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Uncertainty in ensembles of global biodiversity
scenarios
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While there is a clear demand for scenarios that provide alternative states in biodiversity with

respect to future emissions, a thorough analysis and communication of the associated

uncertainties is still missing. Here, we modelled the global distribution of ~11,500 amphibian,

bird and mammal species and project their climatic suitability into the time horizon 2050 and

2070, while varying the input data used. By this, we explore the uncertainties originating

from selecting species distribution models (SDMs), dispersal strategies, global circulation

models (GCMs), and representative concentration pathways (RCPs). We demonstrate the

overwhelming influence of SDMs and RCPs on future biodiversity projections, followed by

dispersal strategies and GCMs. The relative importance of each component varies in space

but also with the selected sensitivity metrics and with species’ range size. Overall, this

means using multiple SDMs, RCPs, dispersal assumptions and GCMs is a necessity in any

biodiversity scenario assessment, to explicitly report associated uncertainties.
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The launch of the Intergovernmental Science-Policy Plat-
form on Biodiversity and Ecosystem Services (IPBES) in
2012 and the ongoing activities of the Intergovernmental

Panel for Climate Change (IPCC) have led the ecological com-
munities to conceive and produce biodiversity models and
scenarios1,2. We define here biodiversity models as any type of
quantitative model that aims at predicting the spatial or/and

temporal distribution of a population, species or groups
of species. Biodiversity scenarios, the application of these
models to plausible trajectories of different aspects of the future
(e.g. future climate), rely on several complex components that
depend on each other (Fig. 1 in ref. 2). When focusing on bio-
diversity trends under climate change, biodiversity models
are first trained or fitted under current climatic conditions.
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Fig. 1 Relative influence of the different sources of variation on species’ level sensitivity metrics. The plot represents the relative influence of the choice of
species distribution models (SDMs), global circulation models (GCMs) and representative concentration pathways (RCPs) on the variance of change in
climatic suitability (left) and loss of suitable climate (right) for all modelled species. The deviance was calculated across all species by means of a nested
ANOVA and the partitioning is represented by the percentage of explained deviance (note that the unexplained deviance is not represented here).
ANOVAs were run for three different TSS thresholds (0.4, 0.6, and 0.7) above which individual SDMs were retained for assessing the model results

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09519-w

2 NATURE COMMUNICATIONS |         (2019) 10:1446 | https://doi.org/10.1038/s41467-019-09519-w |www.nature.com/naturecommunications

www.nature.com/naturecommunications


Next, these models project future biodiversity patterns based
on climate projections from global circulation models (GCMs)
that in turn rely on socio-economic scenarios, expressed
as representative concentration pathways (RCPs3). This chain
of dependencies implies that the coupled choice of a GCM and
a RCP is not straightforward4. Analyzing the biodiversity
response with respect to RCPs is crucial to test and report
how climate change and its mitigation could ultimately influ-
ence biodiversity, with consequences for management and
conservation. However, the variation among climate change
projections from different GCMs can be so high that the
interest of choosing one RCP over another is no longer seen a
necessity4. With regards to biodiversity impact modelling, the
situation is even more complex since biodiversity models
themselves proved to generate considerable variability5,6. In
other words, the choice of a biodiversity model, a GCM and a
RCP matters and the uncertainties originating from these
choices should be considered in decision-making or biodiversity
conservation. In both the climate and ecological modelling
communities, researchers are generating and increasingly using
ensembles of projections from a range of GCMs, biodiversity
models and RCPs to quantify the uncertainty arising from these
apparently subjective choices7,8. However, while several studies
have highlighted the potential consequences of ignoring this
variability originating from different choices in biodiversity
scenarios9,10, most studies still produce single projections based
on a single biodiversity model and a single GCM and only
superficially discuss their results in the light of socio-economic
pathways (see e.g.11).

Here, we demonstrate the importance of considering multiple
approaches (e.g. biodiversity models, GCMs and RCPs) but also
multiple ecological decisions (e.g. quality of the data, species
dispersal limitation) on biodiversity scenarios. To obtain plausible
and robust results useful for biodiversity assessments like
IPBES12, we run an extensive climate change impact assessment
study by modelling the current and future climatic suitability of
~11,500 vertebrate species at the global scale (Supplementary
Fig. 1). More specifically, we model the distribution of 1351
amphibian, 7248 bird, and 2896 mammal species as a function of
current climate using four species distribution models (SDM) that
are cross-validated four times and projected their future climatic
suitability as a function of 14 combinations of GCMs and RCPs
and for two dispersal strategies (‘no dispersal’ and ‘limited dis-
persal’). This totaled to five million single projections from which
we define two species-level sensitivity metrics (change in climatic
suitability and loss in climatic suitability better) and pixel-level
variation in community metrics (change in species richness,
change in spatial turnover per region and temporal turnover per
pixel). We then use nested ANOVAs to disentangle the relative
importance of the choices of dispersal strategies, SDMs, GCMs
and RCPs on the variability of the results.

Results
Species-level uncertainty analyses. At the species-level, the
influence of SDM, GCM and RCP differed with respect to the
sensitivity metric and dispersal scenario used (Fig. 1). When
assuming limited dispersal, the choice of SDMs causes a more
than ten times higher deviance in the change of suitable habitats
than the choice of the other two components. In other words,
the subjective selection of a specific SDM has an overarching
influence on the final result compared to the choices of GCMs
and RCPs. Interestingly, when considering only the loss in cli-
matic suitability (‘no dispersal’ scenario), RCPs are the most
important element causing variation, followed by SDMs and
GCMs (Fig. 1). The observed difference in the explained

deviance between the two dispersal assumptions arises from the
discrepancy in SDMs in projecting the future climatic suitability
of species13. While SDMs generally agree well when predicting
the current distribution of species (as is targeted by the no
dispersal assumption, Supplementary Fig. 2), they are known to
widely differ when projecting future distributions14. This effect
is evident even when keeping only SDMs that reach very high
predictive accuracies (TSS > 0.7, Fig. 1). In other words, it is not
only the quality of the SDMs that explains a large proportion of
variance in model output, but also their internal structure.
Indeed, relatively complex models (i.e. random forest) use a
variety of combinations of features that can lead to similar
geographical predictions under current conditions, but that can
vastly differ to other models when transferred to future condi-
tions, especially under conditions that have been used for cali-
brating the modes. Some of the particular combinations of
features could represent true complex interactions between
species’ occurrences and environmental conditions, but some-
times they could result of over-fitting and spurious combina-
tions, that once projected in new conditions lead to misleading
results. The ensemble projection of the bearded woodpecker
(Dendropicos namaquus, Lichtenstein 1793) exemplifies this
aspect (Supplementary Fig. 3). The results reveal marked dif-
ferences for SDM in projected future climatic suitability which
leads to difficulties when interpreting the results in the light of
socio-economic pathways. On the other hand, the loss in (cur-
rent) climatic suitability does not vary as much for SDM and
rather show strong differences for RCP. Novel conditions are
usually far away from the current range of species, which also
explain that SDMs are a more important driver of over-all
uncertainty when dispersal in accounted for, than when con-
sidering only current loss of suitable habitats. Interestingly, the
same trend was also found to be a function of species’ range size
(Fig. 2). When considering dispersal, the effect of SDMs on total
projection uncertainty was highest for rare species. However,
when considering the loss of currently suitable climatic habitat
(as is targeted by the no dispersal assumption), the influence of
RCPs on projection uncertainty increases with species range
sizes. For the rarest species, both SDMs and RCPs have the
highest contributions to explain uncertainties, while for large-
ranged species, the influence of RCPs on the total variance in
future climatic suitability is largest. The same pattern emerges
when considering the effects of selecting RCPs for a given GCM
(Supplementary Fig. 4). Here, under limited dispersal, the
deviance due to SDMs is such that there is no influence of RCPs
on the final results. Only when considering the loss in climatic
suitability (LCS), the effect of RCPs is discernible where the
median LCS is around 65% under the RCP 8.5 and 30% under
the RCP 2.6 (Supplementary Fig. 4). With regards to biodi-
versity management, our results indicate that only when con-
sidering the loss of currently suitable climate that one can assess
the effects of climate change adaptation plans or of emission
scenarios.

Pixel-based uncertainty analyses. The overall variation origi-
nating from the combination of SDMs, GCMs and RCPs mark-
edly differed between pixel-based metrics and among species
groups (Fig. 3). Under the ‘no dispersal’ assumption the amphi-
bians showed lower variation than the other groups, while the
variation in the other metrics was generally higher for amphi-
bians. This is probably reflecting that amphibian species are
slightly less easy to model (Supplementary Fig. 2) at that parti-
cular resolution (100 km) and scale (global) and generally occur
in location where RCPs and GCMs also diverge most (Supple-
mentary Figs. 5–8). Interestingly, the change in α-diversity was
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particularly sensitive to the choice of SDMs, which explained by
far most of the deviance for that metric (Fig. 3). This was much
less the case for the estimates of relative species turnover and loss
per pixel were a larger proportion of the deviance was addition-
ally explained by the RCPs, with the strongest effects for the time
horizon 2070. While SDMs explained a constant portion of the
deviance, the percentage of explained deviance by RCP scenarios
increased considerably for 2070 (Fig. 3). This result confirms that
when using sensitivity metrics that account for dispersal limita-
tion (e.g. change in α-diversity), the uncertainty due to the choice
of SDMs becomes particularly important and may hide variations
due to RCPs.

Interestingly, the relative influence of SDMs, GCMs, and RCPs
markedly varied in space at the scale of the IPBES sub-region
(Fig. 4, Supplementary Fig. 9) but also at the pixel-scale

(Supplementary Figs. 10–15). This was particularly true for the
effect of selecting GCMs, which on average have a low effect, but
appear relatively strong in explaining the deviance in both %loss
(percent of currently suitable area lost) and Δβs (percent change
in total diversity per IPBES sub-region divided by the mean
α-diversity per sub-region), under ‘no dispersal’ in all of the
Europe and Central Asia region, and in the North Africa and the
Australia sub-regions for birds, and to a lesser extent for
mammals and amphibians (Fig. 4). Similarly, the deviance
explained by RCPs for βt (temporal turnover) was much higher
than the one explained by SDMs in Africa and South America,
while this was opposite in Europe, Central Asia and North
America (Fig. 4). These varying effects can be explained by the
spatial structure of the predicted changes in the different
sensitivity metrics (Supplementary Figs. 10–15). For instance,
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Fig. 2 Relative influence of the different sources of variation on species’ level sensitivity metrics in function of species range size. The plot represents the
relative influence of SDMs, GCMs, and RCPs on overall species sensitivity to climate change in response to species’ range size. A TSS threshold of 0.7 was
used for all analyses. Species ranges were classified for equal size at the log scale
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Fig. 3 Absolute influence of the different sources of variation on pixel-based sensitivity metrics. The plot represents the absolute influence of the choice of
species distribution models (SDMs), global circulation models (GCMs) and representative concentration pathways (RCPs) on the change in α-diversity
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grey correspond to the horizon 2041–2060 and 2061–2080, respectively. Total deviance bar shows the total deviance that was explained by all
components in the ANOVA. The central line of each box correspond to the median, the bounds of box represent the 25 and 75% quantiles, and the
whiskers represent the quantiles 0.05 and 95%
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the areas with the highest projected changes in the percentage of
species loss by 2070 were mostly located in Africa and South
America, areas where most of the variation was explained by
RCPs (Supplementary Fig. 12). A similar result was obtained for

changes in α-diversity (Supplementary Fig. 11), where the areas
with the highest expected changes (Northern Americas, Northern
Africa, some areas in Central Asia) coincide with areas for which
the largest deviance was explained by RCPs again.
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Discussion
In our comprehensive study, we have demonstrated the impor-
tance of considering multiple biodiversity models, multiple GCM,
and, of course, multiple emission scenarios. Here, by covering the
global scale and a larger range of organisms, we also demonstrate
how the uncertainty in sensitivity metrics varies in space, in time,
as a function of the organism, and ultimately, as a function of the
sensitivity metric used. When considering sensitivity metrics that
account for species dispersal capacity, the influence of the mod-
elling algorithms becomes overwhelming. Statistical SDMs are
known to markedly differ when projecting species distributions
across space and time and this is why several packages include
multiple algorithms to explore this variation (e.g.15). Importantly,
even when selecting only the best performing models (TSS > 0.7),
SDMs still caused highest contributions to uncertainty, followed
by GCMs, and then RCPs.

For biodiversity management, this could have important
implications. There is indeed growing interest in climate change
refugia16, a concept that provides a theoretical basis for the
identification of species-specific safe areas under climate change.
In that respect, targeted species translocation is sometimes
advocated as a potential solution to safeguard species for con-
servation that would otherwise become extinct in the face of
climate change17,18. While considerable controversy has emerged
regarding the selection of geographic areas translocation19, it is
often suggested that SDM are an appropriate tool for selecting
areas for translocations that are becoming suitable in the future18.
Our results suggest that should SDMs be used for guiding con-
servation translocation, it should be done carefully, since SDMs
tend to cause high levels of uncertainty. Running multiple state-
of-the-art SDMs forced by several GCMs seems to be the best and
only option to provide ensemble future projections for assessing
options for translocations. Ensemble projections provide infor-
mation what areas are suitable in most models and scenarios,
which reduces translocation uncertainties compared to using
projections from a single SDM with a single climate forcing only.

Alternatively, in situ conservation planning focuses on pro-
tecting or managing species where they currently occur and
protect them from other, negative effects. To guide efforts to areas
within the current range that are least affected by climate change,
the use of multiple GCM and especially RCPs is very important.

Interestingly, when focusing on sensitivity metrics related to
species loss or temporal turnover, the uncertainty related to varia-
tion in SDMs is not necessarily larger than in GCMs and is lower
than in RCPs, which is as expected. When researchers do not have
the computational capability to implement a full treatment of
uncertainty, focusing on those metrics might be an avenue. In
terms of conservation planning, it also means that optimization
algorithms that rather focus on securing diversity (both α- and
β-diversities in a complementarity way) should be less affected by
uncertainty from GCMs and SDMs. They should thus mostly
concentrate their efforts on assessing the effects of emission sce-
narios. Alternatively, there are also alternative modelling techniques
that explicitly focus on community-level metrics (i.e. pixel-based).
Since those approaches do not rely on stacking individual SDM,
they are less prone to bias coming from aggregating models with
different quality20. However, modelling α- and β-diversity explicitly
is not as straightforward than modelling individual species21.
Similar analyses than the one proposed here but with community-
level modelling approaches will be interesting to understand whe-
ther they are less influential on projection outputs than SDMs. In
this study, we have also proposed novel ways of communicating
both the uncertainties and their sources either per region, sub-
region or pixel. This shall help pave the way to better communicate
and map both the metric and the variance in this metric from
the different sources of uncertainty. Yet, it shall also illustrate how

the importance of these different sources varies in space and time
and that conservation actions or biodiversity management should
account for those variations. We have seen that sources of uncer-
tainty can strongly vary in space depending on the quality of bio-
diversity models for some particular groups or the variability of
projections among GCM (Supplementary Figs. 5–8).

Biodiversity scenarios are not meant to predict the future pre-
cisely, but rather to project the range of possible futures allowing to
better understand uncertainties and alternative visions of this
future. These visions allow for considering how different political
options, represented here by the RCPs, might influence the per-
sistence of biodiversity under a wide range of possible futures.
However, to be useful, one has to acknowledge also other sources
of variations that may influence the overall modelling exercise12.
There are different types of biodiversity models, and here while
considering only a single type (i.e. statistical SDM), we show that
different algorithms could lead to substantial variability in the
sensitivity metrics used. This variation may blur the utility of using
several RCPs to discuss their impact on biodiversity persistence.
This issue was long recognized in climate sciences such that it is no
longer conceivable to show projected climatic trends from a single
GCM only. Rather, ensembles of climate trajectories are usually
shown (or least statistics thereof) and offered to users through data
portals (e.g. CMIP5). The biodiversity modelling community needs
to more consistently follow this path and report and communicate
the variability resulting from the different options in biodiversity
models (e.g. SDMs, dispersal scenarios) and input data (e.g. GCM,
RCP). However, the range of biodiversity model types, algorithms,
input data or parameterizations is so large that it seems currently
impossible to report the variability even across biodiversity model
types. However, we urge that variabilities originating from mod-
elling algorithms, input data and external forces be assessed and
reported comprehensively for better informing science, users and
decision-makers in exploring options for the future.

Methods
Statistical analyses. All analyses have been carried out in the R environment
(specific functions within specific package are indicated in parentheses).

Data. We used the distribution maps provided by the Amphibian and Mammal
Red List Assessment (http://www.iucnredlist.org/) for 5547 and 4616 species,
respectively. For birds, breeding range distribution maps were extracted from
BirdLife (http://www.birdlife.org/) for 9993 species. Ranges were converted to 100
km × 100 km equal-area grid cells, a resolution previously validated as the finest
justifiable for these data globally22. Grid cells within the distribution range of each
species were thus converted to presence points, while those outside their dis-
tribution ranges were converted as absence points. We finally focused on 1351
amphibian, 7248 bird and 2896 mammal species after removing species occurring
in <20 grid cells, as well as domestic and aquatic species. We consider 20 presence
points the minimum to successfully fit response curves to four different predictor
variables.

Climatic data. Current climate (1979–2013) was represented by four bioclimatic
variables from the CHELSA dataset23 up-scaled from a 1 km to a 100 km resolu-
tion. The chosen variables were as follows: annual mean temperature, annual
temperature range, annual sum of precipitation and precipitation seasonality
(coefficient of variation in monthly sum of precipitations).

Projected future climate variables were taken from five GCMs driven by four
scenarios of RCPs in a factorial manner as explained in Supplementary Fig. 1. The
five selected models originate from the CMIP5 collection of model runs used in
IPCC’s 5th Assessment Report (IPCC 2013). The five models from which data were
taken are: CESM1-BGC24 run by National Center for Atmospheric Research
(NCAR); CMCC-CMS25 run by the Centro Euro-Mediterraneo per i Cambiamenti
Climatici (CMCC); CM5A-LR26 run by the Institut Pierre-Simon Laplace (IPSL);
MIROC527 run by the university of Tokyo; and ESM-MR28 run by Max Planck
Institute for Meteorology (MPI-M).

Future climatic conditions of the four climatic variables were also taken from
the CHELSA dataset23, which provides CMIP5 scenarios at a native resolution of
30 arc seconds. Future conditions from coarser resolution GCMs had been
achieved using climatologically aided interpolation. We took the difference
between selected GCMs from CMIP5 at a 0.25° grid cell size for current conditions
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(1979–2013) and the selected future periods (2041–2060, 2061–2080) and
interpolated them using b-spline interpolation to the resolution of 30 arc seconds
of CHELSA. The resulting difference was then added to (for temperature) or
multiplied with (for precipitation) to the CHELSA climatologies of the 1979–2013
baseline period. As our study used 100 km grid cells, the native CHELSA resolution
was upscaled by calculating mean within values per each 100 km grid cell.

Species distribution models. An ensemble of projections of SDM was obtained
for the 11,495 selected species. The ensemble included projections with Generalized
Additive Models, Boosting Regression Trees, Generalized Linear Models and
Random Forests. Models were calibrated for the baseline period using 70% of
observations randomly sampled from the initial data and evaluated against the
remaining 30% data using the true skill statistic (TSS29). Presence data were ran-
domly drawn from the gridded range maps. For absences, we considered data in a
reasonable buffer around the presence data to avoid having over-optimistic pre-
dictive accuracies30. To be consistent with assumed realistic dispersal distances
(see next paragraph) and in line with previous analyses, we selected absence data in
2000, 3000, and 4000 km buffer around amphibian, mammal and bird species
ranges, respectively. This analysis was repeated four times, thus providing a four-
fold internal cross-validation of the models (biomod package15). The quality of the
models was ‘very high’ to ‘excellent’ with an average TSS of 0.83 (Supplementary
Fig. 2). Since the quality of the models strongly affect projection uncertainties, we
tested three thresholds below which models were removed from projection
ensembles. We used a threshold of TSS= 0.4, which is usually considered a
minimum for retaining reliable models29. We also used thresholds of 0.6 and 0.7,
and investigated their effects on uncertainties of species-based sensitivity metrics.
For all further analyses, the most drastic threshold (TSS= 0.7) was then used (red
lines in Supplementary Fig. 2).

For each species, all calibrated models (4 SDMs × 4 repetitions) were then used
to project the potential distribution of each species under both current and
projected future climatic conditions (Supplementary Fig. 1).

Dispersal limitation. Since most species have a sub-global distribution, we
adjusted the area from which species are modelled and for which projections are
made. In other words, for amphibian, bird and mammal species, the modelled and
projected area included all grid cells within 2000, 3000 and 4000 km of species’
current distributions, respectively. This represents a maximal dispersal distance
and excludes regions and climatic conditions that are outside of what is conceivably
within reach for these species30. These estimates likely underestimate the true
dispersal limitation of most species but give a more reliable estimate than assuming
unlimited dispersal during this century. For most analyses, we also assumed a ‘no
dispersal’ scenario. This ‘no dispersal’ scenario is useful to investigate whether and
where area of currently suitable climate habitat will remain to be suitable for
species in the future. This is a very important aspect for in situ conservation.

Sensitivity metrics. All species projections under future conditions (5,149,760 in
total) were converted to a metric of species sensitivity. CCS measures the relative
change in climatic suitability. It corresponds to the difference between the total
suitable climatic area projected into the future under the assumption of limited
dispersal and the total suitable area projected under current conditions, with the
resulting quantity being divided by the total suitable area projected on the current
conditions. Under the ‘no dispersal’ hypothesis, we derived LCS, which measure
the relative loss in climatic suitability. This metric quantifies a species’ risk of
habitat loss within its current area of occupancy.

At the pixel-level, we calculated several metrics commonly used in biodiversity
scenario modelling. First, we calculated the relative (percent) change in species
richness (Δα-diversity) and the relative (percent) loss of species per pixel (% loss).
Second, we calculated the temporal species turnover per pixel under the
assumption of limited dispersal (βt= [No. of species lost+No. of species gained]/
[current species richness+No. of species gained]). Finally, to be useful for the
global assessment of the IPBES, we also estimated the change in spatial turnover
(Δβs) within each of the IPBES-subregions (Supplementary Fig. 16), calculated as
the relative (percent) change in total diversity per sub-region (γ-diversity) divided
by the mean α-diversity per sub-region. Δβs was calculated under both no dispersal
and limited dispersal assumptions.

Variance partitioning of the uncertainty. For both species-based sensitivity
metrics and pixel-based variation in community metrics, we conducted a set of
variance partitioning to understand the main drivers of the variance.

All sensitivity metrics are based on a large amount of simulations (e.g. 448
projections per species) that vary as a result cross-validation sub-setting of initial
data, dispersal scenario, and choice of SDM, GCM, and RCP. First, the effects of
cross-validation explained <1% of total variation and thus we decided not to
consider it for further analyses. Cross-validated models were considered as four
independent runs of the same models. Second, since our sensitivity metrics were
defined for different dispersal assumptions, we did not consider dispersal in the
variance partitioning, but contrasted the results as a function of it. Finally, we
partitioned the effects of SDMs, GCMs and RCPs on the final metrics using a
nested ANOVA, in which SDMs were the first level, followed by GCMs and RCPs,

which were considered as crossed effects (SDM/GCM:RCP). We implemented a
nested ANOVA since SDMs are first fitted irrespective of GCMs and RCPs, yet
they differ strongly in how they affect projected suitable habitats when applied to
GCMs and RCPs. Therefore, we considered the effects from GCM and RCP as
nested within the effects of SDMs. We are aware that most analyses have been done
with a full factorial (non-nested) design so far. For the sake of consistency, we also
performed a full-factorial ANOVA that showed the same results. Since we believe
the nested ANOVA is more correct, we kept it as main effect in this study. From
the nested ANOVA, we focused on the deviance explained by each component.

For the species-level sensitivity metrics, we evaluated several selection criteria
below which SDMs were not retained for final ensemble projections (see Species
distribution models part). Here, the nested ANOVAs were performed for three TSS
thresholds (0.4, 0.6 and 0.7) and the results were compared to assess whether the
explained variance that come from SDMs is driven by the quality of retained
SDMs. Since we observed increasing variability caused by SDMs when using too
low thresholds, we kept the highest threshold TSS (TSS= 0.7) to ensures that only
very good models were retained.

Reporting Summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All data used in this paper are freely available and downloadable from the web. Species
distribution maps were provided by the Amphibian and Mammal Red List Assessment
(http://www.iucnredlist.org/). For birds, breeding range distribution maps were extracted
from BirdLife (http://www.birdlife.org/). All climatic data are available on the CHELSA
data portal (http://chelsa-climate.org).

Code availability
The R code for running the entire analysis is available on https://gricad-gitlab.univ-
grenoble-alpes.fr/leca/publications/thuiller_2019_natcomm.
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