parietal functional connectivity is fundamentally important in the general development 

of sensory association specialization. A more detailed examination of the topology of 

parietal connectivity across the life span may provide a unifying framework for the 

development of sensory specialization.
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4.2 Biased Connectivity Hypothesis

Our results support the biased connectivity hypothesis as a potential mechanism for cortical 

specialization (Hannagan et al., 2015). The biased connectivity hypothesis states that 

extrinsic connectivity patterns constrain a region’s intrinsic processing, generating patterns 

of object selective activity along the inferotemporal cortex. Thus, the development of a 

region’s specialization would be constrained by the time course of development of an 

extrinsic region (e.g., the posterior parietal cortex) and its connections with the target region, 

such as the ventral visual pathway areas. This framework provides a mechanism for the 

differential developmental trajectories of the face and scene processing networks, and 

provides a potential explanation on why, as the face processing network develops, it’s not 

necessarily the selectivity that increases but the stabilization and expansion of the functional 

activation in correspondence to task-relevant visual stimuli (Scherf et al., 2007). Indeed, a 

previous study examining the emergence of the visual word form area had found extrinsic 

anatomical connectivity to be more predictive of cortical specialization than functional 

response (Saygin et al., 2016). Indeed, extrinsic anatomical connectivity seems to predict 

functional specialization in the face and scene processing networks as well, though in adults 

(Osher et al., 2016). We have extended this work, providing additional evidence for the 

generalization of the biased connectivity hypothesis to development of cortical 

specialization of face and scene perception. Further, our work has specified the potential 

locus of biased connectivity to the parietal cortex, providing a putative explanation for the 

different developmental trajectories of different cortical specializations.

4.3 Network distance as a measure of visual specialization

Our data support the interpretation of network distance as a measure of network 

specialization, and extends it to the examinations of small a priori defined networks. 

Network distance is often shown to represent the specialization of a network, and the degree 

to which it is integrating information across other networks (Rubinov & Sporns, 2010). 

Careful attention, however, is required when interpreting different studies examining this 

metric, as different levels of integration and segregation may co-exist across different tasks 

and across different networks. Previous studies have found decreases in whole brain network 

segregation from resting to task state (Di, Gohel, Kim, & Biswal, 2013). Similarly, 

increasing n-back working memory load leads to decreases in network segregation across 

whole brain networks (Kitzbichler, Henson, Smith, Nathan, & Bullmore, 2011) and this 

decrease predicts task performance across load (Stanley, Dagenbach, Lyday, Burdette, & 

Laurienti, 2014). However, when examining a smaller set of task specific nodes (e.g. fronto-

parietal, default mode, and cerebellar networks), increased segregation was shown to 

positively predict visual short term memory capacity (Stevens, Tappon, Garg, & Fair, 2012). 

Thus, node selection may play an important role in interpretation of network properties. It is 

likely for smaller networks with a priori theoretical definitions to demonstrate specialization 

(through network segregation), while for larger to demonstrate synchronization (through 

network integration) of goal directed behavior. Indeed, examining a subset of visuo-motor 

specific nodes it was found that increases in motor learning across a task were associated 

with increased segregation between these visual and motor modules (Bassett, Yang, Wymbs, 

& Grafton, 2015).
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Changes associated with development, while perhaps often conflated with changes due to 

learning, may also impact network segregation. Using a data driven machine learning 

approach, it was found that both network integration and segregation predict brain maturity 

(Dosenbach et al., 2010). However, network segregation, rather than integration, seems to be 

more closely linked to brain maturity (Dosenbach et al., 2010). Our findings thus provide 

empirical evidence for a potential mechanism for the development of network segregation by 

demonstrating the contribution of extrinsic connectivity.

4.4 Limitations of current work

First and foremost, we must address the lack of a proper adult control group. It isn’t possible 

to tease apart whether the differences we found were due to the population of subjects 

(children vs adults) or simply a difference between the data itself, as each set was collected 

with different scanning parameters at different scan sites. However, the main findings of 

parietal connectivity effects on visual network properties demonstrate internal consistency 

within the child cohort. Our analysis revealed that parietal connectivity predicted changes in 

network distance in the direction one would expect from the child and adult comparison. In 

addition to our adult sample, it’s important to note that the age range selected in our child 

sample has some amount of arbitrariness to it. Optimally, one should study these effects 

longitudinally across the entire span of development. Without such data, making any claims 

about developmental effects must be made with hesitance.

The current behavioral task was primarily designed for ROI selection; while it was sufficient 

for eliciting activity in the face/scene networks, it was not designed to be a full test of face 

and scene perception. The task is designed to be simple, and thus the behavioral responses 

do not provide much information about the computations being performed. For this reason, 

it is unsurprising that the correlations between the fMRI data and the behavioral output were 

relatively weak. In addition, while it did not impact the main findings of this study, 

heterogeneity across the different face conditions was evident in both the children’s behavior 

and the extent to which the task drove the face processing network’s activation.

A more homogenous stimulus set and a task, such as the inverted face paradigm, that more 

appropriately assays the specific nature of these processing networks would be needed for 

future studies to further investigate the relationship between network development and visual 

perception. The inversion effect, however, is less apparent in the recognition of scenes 

(Diamond & Carey, 1986). Therefore, it might be better to target the spatial nature of scene 

processing.

4.5 Conclusion

Despite the limitations, the results from this study provided new insights on the role of 

posterior parietal connectivity on visual selectivity along the inferotemporal cortex in late 

childhood or early adolescence. We also highlight the importance of potential parietal 

development when considering the face and scene processing systems, providing a 

mechanism for different developmental trajectories for different sensory specializations.
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• Children’s face and scene processing networks are less segregated

• These networks are influenced by different parts of the posterior parietal 

cortex

• Functional connectivity from posterior parietal cortex predicts network 

segregation

• Spatial patterns of posterior parietal cortex connectivity predict rFFA location
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Figure 1: 
(A) Stimulus Identity Matching Task. One of two counterbalances is shown in the form of a 

boxcar functions. As an example, the 6th block is expanded to demonstrate the sequence of 

visual stimulus presentation within the block. Subjects made button presses to indicate 

whether or not each pair of visual stimuli matched in identity. (B) Schematic of the resting 

state functional connectivity metrics. The left depicts two hypothetical subjects, and the 

diagrams illustrate the relationship between two networks (N1/N2, e.g. face and scene 

networks) and two extrinsic ROIs (E1/E2, e.g. AG and SPL). Intrinsic connectivity strength 

is calculated as the average of the black arrows within each visual network, while ROI-

Network connectivity (extrinsic connectivity) is calculated as an average of the red arrows 

from one external ROI to each node in a network. The correlation between these two metrics 

(right) is used to estimate the extent to which a the network-like behavior of a set of nodes in 

a visual network would depend on extrinsic connectivity. (C) Top: Distributions of 

performance accuracy on face and scene conditions in children as estimated by Kernal 

Density Estimation. Bottom: Violin Plots demonstrating the variance in performance 

accuracy for the face conditions. Each data point is plotted within the distribution, data 

points were randomly jittered along the x-axis for visualization. (D) Face > House (Red) and 

House > Face (Blue) group contrasts overlaid on an MNI template brain thresholded at p < .

001. ROIs in the face processing network: fusiform face area (FFA), superior temporal 

sulcus (STS), and anterior temporal face patch (ATFP). ROIs in the scene network: 

parahippocampal place area (PPA), retrosplenial cortex (RSC), and transverse occipital 

sulcus (TOS).
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Figure 2: 
Intrinsic functional connectivity of the face and scene networks during resting state fMRI. 

(A) Face and scene networks in the adult sample. (B) Face and scene networks in the child 

sample. For both A & B a distance matrix was calculated as 1-R and multidimensional 

scaling was performed to produce two arbitrary dimensions that maintain the bivariate 

distances between each set of nodes. The darkness and thickness of the edges connecting 

any two nodes is scaled by the correlation between those two nodes, such that darker thicker 

edges represent stronger correlations (edges only represent positive correlations). (C) 
Distributions of within-network (intrinsic), and between-network connectivity strength of 

the face and scene networks in the child sample relative to the adult sample. The children 

showed weaker segregation between the face and scene networks, as shown by their 

relatively lower negative between-network connectivity.

O’Rawe et al. Page 25

Neuropsychologia. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: 
Children’s posterior parietal functional connectivity with the face and scene networks during 

resting state fMRI (N = 60). (A) The degree of connectivity between parietal regions and the 

face and scene networks have differential effects on the visual network’s intrinsic 

connectivity strength. (AG, angular gyrus; SPL, superior parietal lobule) (B) AG/SPL 

connectivity with non-preferred visual network is associated with weaker segregation 

between face and scene networks (i.e. lower negative and higher positive between-network 

connectivity). In all scatter plots, each datapoint’s size is scaled linearly with the point’s 

Cook’s d, a measure of influence, and the datapoints with red outlines rather than black are 

outliers as classifed by the rule of thumb Cook’s d > n/4. The bivariate correlations are 

shown, and the correlations with outliers excluded in parentheses.
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Figure 4: 
Relationship between network distance and task performance in a subset of children with 

performance data (N = 43). Greater positive between network connectivity (i.e. weaker 

segregation between the face and scene networks) was associated with poorer performance 

on the face condition (A) and the scene condition (B), while greater negative between 

network connectivity (i.e. stronger segregation between the visual networks) was associated 

with better house performance (C).
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Figure 5: 
A voxel-wise analysis of the relationship between extrinsic connecitivty effect and visual 

networks’ intrinsic connectivity. (A) Left: Each voxel represents average connctivity 

strength between that voxel and each node within the face and scene networks, thresholded 

at p < .001. Right: Each voxel represents the level of association between a voxel’s average 

connectivity with the face/scene network and the corresponding visual network’s intrinsic 

network connectivity strength, thresholded at p < .001. (B) Quantification of the level of 

association between parietal regions and the two visual networks’ intrinsic connectivity 

strength. Error bars represent 95% confidence intervals. Abbreviations: AG, angular gyrus; 

IPL, inferior parietal lobule; SPL, superior parietal lobule; Pcu, precuneus; SMG, 

supramarginal gyrus.
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Figure 6: 
Partial Least Squares (PLS) regression demonstrates that the variation in location of the right 

fusiform face area (rFFA) across children depends on the spatial pattern of its connectivity 

with the parietal lobe. (A) Parietal-face and parietal-scene network connectivity patterns, 

collapsed across the dorsal-ventral axis of the posterior parietal cortex. (B) Higher 

component score for PLS Component 1 was associated with stronger intrinsic connectivity 

within the face network. (C) Characterization of the PLS regression analysis for the parietal-

face network connectivity. The first two components account for 31.26% of the variance in 

rFFA location, with Component 1 (AG-component) yielding a posterior and ventral shift, 

and Component 2 (SMG-component) yielding a posterior shift. The three dimensional 

scatter plots represent the centroids of each subject’s rFFA, with red X’s representing 

participants with a higher weight and blue circles representing particiapnts with a lower 

weight for each component.
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Table 1:

Peak coordinates for functionally localized face and scene ROIs in MNI space. Abbreviations: FFA: Fusiform 

Face Area, STS: Superior Temporal Sulcus, ATFP: Anterior Temporal Face Patch, PPA: Parahippocampal 

Place Area, TOS: Transverse Occipital Sulcus, RSC: Retrosplenial Cortex

Region MNI Coordinates Peak t-value

X Y Z

lFFA −42 −45 −15 4.28

rFFA 42 −45 6 5.42

lSTS −48 −36 −3 3.65

rSTS 60 −42 6 4.83

lATFP −42 15 −30 3.74

rATFP 42 12 −30 5.50

lPPA −27 −48 −6 26.18

rPPA 30 −48 −6 26.81

lTOS −30 −84 24 17.63

rTOS 36 −81 24 16.41

lRSC −18 −60 18 12.60

rRSC 18 −54 21 15.89
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Table 2:

Results from multiple regression analysis of network distance in association with parietal-visual network 

connectivity. Unstandardized b-weights are shown, with standard errors in parentheses.

Between Network Positive Connectivity: Between Network Negative Connectivity:

SPL-Face Connectivity
0.327

***
 (0.094) −0.148

*
 (0.058)

SPL-Scene Connectivity 0.107 (0.060) 0.033 (0.037)

AG-Face Connectivity −0.026 (0.072)
0.096

*
 (0.044)

AG-Scene Connectivity 0.123 (0.083)
−0.122

*
 (0.051)

Constant 0.049 (0.028)
0.051

**
 (0.018)

N 60 60

R2 0.357 0.256

Adjusted R2 0.310 0.201

F (4, 55)
7.63

***
4.72

**

*
p<0.05

**
p<0.01

***
p<0.001
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