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Analysis of α-dicarbonyl 
compounds and volatiles formed in 
Maillard reaction model systems
Jiyoon Cha, Trishna Debnath & Kwang-Geun Lee   

In this study, production of three α-dicarbonyl compounds (α-DCs) including glyoxal (GO), 
methylglyoxal (MGO), and diacetyl (DA) as well as volatile flavor compounds was analyzed using 
Maillard reaction (MR) model systems. A total of 16 model systems were assembled using four amino 
acids and four reducing sugars, and reactions were performed at 160 °C and pH 9. Determination of 
α-DCs was conducted using a gas chromatography/nitrogen phosphorous detector (GC-NPD) after 
derivatization and liquid-liquid extraction. α-DC levels in MR model systems were 5.92 to 39.10 μg/mL  
of GO, 3.66 to 151.88 μg/ml of MGO, and 1.10 to 6.12 μg/mL of DA. The highest concentration of 
total α-DCs was found in the fructose-threonine model system and the lowest concentration in the 
lactose-cysteine model system. Volatile flavor compounds were analyzed using solid-phase micro-
extraction (SPME) followed by GC-mass spectrometry (GC-MS). Different volatile flavor compound 
profiles were identified in the different MR model systems. Higher concentrations of α-DCs and volatile 
flavor compounds were observed in monosaccharide-amino acid MR model systems compared with 
disaccharide-amino acid model systems.

The Maillard reaction is the most basic chemical reaction occurring in many foods, in the form of a non-enzymatic 
browning reaction between a reducing sugar and an amino acid. Maillard reaction products (MRPs) generally 
have a positive impact on taste, color, and flavor of food, but some of them can have a negative toxic impact as 
well.

α-Dicarbonyl compounds (α-DCs) are yellow colored, low molecular weight organic compounds contain-
ing two carbonyl groups on the α-carbon1. They are formed from sugar fragmentation during non-enzymatic 
browning and are intermediates in caramelization and the Maillard reaction2, they are also formed during oxida-
tive degradation. In addition, α-DCs exist in fermented foods and beverages. Approximately 18 kinds of α-DCs 
have been identified in various foods, among which glyoxal (GO), methylglyoxal (MGO), and diacetyl (DA) are 
the most representative. Recent studies have found that α-DCs can pose a safety risk3. Amoroso et al.3 reported 
the cytotoxic effect of α-DCs in vitro3. According to their results, both undigested and digested α-DCs induce 
cytotoxicity in human cells and inhibit human DNA repair enzymes. Further, Morgan et al.4 reported respiratory 
toxicity of diacetyl in C57Bl/6 mice reproducing characteristics of human obliterative bronchiolitis. In addition, 
α-DCs were reported as precursors of toxic substances such as 4(5)-methylimidazole, heterocyclic flavor com-
pounds with respiratory toxicity5. α-DCs react with free amino group of proteins to form the Advanced glycation 
endproducts (AGEs) which associated with diabetes and kidney disease in the human body6. It has been reported 
that inhalation of glyoxal causes local irritation of the eyes and respiratory organs. Oral exposure to glyoxal may 
also cause congestion of gastrointestinal tract, lung, and kidney7. In this study, α-DCs were analyzed as potential 
undesirable products of the Maillard reaction.

Previous studies have reported α-DC analysis through derivatization to quinoxalines by o-phenylenediamine 
(OPD) to terminate the Maillard reaction8,9. This reaction easily occurs at room temperature in a slightly 
basic solution10, and allows detection using various analytical methods including liquid chromatography, gas 
chromatography-mass spectrometry, and gas chromatography-nitrogen phosphorous detection11.

Aroma compounds in Maillard reactions are formed based on types of sugars and amino acids present, tem-
perature, reaction time, and pH12. Over 100 types of such aroma compounds have been found in conventional fla-
vor studies. Among them, roasted and sweet flavors are accepted as having positive effects in foods such as coffee, 
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caramel sauce, and bread. Pyrazines, representative compounds of the roasted flavor, are formed by reaction of 
amines and α-dicarbonyls through Strecker degradation13,14. Formation of furaneols, representative compounds 
of the sweet flavor, occurs through the 2, 3-enolization pathway leading to 1-deoxyosones as intermediates15.

MRPs that consist mainly of low-molecular volatile compounds are difficult to sample and analyze, and 
individual compound analysis has been conducted in such cases. Studies of MRPs with sensory characteristics 
have also been performed. However, studies comparing desirable aroma compounds and undesirable toxic com-
pounds are not common. In this study, we compared α-dicarbonyl compounds and aroma compounds produced 
in reducing sugar–amino acid model systems. This work puts down the bases for studies on desirable preference 
factor like flavors and undesirable toxic substances.

Materials and Methods
Chemicals.  D-Glucose, D-fructose, D-maltose, D-lactose, L-lysine, L-serine, L-threonine, L-cysteine, 
L-norvaline, glyoxal, methylglyoxal, diacetyl, quinoxaline, 2-methylquinoxaline, 2,3-dimethylquinoxaline, 
o-phenylenediamine dihydrochloride, 1-methylpyrazole, C8-C20 alkane standard, methyl cinnamate, and 
sodium chloride were purchased from Sigma-Aldrich (St. Louis, MO). Water and ethyl acetate were obtained 
from J.T. Baker (Philipsburg, NJ, USA). All solutions were stored at 4 °C until analysis. Divinylbenzene/Carboxen/
Polydimethylsiloxane (DVB/CAR/PDMS, 50 μm film thickness) solid phase microextraction (SPME) fiber, 
polypropylene hold caps, and polytetrafluoroethylene (PTFE)/silicone septa were purchased from Supelco Inc. 
(Belfonte, PA, USA).

Preparation of Maillard reaction model system solutions.  Equimolar solutions (0.1 M) of four reduc-
ing sugars (glucose, fructose, lactose, and maltose) and four amino acids (lysine, serine, threonine, and cysteine) 
were prepared in distilled water and pH was set to 9. Solutions were placed in swing-top bottles and reactions 
were performed at 160 °C for 2 h in an oven (OF-22, Jeiotech Co., Seoul, Korea) to instigate the Maillard reaction. 
All solutions were cooled under running cold water to room temperature immediately in order to stop the reac-
tion progress. All samples were stored at 4 °C until they were analyzed.

Analysis of α-Dicarbonyl compounds.  Quantification and analysis of α-DCs produced in the Maillard 
reaction model systems was performed using o-phenylenediamine dihydrochloride derivatization reported in a 
previous study1. A 3 mL volume of each sample and 2 mL of o-phenylenediamine dihydrochloride were placed 
in 20 mL vials. The mixtures were set to pH 12 and stirred for 2 h at 600 rpm for derivatization of α-DCs to qui-
noxalines. Then, 5 mL of ethyl acetate was added to the mixtures and shaken for extraction. Extracted solutions 
were analyzed using GC-NPD. The concentrations used to perform standard calibration curve were 0.5, 1, 5, 10, 
50, 100 µg/ml.

An Agilent 6890 N gas chromatograph with a nitrogen phosphorous detector was used for analysis of α-DCs. 
A DB-WAX column (30 m × 250 × 0.25 μm; J&W Scientific, Folsom, CA) was used for separation. Helium was 
used as carrier gas at constant flow of 1.5 mL/min. Injection was set to the splitless mode at 260 °C. Oven temper-
ature was held at 40 °C for 2 min and then increased to 170 °C at 20 °C/min and held for 15 min. Detector temper-
ature was set at 300 °C. Nitrogen was used as make-up gas at a flow rate of 5 mL/min.

Analysis of aroma compounds.  Aroma compounds were analyzed using SPME (Solid phase 
micro-extration). A 5-mL volume of sample was added to a 20 mL headspace vial containing 0.75 g of sodium 
chloride. 5 μL of methyl cinnamate (internal standard, 100 μg/mL), 10 μL of alkane standard (10 μg/mL), and a 
magnetic stirring bar were added and the vial sealed with a PTFE cap. Subsequently, samples were stirred for 
30 min at 70 °C to reach equilibrium. Volatile flavor compound extraction was carried out by injecting a fiber 
into the vial for adsorption at 70 °C for 10 min. Then, the fiber was inserted into the GC injector port and held for 
10 min to desorb the volatile flavor compounds.

An Agilent 7820 A gas chromatograph and a 5977E mass spectrometer were used for volatile flavor com-
pound detection. Separation of volatile aroma compounds was performed using a DB-WAX column 
(60 m × 250 × 0.25 μm). The oven was held at 40 °C for 5 min, then raised to 185 °C at 5 °C/min and held for 
20 min, and then raised to 200 °C at 10 °C/min and held for 5 min. Helium was used as carrier gas at a constant 
flow rate of 0.8 mL/min. Injection mode was set to splitless at 230 °C. The detector was set to the scan mode and 
the scan range was from 20 to 550 m/z. Volatile flavor compounds were identified based on Kovats index on 
DB-WAX, co-injection, and mass spectrum from the NIST library. The quantification of each flavor compound 
was displayed as peak area ratio (PAR, peak area of each compound/that of internal standard).

Statistical analysis.  All samples were analyzed in triplicate and the analysis results are presented as 
mean ± standard deviation.

Results and Discussion
Analysis of α-DCs in Maillard reaction model systems.  Reaction model solutions were prepared with 
glucose and lysine at four temperatures (100, 120, 140 and 160 °C) and four pH levels (3,5,7, and 9) to simulate 
Maillard reaction model system conditions. Level of different α-DCs produced in the reactions, as shown in 
Table 1 was 0.36 to 16.78 μg/mL of GO, trace to 50.81 μg/mL of MGO, and N.D. to 2.27 μg/mL of DA. Higher 
pH and temperature resulted in greater production of total α-DCs including GO, MGO, and DA. Conditions 
yielding the maximum concentration of total α-DCs were 160 °C and pH 9. These conditions were then used 
to study the reducing sugar-amino acid model systems. As shown in Table 2, a total of 16 model systems were 
used with combinations of four amino acids (lysine, serine, threonine, and cysteine) and four reducing sugars 
(glucose, fructose, maltose, and lactose). Under the above conditions, basic amino acids containing hydroxyl 
groups have higher reactivity with α-DCs than acidic and nonpolar amino acids16. Levels of α-DCs in MR model 
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systems were 5.92 to 39.10 μg/mL of GO, 3.66 to 151.88 μg/mL of MGO, and 1.10 to 6.12 μg/mL of DA. The high-
est concentration of α-DCs was detected in the fructose-threonine model system and the lowest concentration 
in the lactose-cysteine model system. In addition, DA concentration was 1.66 to 6.12 μg/mL in lactose model 
systems, compared with other reducing sugar model systems. These results indicated that α-DCs were produced 
mainly from monosaccharides rather than from disaccharides. Hollnagel and Kroh reported that monosaccha-
rides forms more α-DCs than disaccharides2. Different from our results among monosaccharides glucose formed 
more α-DCs than fructose2. In the report they suggested that fructose forms more cyclic compounds rather than 
fragmentation products such as α-DCs. However, Maillard reaction conditions were different and it could give 
rise to the conflicting results.

Aroma compounds formed in Maillard reaction model systems.  Volatile flavor compounds formed 
in the reaction model systems were identified. Results of analysis showed that volatile flavor compounds were 
primarily composed of eight compounds representing roasted flavor (2,3-dimethyl pyrazine, 2,5-dimethyl pyra-
zine, 2,6- dimethyl pyrazine, 2,3,5-trimethyl pyrazine, 2-ethyl-3,6-dimethyl pyrazine, 2-ethyl-3,5- dimethyl pyra-
zine, 2,3-dimethyl-5-methylpyrazine, and 2-Acetylthiazole) and five representing sweet flavor (benzaldehyde, 
5-methylfurfural, furaneol, homofyraneol, and norfuraneol).

Table 3 shows results from glucose (Glu)–amino acid (lysine, serine, threonine and cysteine) model systems. 
Total peak area ratio (PAR) in Glu–Lys, Glu–Ser, Glu–Thr and Glu–Cys model systems was 1.3606, 0.7369, 

Sample GO MGO DA

100 °C- pH 3 0.36 ± 0.04 trace 0.45 ± 0.01

100 °C- pH 5 0.45 ± 0.01 0.18 ± 0.01 N.D.

100 °C- pH 7 0.55 ± 0.01 0.27 ± 0.01 N.D.

100 °C- pH 9 0.67 ± 0.04 0.12 ± 0.01 0.39 ± 0.01

120 °C- pH 3 1.10 ± 0.06 0.59 ± 0.05 0.68 ± 0.01

120 °C- pH 5 0.86 ± 0.02 0.12 ± 0.00 0.71 ± 0.03

120 °C- pH 7 0.97 ± 0.01 0.11 ± 0.01 0.76 ± 0.03

120 °C- pH 9 3.36 ± 0.10 2.41 ± 0.02 0.81 ± 0.04

140 °C- pH 3 2.03 ± 0.07 1.85 ± 0.10 0.78 ± 0.02

140 °C- pH 5 1.73 ± 0.06 0.69 ± 0.07 0.67 ± 0.02

140 °C- pH 7 1.92 ± 0.04 0.31 ± 0.02 0.86 ± 0.01

140 °C- pH 9 16.78 ± 0.18 15.62 ± 0.62 1.41 ± 0.03

160 °C- pH 3 2.27 ± 0.10 0.62 ± 0.05 0.50 ± 0.02

160 °C- pH 5 11.93 ± 0.09 3.55 ± 0.04 0.36 ± 0.01

160 °C- pH 7 15.79 ± 0.38 5.79 ± 0.20 0.41 ± 0.01

160 °C- pH 9 11.81 ± 0.19 50.81 ± 0.59 2.27 ± 0.03

Table 1.  Concentrations (μg/mL) of glyoxal (GO), methylglyoxal (MGO), and diacetyl (DA) produced in the 
glucose–lysine Maillard reaction model system.

Sample GO MGO DA

Glu + Lys 11.81 ± 0.19 50.81 ± 0.60 2.27 ± 0.03

Glu + Ser 34.31 ± 2.00 79.04 ± 1.75 3.09 ± 0.09

Glu + Thr 18.82 ± 0.70 54.79 ± 1.47 1.79 ± 0.05

Glu + Cys 8.92 ± 0.32 24.42 ± 0.52 1.43 ± 0.02

Fru + Lys 35.42 ± 0.10 67.86 ± 0.66 1.57 ± 0.03

Fru + Ser 39.10 ± 0.16 106.53 ± 1.48 3.12 ± 0.10

Fru + Thr 10.93 ± 0.32 151.88 ± 1.43 3.29 ± 0.10

Fru + Cys 7.34 ± 0.61 27.00 ± 1.40 1.10 ± 0.02

Mal + Lys 29.30 ± 0.30 6.41 ± 0.22 1.32 ± 0.03

Mal + Ser 24.09 ± 0.88 12.69 ± 0.62 1.75 ± 0.04

Mal + Thr 17.10 ± 0.30 57.58 ± 1.27 3.88 ± 0.20

Mal + Cys 5.96 ± 0.19 4.92 ± 0.12 1.49 ± 0.04

Lac + Lys 24.47 ± 0.20 8.90 ± 0.09 6.12 ± 0.00

Lac + Ser 27.00 ± 0.67 34.04 ± 1.65 5.34 ± 0.17

Lac + Thr 12.62 ± 0.29 36.10 ± 0.88 3.49 ± 0.09

Lac + Cys 5.92 ± 0.27 3.66 ± 0.14 1.66 ± 0.05

Table 2.  Concentrations (μg/mL) of glyoxal (GO), methylglyoxal (MGO), and diacetyl (DA) produced in 
reducing sugar and amino acid Maillard reaction model systems at 160 °C and pH 9.
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1.5351, and 0.2322, respectively. The compound 2,5-dimethyl pyrazine representing odor of chocolate and 
roasted nuts was detected significantly in Glu–-Lys, Glu–Ser, Glu–Thr, and Glu–Cys model systems with PAR of 
1.0248, 0.4728, 0.6512, and 0.0692, respectively17. The PARs of 2,5-dimethyl pyrazine were 26–75% in the model 
systems compared to total PAR. In the previous study 2, 5-dimethyl pyrazine was reported as a main flavor in 
Maillard reaction model systems13.

In the Glu–Thr model system, 2-ethyl-3,5-dimethylpyrazine was the highest detected with peak area ratio 
0.7304. In addition, 2-acetylthiazole representing popcorn-like18 flavor had a peak area ratio of 0.0223 in the 
Glu–Cys sulfur model system. Benzaldehyde, representing sweet burnt sugar and roasted almond flavors19 had 
a peak area ratio of 0.0140, 0.0064, 0.0059, and 0.0124, respectively in Glu–Lys, Glu–Ser, Glu–Thr, and Glu–Cys 
model systems. 2,3-Dimethyl-5-methylpyrazine, representing roasted flavor and 5-Methylfurfural, Furaneol, 
Homofuraneol, and Norfuraneol representing sweet flavor were not detected.

Table 4 shows results from fructose (Fru)–amino acid (Lys, Ser, Thr, and Cys) model systems. Total peak area 
ratio in Fru–Lys, Fru–Ser, Fru–Thr, and Fru–Cys model systems was 1.1592, 0.7983, 2.6741, and 0.1341, respec-
tively. The compound 2,5-Dimethyl pyrazine was detected with peak area ratio of 0.9241, 0.4980, 1.0404, and 
0.0396, respectively in Fru–Lys, Fru–Ser, Fru–Thr, and Fru–Cys model systems. In the Fru–Cys model system, 2, 
6-dimethyl pyrazine was the highest detected with peak area ratio 0.0567. In addition, 2-acetylthiazole showed 
a peak area ratio of 0.0140 in the Fru–Cys model system. The compounds 2,3-Dimethyl-5-methylpyrazine, 
5-Methylfurfural, Furaneol, Homofuraneol, and Norfuraneol were not detected.

Table 5 shows results from maltose (Mal)–amino acid (Lys, Ser, Thr, and Cys) model systems. Total peak 
area ratio in Mal–Lys, Mal–Ser, Mal–Thr and Mal–Cys model systems was 0.0066, 0.0161, 0.0217, and 0.0110, 
respectively. Benzaldehyde was detected with peak area ratio of 0.0041, 0.0051, 0.0053, and 0.0110, respectively in 
Mal–Lys, Mal–Ser, Mal–Thr, and Mal–Cys model systems. The compounds 2,3-dimethyl pyrazine, 2,6-dimethyl 
pyrazine, 2-ethyl-3,5-dimethylpyrazine, 2,3-Dimethyl-5-methylpyrazine, 2-acethylthiazole, 5-methylfurfural, 
Furaneol, Homofuraneol, and Norfuraneol were not detected.

Table 6 shows results from lactose (Lac)–amino acid (Lys, Ser, Thr, and Cys) model systems. Total peak area 
ratio in Lac–Lys, Lac–Ser, Lac–Thr, and Lac–Cys model systems was 0.0053, 0.0063, 0.5224, and 0.0043, respec-
tively. Benzaldehyde was detected with peak area ratio of 0.0053, 0.0063, 0.0043, and 0.0043, respectively in 
Lac– Lys, Lac–Ser, Lac–Thr, and Lac–Cys model systems. In the Lac–Thr model system, 2,5-dimethyl pyrazine, 
2,3,5-trimetyl pyrazine, 2-ethyl-3,6-dimethylpyrazine, and 2-ethyl-3,5-dimethylpyrazine were present with peak 
area of 0.0070, 0.04961, 0.0086, and 0.0064, respectively. The compounds 2, 3-dimethyl pyrazine, 2,6-dimethyl 
pyrazine, 2,3-Dimethyl-5-methylpyrazine, 2-acethylthiazole, 5-Methylfurfural, Furaneol, Homofuraneol, and 
Norfuraneol were not detected. Overall, in the reducing sugar and amino acid Maillard reaction model systems, 
roasted flavors were produced at higher levels while sweet flavor was produced at lesser levels.

Compounds
Retention 
time K.I

K.I 
(Ref)

Co-
injection

PAR (peak area ratio)

Glu + Lys Glu + Ser Glu + Thr Glu + Cys

2,3-Dimethyl pyrazine 25.609 1372 1375 o 0.0295 ± 0.0035 N.D N.D 0.0093 ± 0.0009

2,5-Dimethyl pyrazine 24.878 1363 1350 o 1.0248 ± 0.1526 0.4728 ± 0.0176 0.6512 ± 0.0559 0.0692 ± 0.0068

2,6-Dimethyl pyrazine 25.041 1356 1356 o 0.0370 ± 0.0054 0.0229 ± 0.0006 0.0143 ± 0.0006 0.1052 ± 0.0106

2,3,5-Trimethyl pyrazine 27.270 1434 1430 o 0.0964 ± 0.0093 0.0817 ± 0.0043 0.1174 ± 0.0099 0.0109 ± 0.0009

2-Ethyl-3,6-dimethylpyrazine 28.400 1474 1474 o 0.1590 ± 0.0154 0.1907 ± 0.0033 0.7304 ± 0.0600 0.0030 ± 0.0003

2-Ethyl-3,5-dimethylpyrazine 28.829 1490 1491 o N.D 0.0073 ± 0.0004 0.0159 ± 0.0015 N.D

2-Acetylthiazole 33.705 1686 1686 o N.D N.D N.D 0.0223 ± 0.0022

Benzaldehyde 30.642 1562 1562 o 0.0140 ± 0.0020 0.0064 ± 0.0003 0.0059 ± 0.0002 0.0124 ± 0.0009

Table 3.  Aroma compounds produced in glucose (Glu)–amino acid (lysine (Lys), serine (Ser), threonine (Thr), 
and cysteine (Cys)) Maillard reaction model systems.

Compounds
Retention 
time (min) K.I

K.I 
(Ref)

Co-
injection

PAR (peak area ratio)

Fru + Lys Fru + Ser Fru + Thr Fru + Cys

2,3-Dimethyl pyrazine 25.609 1372 1375 o 0.0216 ± 0.0140 N.D N.D 0.0024 ± 0.0001

2,5-Dimethyl pyrazine 24.878 1363 1350 o 0.9241 ± 0.4840 0.4980 ± 0.0129 1.0404 ± 0.0401 0.0396 ± 0.0011

2,6-Dimethyl pyrazine 25.041 1356 1356 o 0.0211 ± 0.0100 0.0298 ± 0.0009 0.0635 ± 0.0025 0.0567 ± 0.0015

2,3,5-Trimethyl pyrazine 27.270 1434 1430 o 0.0564 ± 0.0370 0.1060 ± 0.0034 0.4718 ± 0.0159 0.0043 ± 0.0000

2-Ethyl-3,6-dimethylpyrazine 28.400 1474 1474 o 0.1326 ± 0.059 0.1522 ± 0.0055 1.0390 ± 0.0309 0.0017 ± 0.0000

2-Ethyl-3,5-dimethylpyrazine 28.829 1490 1491 o N.D 0.0084 ± 0.0002 0.0560 ± 0.0018 N.D

2-Acetylthiazole 33.705 1686 1686 o N.D N.D N.D 0.0140 ± 0.0006

Benzaldehyde 30.642 1562 1562 o 0.0035 ± 0.0001 0.0038 ± 0.0003 0.0034 ± 0.0001 0.0155 ± 0.0003

Table 4.  Aroma compounds produced in fructose (Fru)–amino acid (lysine (Lys), serine (Ser), threonine (Thr), 
and cysteine (Cys)) Maillard reaction model systems.
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Conclusions
In this study, desirable volatile flavor compounds and undesirable α-dicarbonyl compounds formed during the 
Maillard reaction were analyzed using reducing sugar–amino acid model systems. The levels of α-DCs produced 
in MR model systems were 1.10 to 151.88 μg/mL. The highest concentration of total α-DCs was found in the 
fructose–threonine model system and the lowest concentration of total α-DCs was found in the lactose–cysteine 
model system. Different volatile flavor compound profiles were identified from different MR model systems. 
Higher concentrations of α-DCs and volatile flavor compounds were observed in monosaccharide–amino acid 
Maillard model systems than in disaccharide–amino acid model systems. As a future work, the balanced study 
between desirable flavor compounds and toxic compounds such as α-DCs are supposed to be carried out in our 
laboratory.
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