
Myopia, or near-sightedness, is a common refractive 
defect of the eye. It arises from excessive axial elongation 
such that the image is focused in front of the retina when 
accommodation is relaxed. High-grade myopia with a 
refractive error of −5.00 diopters (D) or worse is more 
frequently associated with pathological myopia and blindness 
due to premature cataracts, glaucoma, retinal detachment, 
and chorioretinal degeneration. The prevalence of myopia 
varies in different countries, with rates of 17% in Australia, 
26% in USA, and 27% in Western Europe [1, 2], but much 
higher frequencies are found in Asian countries, with rates 
of 71%–96% reported [3, 4]. The prevalence has increased 
significantly in recent years, indicating that we are facing a 
global epidemic of myopia [5].

The genetic basis for myopia has been the subject 
of several studies. Several genetic loci for high-grade 
and moderate myopia have been identified, mostly from 

studies of family pedigrees [6]. In addition, genome-wide 
association studies have identified a large number of genetic 
loci associated with myopia [7-9]. Among these is the MYP1 
(Gene ID 4657; OMIM 310460) locus, which maps to the 
tip of the X chromosome at Xq28 [10]. MYP1 is associated 
with the X-linked cone dysfunction disorder Bornholm eye 
disease (BED), named after the five-generation family from 
the Danish island of Bornholm in which the disorder was 
first identified [11]. BED is described as a stationary cone 
dysfunction syndrome characterized by myopia, acuity loss, 
and dichromacy, with either protanopia or deuteranopia 
described in different families [12]. This disorder differs, 
therefore, from the common form of dichromacy, in which 
only red–green color vision is affected and visual acuity is 
fully preserved.

BED was the subject of a detailed study [13] that showed 
that several families possessed an OPN1LW (Gene ID 5956; 
OMIM 300822) gene (also referred to as the “human L cone 
opsin gene”), which encodes a photopigment containing a 
rare five–amino acid haplotype in exon 3. In vitro expression 
in transfected cultured cells showed that the variant opsins 
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formed functional photopigments— albeit with shifts of up 
to 10 nm in their spectral maxima—that trafficked to the 
cell membranes. As such, it is unlikely that dysfunctional 
photopigments underlie the pathology. The alternative is that 
the nucleotide changes in the gene that are responsible for 
the novel amino acid haplotype in exon 3 affect the splicing 
of the OPN1LW gene transcript [14]. A splicing defect has 
now been confirmed as the process that affects photopigment 
production in BED [15-17].

In BED patients, cones that express the OPN1LW gene 
with the rare haplotype in exon 3 are affected by OPN1LW 
splicing defects, leading to a severe reduction in or complete 
loss of photopigment production; this ultimately results in 
the dysfunction and loss of cones. In confirmation of this, 
an individual with one of the rare OPN1LW haplotypes has 
been shown by adaptive optics [18] to have areas within the 
cone mosaic that lack cones, suggesting that cones are lost 
some time after foveal migration. In “normal” dichromats 
with a fully functional gene, such gaps are not observed, and 
the cone mosaic is indistinguishable from that observed in 
normal trichromats [19]. It would appear, therefore, that the 
presence of aberrant cones can impact on emmetropization, 
the process that guides ocular growth toward the optimal 
optical state. Eye length is regulated by visual experience 
and develops to match the optics of the eye, as well as to 
compensate for variation in corneal/lens curvature and power 
[20]. The signals that guide this process are initiated largely 
by light absorption of the photopigments found in both L and 
M cones, with the latter expressing the OPN1MW (Gene ID 
2652; OMIM 300821; or M cone opsin) gene. Changes in the 
pattern of light and dark in the retinal image that characterize 
blurred versus sharply focused images are monitored to 
stop eye growth when the correct length for coordinated 
plano (neutral) optics is reached. In BED patients, the 
emmetropization process malfunctions as a result of opsin 
photopigment variation and a change in the organization 
of the cone mosaic [18]. Myopia arises, therefore, from 
the presence of variant opsin genes and their altered gene 
products; this was confirmed by a recent study of several 
MYP1 families [21] in which unique variants in the OPN1LW 
gene were shown to be present.

The OPN1LW and OPN1MW genes are among the most 
variable genes in the human genome, with many variants 
arising from their head-to-tail organization within an X 
chromosome array [22]. This leads to mispairing at meiosis 
and unequal crossing over within the gene array [23]. It 
is possible, therefore, that other variants will also alter, to 
varying extents, the functionality of cones expressing these 
photopigments, and that this will have an impact on the 

process of emmetropization of the eye, leading to different 
severities of myopia. In this study, the OPN1LW gene 
was sequenced in two cohorts of individuals, the Western 
Australian Pregnancy Cohort (Raine) Study group and the 
Norfolk Island Eye Study group; in both groups, myopic 
individuals were identified and fully assessed.

METHODS

Ethics: For all subjects, the research presented here adhered 
to the tenets of the Declaration of Helsinki. The protocol 
was approved by the Human Ethics Committees of the 
University of Western Australia and Royal Victorian Eye and 
Ear Hospital in Melbourne, Australia. Informed written and 
verbal consent was obtained from all subjects.

Study cohorts: The Western Australian Pregnancy Cohort 
(Raine) Study was established in 1989 with participants 
drawn from births registered from 1989 to 1992 at the King 
Edward Memorial Hospital in Perth, Western Australia [24]. 
The children were assessed at birth and at one year, two 
years, three years, and five years of age. Information on their 
height, weight, eating habits, walking, talking, behavior, and 
any medical conditions or illnesses was collected. The group 
now comprises 2358 participants who are aged 25–28 years. 
Between 2010 and 2012, a total of 1344 participants had a 
comprehensive ophthalmological examination, including 
assessment for refractive errors [25], with 23.7% being 
myopic (less than −0.5 D) at the 20-year follow-up.

The Norfolk Island Eye Study took place on Norfolk 
Island, a remote Australian territory in the South Pacific 
Ocean. More than 40% of its inhabitants can trace their 
origins over 12 generations to the originating founders—12 
Tahitian women and six European men—who came to reside 
on Pitcairn Island following the infamous mutiny on HMS 
Bounty [26]. The majority of the Pitcairn Island residents 
subsequently moved to Norfolk Island. It is estimated that 
the permanent Norfolk Island population has a gene pool that 
is 88% of European ancestry and 12% of Polynesian ancestry 
(Territories Norfolk). The eye study project was initiated in 
2007. Assessment of refractive errors in 677 individuals (367 
females and 310 males) of this population revealed that the 
prevalence of myopia (<−1.0 D) is 10% [27].

Sequencing of OPN1LW gene: The OPN1LW gene was PCR 
amplified from genomic DNA (gDNA) using the primers 
listed in Appendix 1. The first step was a long-range PCR 
(LRP) using Bioline RANGER (Bioline, Alexandria, NSW, 
Australia) with forward primers FG targeted to the upstream 
promoter region of the first gene in the L/M cone opsin array 
and reverse primer E6 targeted specifically to exon 6, which is 
highly conserved in both the OPN1LW and OPN1MW genes. 
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Cycling conditions were 93 °C for 3 min, then 10 cycles of 
93 °C for 15 s, 62 °C for 30 s, and 68 °C for 15 min, followed 
by 18 cycles of 93 °C for 15 s, 62 °C for 30 s, and 68 °C for 
15 min (20 s increments for each cycle). A second PCR was 
then set up using 1 μl (50–100 ng) of amplified DNA from 
the first PCR as a template and MyTaq DNA polymerase 
(Bioline, Alexandria, NSW, Australia). As exons 1 and 6 are 
identical for OPN1LW and OPN1MW, gene-specific primers 
were limited to exons 2, 3, 4, and 5. PCR conditions were as 
follows: an initial 95 °C for 3 min, then 35 cycles of 94 °C for 
45 s, 60 °C for 45 s, and 72 °C for 1 min, followed by 72 °C 
for 7 min. Discrete exon 2 to exon 5 amplicons were separated 
by agarose gel electrophoresis, and excised and purified 
using a QIAquick Gel Extraction Kit (Qiagen, Chadstone, 
VIC, Australia) before sequencing in both directions by the 
Australian Genome Research Facility (AGRF, Perth, Western 
Australia, Australia). Sequences were aligned and compared 
to the reference OPN1LW gene sequence (NM_020061.5), and 
variants were detected using Codon Code Aligner version 
6.0.1 software (CodonCode Corporation, Centerville, MA).

Site-directed mutagenesis and cloning: Exons 1 to 6, 
including introns 4 and 5 of the wild-type (WT) OPN1LW 
gene, were amplified separately from 50 to 100 ng of 
gDNA using primers designed specifically to the exon/
intron boundary of interest (Appendix 1). Once amplified, 
these amplicons were used to generate several full-length 
constructs containing the “spliced” coding sequences, but 
retaining the introns of choice, with or without the desired 
variants detailed below. To achieve this, the SPLICE 
technique was applied, as described previously [28]. Briefly, 
the first-round amplification was performed using KOD Hot 
Start DNA polymerase (Merck Millipore, Bayswater, VIC, 
Australia) and 1 μl (50–100 ng) gDNA as template. Cycling 
conditions consisted of an initial 95 °C for 2.5 min, followed 
by 40 cycles of 95 °C for 30 s, 55 °C for 30 s, and 68 °C for 1.5 
min. The second-round amplification stage used equimolar 
concentrations of purified PCR products from the first round 
of amplification as a template; this stage consisted of an 
initial 95 °C for 2 min, followed by 40 cycles of 95 °C for 
30 s, 55 °C for 30 s, and 68 °C for 2.5 min. The third and 
fourth rounds of amplification consisted, respectively, of an 
equimolar concentration of purified second and third round 
PCR products as template, with of an initial 95 °C for 2 min, 
followed by 40 cycles of 95 °C for 30 s, 55 °C for 30 s, and 
68 °C for 3.5 min.

Sequencing the OPN1LW gene from myopic patients 
revealed several novel variants that were not present in control 
subjects. To introduce these single-nucleotide variants into the 
WT OPN1LW gene construct described above, site-directed 

mutagenesis was applied using the SPLICE technique stated 
above and described previously [28]. Specifically, forward 
and reverse primers were designed (Appendix 1), covering 
the region containing the variant. The first-round PCR 
amplification stage used KOD Hot Start DNA polymerase to 
amplify 1 μl (50–100 ng) of the WT OPN1LW gene construct 
as a template, using a forward primer over the translation 
start codon (PE-L-cone-F) paired with a reverse-variant 
primer. In a separate reaction, a forward-variant primer 
was used with a reverse primer over the translation stop 
codon (PE-L-cone-R). Cycling conditions consisted of an 
initial 95 °C for 2 min, followed by 40 cycles of 95 °C for 
30 s, 60 °C for 15 s, and 68 °C for 3.5 min. The second-
round amplification stage used equimolar concentrations of 
purified first round variant PCR products as template, using 
flanking forward and reverse primers (PE-L-cone-F and 
PE-L-cone-R), and consisted of an initial 95 °C for 2 min, 
followed by 40 cycles of 95 °C for 30 s, 60 °C for 15 s, and 
68 °C for 3.5 min. The two amplification stages resulted in 
single, discrete amplicons containing full-length OPN1LW 
gene variant sequences, with both EcoRI and SalI restriction 
sites at the 5′- and 3′-ends of the coding region. Following 
restriction enzyme digestion, purified fragments were ligated 
into the mammalian expression vector pMT4 [29], using T4 
DNA ligase (Genesearch, Arundel, QLD, Australia). They 
were subsequently transfected into chemically competent 
cells (α-Select Silver Efficiency; Bioline, Alexandria, NSW, 
Australia), as previously described [30-33]. Correct clones 
were determined using Sanger sequencing (AGRF, Perth, 
WA, Australia) to ensure sequence fidelity.

Transfection of OPN1LW mini-genes: Human embryonic 
kidney (HEK293T) cells were transiently transfected in 
triplicate with 1.2  µg of OPN1LW-pMT4 recombinant 
expression vector using Attractene (Qiagen, Chadstone, 
VIC, Australia) in six-well cell culture plates. After 48 h, 
transfected cells were harvested using Trypsin-EDTA 1X 
(Sigma-Aldrich, Castle Hill, NSW, Australia), and washed 
four times with PBS (1X; 138 mM NaCl, 2.70 mM KCl, 10 
mM NaPO4, 1.8 mM KPO4, pH 7.4). Total RNA was extracted 
using the PureLink RNA Mini with the TRIzol kit (Thermo 
Fisher Scientific, Scoresby, VIC, Australia), before the 
generation of oligo dT-primed cDNA using 5 µl (1–2 µg) of 
total RNA incubated with 5 µl oligo dT (500 ng) and 20.5 µl 
sterile RNase-free water for 15 min at 85 °C, followed by 2 
min on ice. Subsequently, 10 µl of 5X First-Strand Buffer 
(Genesearch, Arundel, QLD, Australia), 5 µl (0.1 M) of DTT 
(Genesearch, Arundel, QLD, Australia), 2.5 µl (10 mM) 
dNTP mix (Bioline, Alexandria, NSW, Australia), and 1 µl 
RNase murine inhibitor (40 U/µl; Genesearch, Arundel, 
QLD, Australia) was added and incubated for 2 min at 25 °C. 
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Then, 1 µl of M-MuLV Reverse Transcriptase (Genesearch, 
Arundel, QLD, Australia) was added and incubated for a 
further 5 min at 25 °C, followed by 1 h at 42 °C. Finally, a 
further 1 µl of M-MuLV Reverse Transcriptase (Genesearch, 
Arundel, QLD, Australia) was added and incubated for 
another 1 h at 42 °C.

Quantitative PCR of OPN1LW mini-gene transcripts: Once 
generated, RNA from transfected cells was extracted and 
quantified. Resultant cDNA (100 ng) was used to determine 
the levels of expression of OPN1LW gene transcripts derived 
from WT and variant constructs. This was achieved using a 
commercial quantitative PCR (qPCR) kit (SYBR Green PCR 
Master Mix; Qiagen, Chadstone, VIC, Australia) and 10 µM 
of the final concentration of each forward and reverse primer 
(Appendix 1; all qPCR primers were designed using ApE 
- A Plasmid Editor version 1.10.4 [M.W. Davis, University 
of Utah, Salt Lake City, UT]). All transient transfection 
experiments were conducted at least in triplicate to ensure a 
minimum of three biologic replicates were used.

In addition, all qPCR experiments were performed 
at least three times on a 72 Well Rotor-Gene Q Real-Time 
PCR instrument (Qiagen, Chadstone, VIC, Australia), using 
the following three-step cycling pipeline: 95 °C for 5 min, 
followed by 40 cycles of 95 °C for 5 s, 61 °C for 10 s, and 
77 °C (primer sets 6 [Elongation factor 1 alpha – EFIA] 
(Gene ID 3189; OMIM 130590), 7 [13 [3′-untranslated region 
(UTR) of 215 the OPN1LW mRNA]) ribosomal protein 
L13A- RPL13A] (Gene ID: 23521, OMIM 610173), and 13 
[3′-untranslated region (UTR) of the OPN1LW mRNA]) or 
80 °C (primer sets 2 [Ex4-In4], 3 [In4-Ex5], 4 [Ex5-In5], 5 
[In5-Ex6], 6 [EFIA], 9 [In1-In1], 10 [In2-In2], 11 [In3-In3], 
and 12 [5′-UTR of the OPN1LW mRNA]) for 5 s. Note that 
the final cycling temperatures of 77 °C and 80 °C were used 
to remove all potential traces of contaminating primer dimer. 
Also, qPCR experiments were performed to amplify regions 
within the 5′- and 3′-UTRs, and introns 1, 2, and 3, to monitor 
the expression of any endogenous OPN1LW gene activity; this 
was done because these parts of the transcript were absent in 
all transfected constructs. Two housekeeping genes, RPL13A 
and EFIA1, were also included to serve as internal controls.

Following previous protocols [31, 34], primers were 
designed to produce amplicons of <250  bp in length. 
According to standard qPCR practice, the target specificity 
and annealing/PCR efficiency of each primer set was 
determined at the cycling conditions described above that 
were optimal, with primer efficiencies close to 100%. Primer 
efficiencies were determined by standard curve analysis (a 
semi-log plot of the PCR cycle value above the designated 

background threshold value, against the log of input cDNA 
concentration), with five known concentrations (0.01 ng, 0.1 
ng, 1 ng, 10 ng, and 100 ng), to demonstrate that all primer 
pairs were efficient over a magnitude of 1 × 105, as previously 
described [31, 34]. Once data were collected, the baseline 
and threshold values automatically determined by the 
Rotor-Gene software version 2.3 (Qiagen, Chadstone, VIC, 
Australia) were manually checked, before cycle threshold 
(Ct) values were exported to a Microsoft Excel spreadsheet. 
The geometric mean of the two housekeeping genes was 
calculated and used to normalize target gene expression and 
correct for sample-to-sample variation [31, 35]. All data were 
analyzed offline, using a method adapted from Carleton and 
Kocher [36], where the relative expression (RE) of the WT 
OPN1LW gene and variant transcripts (RELcone) compared 
to that of internal controls (REint; described above) was 
calculated as follows:

Relative expression of target (RELcone/REint) = c ×[(1 + 
Eint)^(Ctint)]/[(1 + ELcone)^(CtLcone)], where ELcone and Eint are 
the primer efficiencies of each individual OPN1LW gene 
target and the internal control (geometric mean of RPL13A 
and EF1A1 expression levels), respectively, and CtLcone and 
Ctint are the experimentally determined Ct values for each 
individual OPN1LW gene target and the internal control 
(geometric mean of RPL13A and EF1A1), respectively. In all 
cases, an arbitrary multiplication constant (c) of 109 was used.

Bioinformatic analysis: RNA secondary structures containing 
exonic regions of WT and variant OPN1LW gene transcripts 
were predicted using mfold version 3.6 (UNAfold) [37, 38]. 
The complex algorithm developed by Zuker and colleagues 
[37, 38] initially predicts the secondary structure of a linear 
RNA sequence to generate an initial Gibbs free energy value 
(ΔG, with SI units kcal mol−1), which represents the change in 
Gibbs free energy for a given system at 37 °C. In this context, 
the ΔG value is a proxy for how much total energy is required 
to break each loop to form a linear single strand of RNA (or 
similarly, the amount of energy released during secondary 
structure formation). Once predicted, the mfold algorithm 
re-evaluates the initial predictions using more sophisticated 
rules (e.g., application of the Jacobson-Stockmeyer theory 
to assign free energies to multi-branch loops that includes a 
term that grows logarithmically with the number of unpaired 
bases in the loop and by computing coaxial stacking of 
adjacent helices in multi-branch loops) to generate one or 
more RNA secondary structures that contain optimal folding 
with modified ΔG values that are more accurate than are the 
initial determined values [37, 38]. As a comparison between 
the WT and variant predictions, RNA secondary structures 
with the largest (i.e., most optimal) ΔG values are presented.
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RESULTS

Only males with high-grade myopia (refractive error of 
<-6.0 D) were included, which comprised 20 myopic and 36 
emmetropic controls drawn from the Raine Study’s 20‑year 
follow-up, and 25 myopic and 30 emmetropic controls drawn 
from the Norfolk Island Eye Study group. Genomic DNA was 
used to PCR amplify across the entire OPN1LW gene using 
gene-specific primers (Appendix 1), as outlined previously. 
The resulting long amplicons were then used as templates 
to PCR amplify exons 2, 3, 4, and 5 separately, using exon-
specific primers. Exons 1 and 6 were not studied, as they are 
conserved between the OPN1LW and OPN1LW genes.

OPN1LW gene variants: Nucleotide variants in the OPN1LW 
gene were identified by comparison to the reference 
OPN1LW gene sequence (NM_020061.5). A total of 42 
nucleotide sites were found to vary; of these, 27 have been 
previously reported (as reported on Ensembl) and 15 are 
novel (ENSG00000102076; r=X:154144224-154159032; 
v=rs782484270; vdb=variation; vf=147984596). The full 
list of variants shown in Appendix 2 includes coding and 
non-coding changes, as both can affect mRNA stability and 
splicing. Note the high frequency of variants per individual, 
confirming the high frequency of variants in the OPN1LW 
gene as observed in the general population. Of 111 individuals 
analyzed, only 1 possessed the full reference sequence. Three 
nucleotide variants that differed from the reference sequence, 
c.453A>G (p.Arg151ARg), c.457A>C (p.Met1531Leu), 283 
and c.465>G (p.Val155Val) were common throughout both 
cohorts. Only 24 individuals had the reference haplotype of 
A453/A457/C465, compared to 80 with the G453/C457/G465, 
and a further 7 had other combinations at these sites. Eighteen 
individuals, all from the Norfolk Island cohort, possessed 
both haplotypes, indicating that at least two OPN1LW 
genes that differ at these three sites were present within the 
X-chromosome gene array in these individuals.

Note that individuals from the Norfolk Island Eye Study 
had a much higher frequency of “heterozygosity” at variant 
sites. Because only male subjects were studied, this indicates 
a much higher frequency of multiple copies of the OPN1LW 
gene in the X chromosome gene array. The presence of 
multiple copies of X-linked opsin genes is not uncommon, as 

reported previously [23]. However, in this case, this higher 
incidence of multiple copies of the OPN1LW gene among 
the residents of the Norfolk Island cohort may reflect a 
founder effect arising from the small number of individuals 
that originally came to reside on Pitcairn Island and were 
subsequently moved to Norfolk Island (see Territories 
Norfolk).

Among the 42 variant sites, three novel variants were 
identified, c.973A>G (p.Met325Val) (variant 1 [V1]), 
c.970T>A (p.Phe324Ile) (variant 2 [V2]), and c.971T>A 
(p.Phe324Tyr) (variant 3 [V3]), all from the Raine Study, that 
were only present in individuals with myopia (Table 1). All 
were in exon 5, at adjacent codons 324 and 325.

Expression of novel OPN1LW variants in vitro: To assess 
whether any of the three variants (V1–V3) in exon 5 affect 
RNA splicing or transcript stability, each was introduced 
separately by site-directed mutagenesis and the SPLICE 
technique [28] into a modified WT OPN1LW mini-gene that 
lacked introns 1–3. This was inserted into the mammalian 
expression vector pMT4 and transfected into HEK293T 
cells. PolyA+ RNA transcripts from transfected cells were 
then isolated and converted into cDNA for use as a template 
in a series of qPCR experiments to assess both splicing 
and stability. Transient transfection was preferred over the 
generation of stably transfected cell lines in which expression 
variation due to different sites of genome insertion may occur, 
as well as the well-known reduction in overall expression 
with stable cell lines.

PCR primers targeted to introns 4 and 5 were used to 
assess the levels of unspliced transcripts. As shown in Figure 
1A, the Relative Expression (RE) levels, as measured by all 
primer combinations in comparison to WT, were significantly 
lower in V1 and V2, but not in V3. Estimates of spliced 
transcript levels were obtained from qPCRs that targeted 
exons 4 to 5 and exons 5 to 6, where PCR conditions were 
chosen so that amplicons containing large introns (i.e., introns 
4 and 5) would not be amplified. As shown in Figure 1B, the 
levels were again significantly depressed in V1 and V2, but 
not in V3.

Table 2 shows the levels of spliced and unspliced 
transcripts plus the proportion of spliced to unspliced 

Table 1. Nucleotide variants unique to myopia patients.

Variant Nucleotide site Nucleotide substitution Codon
Amino acid 
substitution

Number of 
individuals

1 973 A>G 325 Met>Val 1
2 970 T>A 324 Phe>Ile 1
3 971 T>A 324 Phe>Tyr 4
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transcripts. For V1 and V2, the total transcript levels (i.e., 
spliced and unspliced transcripts) were substantially reduced 
compared to WT, whereas for V3, the level is marginally 
above WT. In contrast, compared to WT, the proportion (%) 
of unspliced transcript is marginally higher for V1 and V2, 
and marginally lower for V3. It would appear, therefore, that 
for V1 and V2, the combined levels of unspliced and spliced 
transcripts were significantly depressed compared to WT, 

whereas the ratio of unspliced to spliced was essentially the 
same for WT and all three variants (Table 2). This indicates 
that the sequence differences between V1, V2, and V3 do not 
affect the splicing process but that V1 and V2 both reduce the 
overall level of transcripts present at a steady state. Because 
the transcription of each variant sequence is driven by the 
same promoter, the reduced relative levels of V1 and V2 
transcripts most likely reflect a change in RNA stability.

Figure 1. OPN1LW gene transcripts 
expressed in transiently transfected 
hu m a n  e mb r yo n ic  k id ne y 
(HEK293T) cells. A: Relative 
expression (RE) levels of unspliced 
transcripts determined by qPCR 
across the following boundaries: 
exon 4 – intron 4; intron 4 – exon 
5; exon 5 – intron 5; and intron 
5 – exon 6. B: Relative levels of 
spliced OPN1LW gene transcripts, 
measured by qPCR, using primer 
sets that generate amplicons 
form exon 4 – exon 5 and exon 
5 – exon 6. In all cases, the RE 
values represent OPN1LW mRNA 
expression normalized to the 
geometric mean of two internal 
control genes, RPL13A and EF1A1. 
Wild-type (WT), black; variant 1 
(V1), white; variant 2 (V2), gray; 
variant 3 (V3), hatched. * and 
** denote statistical significance 
at 1% and 5% probability levels, 
respectively.

Table 2. Relative expression (RE) of spliced and unspliced transcripts.

Transcript WT
Variants

V1 V2 V3

Spliced RE 3.534±0.969 0.502±0.073 
*

0.288±0.022 
** 3.798±0.188

Unspliced RE 0.112±0.013 0.022±0.010 
**

0.014±0.003 
** 0.115±0.015

% Unspliced 3.16% 4.30% 4.84% 3.02%

The spliced values are the sum of the individual values obtained from qPCR across exons 4–5 and 5–6. The unspliced values are the 
average of the Ex4 -In4 and In4-Ex5 qPCR values plus the average of the Ex5-In5 and In5-Ex6 qPCR values. Statistically significant 
differences to WT at 5% (*) and 1% (**) probability levels are indicated.
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Effect of variant sequences on RNA processing: The above 
data suggest that the RNA splicing of both intron 4 or intron 5 
is unaffected by any of the single-nucleotide changes in exon 
5 of the OPN1LW gene identified in this study. Therefore, 
the hypothesis that changes occur to the RNA secondary 
structure in the presence of variant sequences was tested 
in order to examine whether such changes might alter RNA 
stability. Initially, this was investigated using mfold [37, 38] 
to predict the RNA secondary structures of the region of the 
OPN1LW mRNA that encompasses exon 5 only (Figure 2, 
top panels).

Structurally, WT and V2 were visibly similar, as were V1 
and V3. A closer inspection of the re-evaluated ΔG values [37, 
38] showed that, while WT, V2, and V3 were almost identical, 
with free energies at −62.4 kcal mol−1, −62.4 kcal mol−1, and 
−62.2 kcal mol−1, respectively, V1 was predicted to possess a 
ΔG value of −66.2 kcal mol-1 (Figure 2, top panels). This latter 
result suggested that more energy is required to negotiate 
the stem-loops contained within exon 5. As such, ribosomal 
coverage of the downstream region of the transcript will 
be less during translation at steady-state levels [39, 40], 
thereby leaving V1 mRNA transcripts more susceptible 
to nuclease attack and the removal of aberrant mRNAs by 
nonsense-mediated decay (NMD) [41, 42]. Although this 
result is consistent with the conjecture that overall mRNA 
instability explains the very low levels of V1 expression, as 
determined by qPCR, studying exon 5 in isolation did not 

offer a mechanism for the presence of reduced levels of V2 
transcripts compared to the levels of WT and V3 transcripts.

To further investigate the effect of the three variants 
on RNA secondary structure and stability, predictions were 
made within the context of full-length post-spliced transcripts 
(because splicing is not affected in this study) comprising 
exons 1 to 6 (Figure 2, bottom panels). Although the 5′- and 
3′-UTRs were not included in the transcription products, it 
is highly probable that they do not play a role, as they are 
identical across WT and all three variant RNAs. Thus, despite 
their absence, the analysis of full-length coding sequences 
represents a more biologically relevant context than does 
using a mini-gene approach, as previously shown [43-45]. 
When compared, the free energies for WT (ΔG = −386.8 kcal 
mol−1) and V3 (ΔG = −385.8 kcal mol−1) were similar (Figure 
2, bottom panels), but consistent with analysis of exon 5; V1 
had a greater free energy value (ΔG = −391.7 kcal mol−1), 
suggesting that this transcript forms an RNA secondary 
structure with stem-loops that are more resistant to the 
helicase activity of the translation ribosomal complex and, as 
such, are more labile. In contrast to the exon 5 prediction for 
V2, the analysis of the full-length coding sequence showed 
a free energy value for V2 (ΔG = −388.6 kcal mol−1) closer to 
that of V1 (ΔG=-391.7 kcal mol−1) than to either WT (ΔG = 
−386.8 kcal mol−1) or V3 (ΔG = −385.8 kcal mol−1). Visually, 
the RNA secondary structure predictions showed that V1 and 
V2 were almost identical, with three distinct and prominent 

Figure 2. Predicted RNA secondary structures. The top panels show RNA folding for exon 5 only in wild-type (WT) predictions compared 
to those for variant 1 (V1), variant 2 (V2), and variant 3 (V3). By contrast, the bottom panels show RNA folding for full-length coding 
sequences for all four RNAs. The Gibbs free energy values (ΔG) for each prediction are indicated in units of kcal mol−1. The arrows represent 
the location of the three OPN1LW gene variants.
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branches, whereas WT (two main branches and a minor third 
branch) and V3 (two main branches) were markedly different 
from either V1 or V2. Overall, therefore, it appears that the 
RNA secondary structure predictions for full-length coding 
sequences for V1 and V2 differ from those of WT and V3.

DISCUSSION

This study represents the largest survey of OPN1LW gene 
variation in individuals with normal color vision. The 
extensive sequence variation across myopic individuals and 
controls in both cohorts confirmed the very high frequency 
of variation in the OPN1LW gene. Aberrant splicing in BED 
depends on particular nucleotides being present at five sites 
in exon 3, 457 in codon 153, 511 in codon 171, 521 in codon 
174, 532 in codon 178, and 538 in codon 180. Variants were 
found at each of these sites in the present study, but none 
possessed the full BED haplotype or were uniquely found in 
myopic individuals.

Three variants, all in exon 5 in adjacent codons 324 and 
325, were found uniquely in myopic individuals, all within 
the Raine Study. The levels of unspliced and spliced OPN1LW 
gene transcripts produced in transfected HEK293 cells, from 
constructs individually containing each of the three variants, 
did not differ from those produced from the WT construct. 
It is unlikely therefore that any of these variants affect the 
efficiency of the removal of either intron 4, intron 5 or both 
introns by splicing. What is evident, however, is that two of 
the variants, V1 and V2, resulted in a substantial reduction in 
the abundance of OPN1LW gene transcripts.

Steady-state mRNA levels (turnover) result from the 
rate of transcription versus the rate of mRNA decay. Given 
the experimental setup, the former was identical across all 
four groups, and any difference in cell number was corrected 
for by the normalization step of the qPCR pipeline. Thus, 
differences in overall levels of spliced transcript must be due 
to the rate of decay via changes in relative mRNA stability. 
Analyses of RNA secondary structure suggest that more 
stable folding requires more energy for the translational 
ribosomal machinery to negotiate stem-loop structures. At 
steady-state levels, this means that fewer ribosomes will cover 
the transcript (especially toward the 3′ end), thus increasing 
the probability of degradation (i.e., RNA folding is more 
stable/stronger, but stability is decreased). A study of the 
potential effects of these single-nucleotide substitutions on 
RNA secondary structure predictions for full-length coding 
sequences indicated that the folding of V1 and V2 is distinctly 
different from that of WT and V3. This may, therefore, induce 

significant effects on transcript stability and overall steady-
state expression levels.

Evidence that this reduction in the level of opsin 
transcripts would lead to a comparative drop in opsin protein 
and, hence, in functional OPN1LW gene photopigment, 
derives from three sources. First, mutations in RNA splicing 
factors are known to cause dominant forms of retinitis 
pigmentosa [46-50], and in vitro studies have shown that 
the splicing of opsin transcripts is significantly affected 
[51]; the presence of photoreceptor loss in these disorders 
implies, therefore, that reduced mRNA levels translate into a 
decreased amount of photopigment, which is a contributing 
factor in the disease. Second, there is a continuing demand 
for opsin production to replenish the loss arising from the 
diurnal degradation of cone photoreceptor outer segments 
[52]; any reduction in the level of normal transcripts will 
likely translate into diminished amounts of opsin protein and 
functional photopigments. Last, the impact of a reduction in 
OPN1LW gene transcripts on cone photoreceptor function is 
evident from studies of BED, where a reduced abundance 
of normal transcript results in dichromacy and a significant 
reduction in the number of functional cones in the retina of 
affected individuals [53]. Indeed, the latter is correlated with 
the severity of myopia present in affected individuals.

A similar, but less severe, mechanism may be present, 
therefore, in individuals carrying either V1 or V2 variants 
in their OPN1LW gene, and this may be a causative factor 
in the development of myopia. Any significant reduction 
in the number of photopigments in cone photoreceptors 
may interfere with the process of emmetropization. High-
acuity photopic vision provides the signals that guide 
emmetropization, and these are initiated by light absorption 
of the photopigments found in OPN1LW and OPN1MW cones. 
Even minor changes may have an impact on this process, 
leading to alterations in the process of emmetropization 
and the development of myopia. In the absence, however, of 
quantitative measurements of the number of OPN1LW gene 
photopigments present in the retina of individuals carrying 
either V1 or V2 cone opsin variants, it remains unclear 
whether this is sufficient to cause myopia. Nonetheless, the 
direct link between transcript exonic variants and ocular 
disorders could be addressed by studying animal models 
carrying modified OPN1LW genes that incorporate these 
variants.

APPENDIX 1. LIST OF PRIMERS USED IN THE 
STUDY.

To access the data, click or select the words “Appendix 1.”
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APPENDIX 2. NUCLEOTIDE VARIATION IN THE 
OPN1LW CONE OPSIN GENE IN THE STUDY 
COHORTS.

To access the data, click or select the words “Appendix 2.”
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