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Abstract

An unprecedented reaction of thiourea derivatives with 6β-bromoandrostenedione has been 

discovered for the formation of aminothiazolo-androstenones via a simple, safer, cascade protocol 

that enables the syntheses of novel molecules by using readily available reagents. The reaction 

mechanism of product formation has been rationalized by density functional theory calculations. 

This benign methodology accentuates a domino protocol deploying a renewable solvent, ethanol, 

while generating novel compounds that display potent growth inhibitory effects in in vitro studies 

for several cancer cell lines at submicromolar concentrations.

Graphical Abstract

Steroidal hormones are involved in a number of biological signaling processes1,2 with a 

large number being of natural products isolated from various plants and microorganisms. 

These molecules are known for their wide-ranging biological activities,3 and therefore, not 
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surprisingly, assorted synthetic derivatives have been reported in the pursuit of drugs, drug 

candidates, and other useful entities such as herbicides.4–12 Steroidal derivatives comprise 

one of the broadest spectra of the therapeutic class of compounds and are being used 

extensively in modern medicine to treat different anomalies, including cancer.10,13 Both 

natural and synthetic steroidal derivatives are known for their therapeutic properties such as 

agonists of cell-surface G-protein coupled bile acid receptor 1 (GP-BAR1),8 neuroactive,9 

anticancer,14 anti-Alzheimer,15 and several other medicinal properties.16 Thiazole 

derivatives are another class of pharmacologically important compounds with several 

approved drugs in this category including dasatinib and ritonavir.17,18 Heterocyclic rings 

comprise several steroidal-based drugs including recently approved Emflaza (deflazacort) to 

treat Duchenne muscular dystrophy (DMD) and Zytiga (abiraterone acetate) to treat 

metastatic castration-resistant prostate cancer.19–23 Heterocycle-attached androstanes, 

galeterone22 and oleandrigenin,23 are examples of a drug in clinical trials and a natural 

product, respectively (Figure 1).

In view of the importance of heterocycle-bearing steroidal derivatives, a large number of 

methodologies and synthetic schemes have been described,24–30 often involving multistep 

synthesis.6–9,31 Recently, Stanley et al. have reported the synthesis of heteroarylated 

steroidal diene by using bismuth triflate as a catalyst.32

In our pursuit of synthesizing bioactive heterocycles,33–36 we envisaged the synthesis of 

thiazolino-androstanedione derivatives via our recently developed methodology that entails a 

1,1,1,3,3,3-hexafluoroisopropanol (HFIP) mediated domino reaction of γ-bromo enones (3) 

with thioamides and thioureas to form thiazoline products (4) under refluxing conditions.37 

Surprisingly, hitherto unknown 3,4-thiazolo-androstenone product (5) was formed instead of 

the expected 5,6-thiazolino-androstenedione derivative (4) (Scheme 1). The reaction was 

conducted in various solvents (see Table 1, Supporting Information (SI)), and to our delight, 

the reaction occurred in a renewable and recyclable solvent, ethanol (EtOH), without 

compromising the yield and purity and precluded anhydrous reaction conditions or inert 

atmosphere. Product 5 was formed in 92% yield on a gram scale synthesis, and the pure 

material was isolated simply by filtration followed by washing with ethanol and water.

After identification of the formed product, thiazolo-androstenone (5), under the optimized 

conditions, we carried out the reaction of substituted thiourea derivatives under the same 

reaction conditions; the expected products were formed in good to excellent yield. This 

reaction is very general for a wide range of substituted thiourea derivatives. Reaction of 

alkyl-substituted thioureas with the electrophile (3) afforded the products 6–10 in very good 

yields (71–79%). Morpholine, a hydrophilic substituent, attached to alkyl thiourea reacted 

smoothly to give the corresponding product (11) in 75% yield. Similarly, arylthiourea 

derivatives also reacted with the electrophile and delivered products without affecting the 

average yield and purity; N-phenyl thiourea provided (12) in 86% yield. Electron-donating 

groups on the aryl ring of thiourea provided the desired compounds without compromising 

the yield and purity; namely, toluenyl product (13) in 92% yield as well as methoxy-, 

trifluoromethoxy-, and hydroxyphenyl-substituted derivatives (14, 15, and 16) are formed 

efficiently. In identifying the scope of the methodology, substrates with electronwithdrawing 

groups on the phenyl ring were also reacted with electrophile (3), and the expected products 
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were produced such as fluoro- and chloro-substituted entities (17, 18, and 19) in 80, 83, and 

74% yields, respectively. The single-crystal structure of compound 19 (CCDC 1858408) is 

available in the Supporting Information. Carboxylic acid substituted products (20 and 21) 

were formed in an average yield of ~73%.

This general methodology also tolerated strong electron-withdrawing substituents; the nitro 

group on the phenyl ring afforded 22 in 81% yield, while disubstituted products 23–26 were 

also formed efficiently (70–77%). N,N-Disubstituted thiourea did not hamper the reaction 

either, and the expected product 27 was formed in 73% yield along with pyridine and 

pyrimidine products 28 and 29 (Scheme 2).

To test the scope of the methodology to generate a library of new molecules as potential 

therapeutic agents, one of the compounds (5) was synthesized on multigram scale and 

further derivatized by simple transformations. Reaction of the amino-thiazolo derivative 5 
with acetic anhydride formed acetamido product 30, which on NaBH4 reduction afforded the 

hydroxy product 31 (Scheme 3). The average yields of these reactions are 93%, and the 

products were simply obtained by filtering and washing the solid with methanol and water. 

In our preliminary in vitro anticancer studies, hydroxy compounds have shown several times 

better activity than the parent ketone compounds (data not shown).

There are four possible pathways for thiourea to undergo reaction with the electrophile, 6β-

bromoandrostenedione, to create three different products (Scheme 4 and the SI).

We computed the feasibility of these four pathways by using a hybrid-density functional 

method (M06–2X)/6–311++G(d,p) + PCM = EtOH as implemented in the Gaussian 09 suite 

of programs.34 The expected product 4, based on our previous report,37 is the least favorable 

path, and the SN2′ reaction of thiourea with β-bromoandrostenedione to generate thiazolo-

androstenone is also not favorable (SI). Nucleophilic addition of thiourea to carbonyl of β-

bromoandrostenedione (3) can form two possible intermediates, hemithioacetal (path A) or 

hemiaminal (path B). Gibb’s free energy for the formation of hemithioacetal (A1, + 31.84 

kcal/mol) and hemiaminal (B1, + 10.15 kcal/mol) is endergonic, which is achievable by 

refluxing the reaction mixture. We believe the formation of hemithioacetal (A1) and 

hemiaminal (B1) is reversible under the reaction conditions. Intramolecular SN2′ reaction of 

these intermediates leads to the formation of thiazoline derivatives (A2 and B2). This 

intramolecular reaction of hemithioacetal is more favorable than that of hemiaminal (−32.70 

kcal/mol vs −17.07 kcal/mol). The final step, elimination of water, is also more favorable for 

the hemithioacetal derivative than that of the hemiaminal (−24.82 kcal/mol vs −19.69 kcal/

mol) to produce the final products A3 and 5, respectively (Scheme 4). Among the three steps 

for the formation of possible products, the first step is reversible and endergonic while the 

last two steps are irreversible and exergonic. Actual product 5 is formed because of the less 

activation energy for the first step, as a result of the nucleophilic addition to form 

hemiaminal B1. The energy profile diagram is shown in Figure 2.

Structures with absolute stereochemistry have been confirmed by single-crystal diffraction. 

The ORTEP diagrams (7 and 19) show the regiospecific reaction of this methodology in 

which N and S of thiazole are attached to C-3 and C-4, respectively (Figure 3 and the SI).
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We have evaluated some of the aforementioned compounds by screening them in NCI’s 60 

cancer cell lines,38 and several entities have shown promising activity against several cancer 

cell lines at submicromolar concentrations; in vitro testing results for compounds 17 and 23 
against NCI-60 cancer cell lines are shown in the SI.

These molecules have shown potent activity against several cancer cell lines including the 

growth inhibition of leukemia cell lines: RPMI-8226 and SR with 50% growth inhibition 

(GI50) values at submicromolar concentration; two of the nonsmall cell lung cancer 

(NSCLC) cell lines were inhibited at low μM concentration. Compound 17 inhibited four of 

six central nervous system (CNS) cell lines with GI50 values of <2 μM concentration 

including four cell lines of the colon cancer; 17 inhibited the growth of glioblastoma 

(SF-295) and gliosarcoma (SF-539) cell lines with GI50 values of 1.19 and 1.34 μM, 

respectively. Five melanoma cell lines and six renal cancer cell lines were inhibited at low 

micromolar concentration with GI50 values <2 μM. These molecules (17 and 23) have also 

shown promising activity against ovarian cancer, prostate cancer, and breast cancer cell lines 

(Table 1).

We have discovered an efficient domino protocol to synthesize novel thiazolo-androstenone 

derivatives by using readily available starting materials under mild reaction conditions in 

benign and recyclable solvent. A large number of novel and therapeutically useful molecules 

are thus readily accessible via this general pathway, and interestingly, these thiazolo-

androstenone derivatives could be further derivatized to generate a large library of active 

compounds. Further derivatization, associated anticancer studies, and mode of action of this 

class of compounds are currently underway and will be reported in due course.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Representative examples of heterocycle containing steroidal drugs (1a, 1b, and 1c) and a 

natural product (2).

Ali et al. Page 7

Org Lett. Author manuscript; available in PMC 2019 March 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Probable potential energy surface of formation of actual and expected products calculated 

using M06–2X/6–311++G(d,p) + PCM.
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Figure 3. 
ORTEP diagram of compounds 7 (CCDC 1858409).

Ali et al. Page 9

Org Lett. Author manuscript; available in PMC 2019 March 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://summary.ccdc.cam.ac.uk/structure-summary?pid=ccdc:1858409&id=doi:10.1021/acs.orglett.8b02587


Scheme 1. 
Synthesis of Thiazolo-androstenone Derivatives (5)
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Scheme 2. 
Reaction of Various Thiourea Derivatives with 6β-Bromoandrostenedione (3)
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Scheme 3. 
Derivatization of Heterocycle-Fused Steroidal Molecules
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Scheme 4. 
Plausible Mechanism for the Formation of Product (5) Using M06-2X/6-311++G(d,p) + 

PCM (Solvent = EtOH)
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Table 1.

NCI Data for Selected Cell Lines for Two Compounds
a

GI50

cancer panel cell line 17 23

leukemia CCRF-CEM 1.90 2.45

K-562 1.86 2.86

MOLT-4 1.68 2.49

RPMI-8226 0.86 2.43

SR 0.85 2.32

NSCLC HOP-62 2.07 1.42

NCI-H522 1.63 1.65

colon cancer HCC-2998 3.55 1.90

HCT-116 1.59 1.49

HCT-15 1.58 2.68

HT29 1.49 2.55

CNS cancer SF-295 1.19 1.81

SF-539 1.34 1.62

SNB-75 1.52 2.19

U251 1.59 1.69

melanoma LOX IMVI 1.67 1.64

MALME-3M 1.94 1.99

M14 2.36 1.85

SK-MEL-2 1.86 2.19

SK-MEL-28 1.52 2.31

SK-MEL-5 2.02 1.86

UACC-62 1.54 1.72

ovarian cancer IGROV1 1.89 2.11

OVCAR-3 1.72 2.18

renal cancer 786–0 1.43 1.62

ACHN 1.78 2.08

CAKI-1 1.99 2.83

RXF 393 1.45 1.74

TK-10 1.97 2.46

UO-31 1.67 1.34

prostate cancer PC-3 1.88 1.86

DU-145 1.93 2.04

breast cancer MCF7 1.37 2.31

BT-549 1.54 1.49

MDA-MB-468 2.01 1.93

a
GI50 = concentration of a compound that causes 50% growth inhibition.39
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