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Genome-wide association studies (GWAS) have identified genetic variants at 34 loci contributing 

to age-related macular degeneration (AMD)1–3. We generated transcriptional profiles of 

postmortem retina from 453 controls and cases at distinct stages of AMD and integrated retinal 

transcriptomes, covering 13,662 protein-coding and 1,462 non-coding genes, with genotypes at 

over 9 million common single nucleotide polymorphisms (SNPs) for expression quantitative trait 

loci (eQTL) analysis of a tissue not included in Genotype-Tissue Expression (GTEx) and other 

large datasets4, 5. Cis-eQTL analysis identified 10,474 genes under genetic regulation, including 

4,541 eQTLs detected only in the retina. Integrated analysis of AMD-GWAS with eQTLs 

ascertained likely target genes at six reported loci. Using transcriptome-wide association analysis 

(TWAS), we identified three additional genes, RLBP1, HIC1 and PARP12, after Bonferroni 

correction. Our studies expand the genetic landscape of AMD and establish the Eye Genotype 

Expression (EyeGEx) database as a resource for post-GWAS interpretation of multifactorial ocular 

traits.

AMD is a leading cause of incurable vision impairment, resulting in progressive loss of 

photoreceptors particularly in the macular region of the retina1. AMD-GWAS have 

identified strong and highly replicated association of 52 independent SNPs at 34 genetic loci 

accounting for over 50% of the genetic heritability3. To derive mechanistic insights and 

further advance AMD genetics, we initiated the EyeGEx project to elucidate genetic 

regulation of gene expression in the human retina. We characterized 523 post-mortem donor 

retina using the Minnesota Grading System (MGS)6, with criteria similar to the Age-related 

Eye Disease Study (AREDS)7 (Supplementary Fig. 1, Supplementary Data 1). MGS1 donor 

retinas demonstrated no AMD features and serve as control, whereas MGS2 to MGS4 

samples represent progressively more severe disease stages.

RNA-seq of donor retinas provided 32.5 million (median) uniquely mapped paired-end reads 

per sample with 94% mapping rate to Ensembl release GRCh38.p7 (Supplementary Fig. 2). 

After RNA-seq quality control (see Supplementary Notes), 105 MGS1, 175 MGS2, 112 

MGS3, and 61 MGS4 samples were selected for further analyses. The reference 

transcriptome profile was generated from MGS1 control retinas (Fig. 1a; Supplementary 

Data 2) and included 67% of the protein-coding genes (13,662) and 6.7% of the non-coding 

genes (1,462) in Ensembl, consistent with a previous study8. High-abundance genes (186 

genes showing ≥100 Fragments Per Kilobase of transcript per Million mapped reads; 

FPKM) accounted for half of the Ensembl-annotated transcripts in our RNA-seq data and 

were enriched for visual perception, metabolic processes, and energy homeostasis 

(Supplementary Fig. 3a; Supplementary Data 2). Overall, 34% of the retinal transcripts were 

of mitochondrial origin (Fig. 1a, Supplementary Fig. 3b), reflecting the high concentration 

of mitochondria in photoreceptors9, which are the predominant cell type in human retina10.

Genome-guided transcript assembly supplemented 410 putative novel lincRNA and 2,861 

protein-coding isoforms of genes expressed in the retina (Supplementary Fig. 3c; 

Supplementary Data 2). Putative lincRNA isoforms were not enriched for any biological 

pathway. In contrast, predicted gene function and classification of novel protein-coding 

isoforms showed enrichment in Gene Ontology (GO) biological processes involving synapse 

structure or activity (adjusted P value = 1.37 × 10−2), sensory perception (adjusted P value = 
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1.64 × 10−2), regulation of membrane potential (adjusted P value = 3.45 × 10−2), and 

photoreceptor maintenance (adjusted P value = 3.45 × 10−2). The multidimensional scaling 

plot of the retina reference transcriptome against the GTEx v7 data distinguished tissue-

specific clusters consistent with the defined biological replicates, whereas tissue hierarchical 

clustering on the mean gene expression levels revealed a high degree of similarity between 

brain and retina (Fig. 1b; Supplementary Fig. 3d, Supplementary Fig. 4). We identified 247 

genes with 10-fold or higher expression in the retina relative to at least 42 of the 53 GTEx 

(v7) tissues (Supplementary Data 2).

Mapping of cis-eQTLs [as defined by SNP-gene combination within ± 1 Mb of the 

transcriptional start site (TSS) of each gene] (see Methods)identified 14,565 genetic variants 

(eVariants) that control expression of 10,474 genes (eGenes) at false-discovery rate (FDR) ≤ 

0.05; these included 8,529 known protein-coding and 1,358 non-coding genes (Fig. 1c; 

Supplementary Data 3). The strength of association was contingent upon the eVariant’s 

distance from the TSS of its corresponding eGene (Supplementary Fig. 5). A majority of the 

retinal cis-eQTLs were present in at least one GTEx tissue, with more retinal eQTLs 

replicated with increase in GTEx tissue sample size (Fig. 1d). The proportion of GTEx cis-

eQTLs replicated in the retina was larger for GTEx tissues with smaller sample sizes5 (see 

Supplementary Fig. 5f). Almost one-third of re tina-only eQTLs observed in our study, 

compared to those reported by GTEx for other tissues, can be attributed to the relatively 

larger sample size (Supplementary Fig. 6a,b).

We examined the global role of eQTLs in the genetics of AMD. Q-Q plots identified cis-

eQTL SNPs to be enriched for AMD associations with more pronounced enrichment for 

eVariants shared across several tissues11, 12, and this relationship remained relatively 

consistent across all other complex disease phenotypes examined (see Supplementary Fig. 

5g). We then integrated retina eQTL results with associations reported across loci identified 

by AMD-GWAS (Supplementary Table 1). Nine lead SNPs at the GWAS loci were 

significant eQTLs in the retina for 19 SNP-gene associations. Similar analysis showed a 

comparable number of lead SNPs as eQTLs in several GTEx tissues (see Supplementary 

Data 3). To ascertain the most likely causal variants, we applied eCAVIAR, which calculates 

the colocalization posterior probability (CLPP) to identify the variant responsible for both 

AMD-GWAS and retina-eQTL signals, after accounting for local linkage disequilibrium 

(LD) patterns. At the recommended threshold of 1% CLPP13, we discovered likely causal 

SNPs and underlying target genes at six AMD loci (Supplementary Table 1, Fig. 2a). The 

lead GWAS signal at two loci (B3GALTL and RDH5/CD63) was identified as the most 

likely causal SNP, whereas the likely causal variant was distinct from the lead SNP at four 

other loci; SLC16A8 (rs5756908), ACAD10 (rs7398705), TMEM/VTN (rs241777), and 

APOE (rs157580) (Supplementary Table 1).

We leveraged retinal eQTLs and the most recent GWAS data3 to detect novel AMD risk 

genes in a transcriptome-wide association study (TWAS)14 using our retina transcriptome 

data. Gene expression was modeled using SNPs within a 1-Mb window using mixed models, 

Least Absolute Shrinkage and Selection Operator (LASSO), and elastic net. The TWAS 

identified 61 transcriptome-wide significant gene-AMD associations (FDR ≤ 0.05), which 

passed a gene expression model fit filter (R2 > 0.01) (Supplementary Data 4). We detected 
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38 genes within 1 Mb of 13 AMD-GWAS loci, and of these, 28 passed genome-wide 

Bonferroni correction (Fig. 2b). TWAS analysis also identified 23 genes outside the GWAS 

loci (Fig. 2c); these genes fell within 16 separate regions (± 1 Mb). Three of these – RLBP1, 

PARP12 and HIC1 – were the only significant genes in the region and remained so even 

after Bonferroni correction, thus representing the strongest new candidate AMD-associated 

genes (Fig. 2d). Conditional testing of the full 61 significant (FDR ≤ 0.05) candidates 

identified 47 independent signals (α = 0.05). A permutation test (see Methods) demonstrated 

two of the genes (MTMR10 and SH3BGR) at least 1 Mb outside of any GWAS region, with 

TWAS associations significantly informed by eQTL data after Bonferroni correction for the 

number of genes permuted (α = 0.05; Supplementary Data 4). However, we note that the test 

is overly conservative in the presence of LD.

We compared the data from eQTL, eCAVIAR, and TWAS to highlight the most plausible 

target genes; B3GLCT and BLOC1S1 were each identified as the only target gene at two 

AMD loci by all three methods, whereas SH2B3, PLA2G12A, PILRB and POLDIP2/

TMEM199 were likely targets at four additional loci by two methods (Table 1, 

Supplementary Fig. 7). A comparison of these findings with those reported in GTEx5, 15 

showed that the contribution of these SNPs to gene regulation varied across different tissues 

(Supplementary Data 3; Section 3.4 in Supplementary Notes). Specifically, no single non-

retina tissue showed replication of retinal findings for all SNP-target gene combinations (see 

Supplementary Data 3).

Differential expression (DE) analysis of retinal transcriptomes identified 14 genes with and 

161 genes without age correction in advanced AMD (FDR ≤ 0.20) (Supplementary Data 5; 

Supplementary Fig. 8a). Thus, like other complex diseases16, 17, our DE analysis did not 

detect many gene expression changes, probably because of heterogeneity caused by aging, 

polygenic inheritance, and environmental factors. We then examined biological pathways by 

gene set enrichment analysis (GSEA). Immune regulation and cholesterol metabolism 

pathways, previously implicated in GWAS3, were upregulated in early and advanced AMD, 

whereas pathways associated with synapse development and function were largely and 

exclusively downregulated in intermediate AMD (Supplementary Data 5). We note that a 

majority of the genes within susceptibility loci for advanced AMD do not appear to be 

associated with intermediate AMD despite having sufficient power3. Thus, intermediate 

AMD may not be a transitional stage between early and advanced AMD, but a separate 

entity with unique and distinct genetic underpinning(s) that require further exploration. 

Furthermore, Weighted Gene-Co-expression Network Analysis (WGCNA) of all samples 

suggested that several of the pathways implicated in AMD operate through closely 

connected networks in the retina (Supplementary Fig. 8b,c; Supplementary Data 6).

GWAS have successfully identified variants at hundreds of loci that contribute to healthy and 

disease traits, thereby defining their broad genetic architecture18, 19. Interpretation of GWAS 

findings, however, remains a major challenge since a large proportion of associated variants 

is not in the protein-coding genomic regions and their impact on specific phenotypes often 

individually appears to be small20, 21. eQTL analysis in disease-relevant tissues appears to 

be a prominent tool for biological interpretation of GWAS loci11, 22. Owing to the large 

sample size, we were able to identify 14,856 eQTLs that modulate retinal gene expression, 
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and a significant proportion is not reported in GTEx v7 data. More significantly, we could 

connect the lead GWAS signal to specific target genes at six known AMD loci by at least 

two lines of evidence. Two of the target genes were validated by three independent methods: 

B3GLCT encodes a glucosyltransferase23, and its loss of function leads to Peters Plus 

syndrome24; BLOC1S1 encodes a subunit of a multiprotein complex associated with the 

biogenesis of an organelle of endosome-lysosome system25, and its altered function can 

affect synaptic function26. Thus, altered expression of B3GLCT and BLOC1S1 might 

impact extracellular matrix stability or signaling and degradation of unwanted/recycled 

proteins, respectively, thereby contributing to AMD pathogenesis. We attribute the lack of 

obvious target genes at remaining AMD-GWAS loci to multiple factors, including LD 

structure, variants affecting expression in trans or in other AMD-relevant tissues (such as 

retinal pigment epithelium and choroid) and power of this study. Interpretation of eVariants 

that regulate multiple genes at a particular locus requires further biological validation.

AMD is fairly unique among complex traits because of its high heritability and large effect 

sizes for individual GWAS SNPs3. We show that variants associated with gene expression 

across many tissues as eQTLs, as opposed to those with tissue-specific associations only, are 

enriched for AMD associations despite high tissue specificity (see Supplementary Data 3). 

We hypothesize that, at least in part, such associations reflect larger, more robust effects 

among the shared eQTLs. Not surprisingly, retina is the only tissue for which we detected 

regulation consistently across all six identified SNPs (Supplementary Data 3). In addition, 

36 of the 61 retina-identified TWAS candidates were significant (FDR ≤ 0.05) in at least one 

GTEx tissue. The remaining candidates could not be analyzed because of either no 

expression or heritability in the GTEx tissues or were not replicated in any other tissue. Our 

results corroborate recent studies12, 27 and suggest that the best way to increase power for 

discovery of genes using TWAS and similar approaches is to increase the diversity of tissues 

for greater resolution of the impact of regulatory variants. We emphasize, however, that 

eQTL effects detected only in a non-biologically relevant tissue, but not in a relevant one, 

would be difficult to interpret for disease-specific phenotypes. Although other tissues may 

contribute to AMD, retinal effects of eQTLs are more likely to be directly relevant. We 

suggest that eQTL analyses of retinal pigment epithelium and choroidal endothelial cells 

would further contribute to understanding of genes involved in AMD pathobiology. AMD-

associated genes uncovered by TWAS provide additional insights into the relevance of gene 

regulation on phenotypic consequences in this complex disease.

EyeGEx complements the GTEx project and provides a reference for biological 

interpretation of genetic variants associated with common ocular traits, including glaucoma 

and diabetic retinopathy. Comparative analysis of retinal transcriptomes and eQTLs with the 

GTEx data should assist in exploring biological questions relating to visual function in 

syndromic and multifactorial traits.

ONLINE METHODS

Study subjects.

Post-mortem human donor eyes were procured by the Minnesota Lions Eye Bank after 

informed consent from the donor or next of kin and in accordance with the tenets of the 
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Declaration of Helsinki. Exclusion criteria for donors included a history of diabetes or 

glaucoma. Donors were also excluded from this study if, upon examination of donor 

macular images, there were clinical symptoms of diabetic retinopathy, advanced glaucoma, 

myopic degeneration, or the presence of atypical debris in the eyes. Donor eyes were 

enucleated within four hours of death and stored in a moist chamber at 4°C until retinal 

dissection was performed. Dissection and classification of donor retinas for AMD were 

carried out according to the four-step Minnesota Grading System (MGS) as previously 

described6, 28. Tissue sections were flash frozen in liquid nitrogen and stored in −80°C until 

further processing. Samples with ambiguous or no MGS levels were excluded from 

downstream analysis. Details of donor characteristics are described in the Supplementary 

Notes.

GTEx data.

RNA-seq and genotyping data from the Genotype-Tissue Expression (GTEx) release v7 

were downloaded from the Database of Genotypes and Phenotypes (dbGaP) under accession 

phs000424.v7.p2 and from the GTEx portal (see URLs), respectively.

RNA-seq, genotyping, and QC.

Details of RNA-seq, genotyping, and quality control are provided in the Supplementary 

Notes.

Batch correction.

Surrogate variables were identified and estimated for known batch effects as well as latent 

factors using the supervised SVA (SSVA) (version 3.28.0/3.24.4) method29–31 based on the 

model;

gene expression ∼ MGS + gender + age

Negative control genes for SSVA were selected from a reported list of 3,804 housekeeping 

genes that are uniformly expressed across 16 human tissues32. The Pearson method was 

used to observe correlations between all significant surrogate variables identified by SSVA 

and possible sources of variation, including biological and technical factors. Known batch 

effects were assessed using Principal Variance Component Analysis (PVCA) (version 

1.23.0) before and after batch correction33. All surrogate variables identified by SSVA were 

used for batch correction. Additional details are described in the Supplementary Notes.

URLs
1000 Genomes Project reference panel: http://www.internationalgenome.org/
Retinal Information Network (RetNet): https://sph.uth.edu/retnet/
GTEx: https://www.gtexportal.org/home/https://www.gtexportal.org/home/
Gene ontology structure: http://www.informatics.jax.org/vocab/gene_ontology/
HMMER: http://hmmer.org/
FastQC: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
Precomputed TWAS weights: http://gusevlab.org/projects/fusion/
NEI Commons: https://neicommons.nei.nih.gov/#/
Biowulf Linux cluster: http://biowulf.nih.gov
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Reference transcriptome.

The transcriptome profile of control human retina was generated from 105 MGS1 control 

retinas by applying two criteria for gene expression, the first to remove lowly expressed 

genes across all MGS stages [i.e., ≥ 1 Counts Per Million (CPM) in ≥ 10% of all 453 

samples], and the second to describe the transcriptomic landscape in retina with greater 

confidence (i.e., ≥ 2 CPM in ≥ 50% of all 105 MGS1 samples). We calculated the 

cumulative transcriptional output as previously defined 34 by converting CPM into fragments 

per kilobase of transcript per million mapped reads (FPKM) values to take gene length into 

account. Similarities in transcriptomes between the retina and 53 GTEx tissues were 

observed with a gene filter of ≥ 1 CPM in ≥ 10% of all samples across all tissues whereas a 

different gene filter, namely ≥ 1 CPM in ≥ 10% of samples within each tissue, was applied to 

identify genes that were expressed at least 10-fold higher in retina compared to other tissues. 

Pathway enrichment analysis was performed using Gene Ontology (GO) biological process 

terms35, 36 within clusterProfiler version 3.4.437 using a Benjamini-Hochberg adjusted P 
value ≤ 0.05 as the significance threshold. The analysis and classification of potentially 

novel isoforms of known genes and unknown, intergenic transcripts were performed using 

the Cufflinks suite version 2.2138, 39, and further details are provided in the Supplementary 

Notes.

Comparison of transcriptomes across retina and GTEx tissues.

Raw GTEx v7 RNA-seq data were analyzed through our bioinformatics pipeline as 

aforementioned for retina. Effects due to differences in bioinformatics pipelines between our 

analysis and that of GTEx were compared as noted in the Supplementary Notes.

cis-eQTL mapping.

The analysis included 406 individuals for whom genotype and retina gene expression data 

were available, 17,389 genes that were expressed at ≥ 1 CPM in at least 10% of the retina 

samples, and 8,924,684 genotyped and imputed common variants. cis-eQTL analysis was 

conducted with QTLtools version 1.040, using a linear model to adjust for disease status 

(MGS level), age, sex, population stratification (10 principle components), and batch effects 

(21 surrogate variables). In the first step of the analysis, the variant most associated with 

each gene was selected, and then permutation was used to determine the distribution of its 

test statistic under the null. This was subsequently used to obtain the P value for each gene. 

These P values were adjusted for multiple testing using the q-value approach 41 at the 

desired Type I error level. The second step of the analysis involved the identification of all 

eVariants with independent effects on a given eGene (significant gene from the first stage). 

This was done by using the gene-level thresholds derived from the first stage, and then 

identifying which variants exhibit nominal P values below these thresholds based on the 

forward-backward stepwise regression algorithm.

GTEx comparison.

To calculate π1 we compared our cis-eQTL discoveries using the following definition:

π1 = P(cis-eQTL in discovery tissue is significant in replication tissue ∣ cis-eQTL in 

discovery tissue was also analyzed in the replication tissue)

Ratnapriya et al. Page 7

Nat Genet. Author manuscript; available in PMC 2019 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Thus, for each cis-eQTL (gene-variant combination) we required that the combination was 

analyzed in both tissues being compared.

GWAS Lead Variant analysis.

Forty-one lead variants from AMD-GWAS3 were analyzed. Those not found were either not 

in the reference dataset used for imputation (6 variants) or did not pass our MAF threshold 

of < 1% (5 variants). Matrix eQTL version 2.1.142 was then used to obtain the marginal 

associations using the same cis criteria, which were then corrected for multiple testing only 

for the number of variants tested using the Bonferroni method with a Type I error rate of 5%.

Enrichment.

Q-Q plots for each GWAS dataset were processed in general by removing all SNPs within 

± 1 Mb of the known GWAS signals, sub-setting to variants with MAF of at least 5%, and 

after removing variants in the major histocompatibility region. The remaining variants were 

then grouped based on eQTL characteristics. See Supplementary Notes for details.

Colocalization.

Likely colocalizing variants between the eQTL and the GWAS data were identified using 

eCAVIAR version 2.013 (see Supplementary Notes) based on marginal statistics from the 

cis-eQTL analysis and from AMD GWAS3.

TWAS.

To perform the transcript-wide association study, the log-transformed, SSVA-corrected 

expression data from the 406 samples in our dataset that both passed RNA-seq and 

genotyping quality control were inverse-normal transformed (rank offset = 3/8)43 to 

moderate the influence of potential outliers. Expression was then controlled for gender, age, 

and the ten population structure variables determined by Eigenstrat version 7.2.144, 45. For 

each gene, we took the subset of SNPs within 1 Mb of its start or end site that had GWAS 

statistics3 using VCFtools version 0.1.1546. We used Gusev et al.’s TWAS 

implementation14; heritability was calculated using GCTA version 1.2147, and genetic 

control of expression was modeled with either mixed models, LASSO, or elastic net (α = 

0.5), depending on which of the three methods produced the highest five-fold cross-

validation R2.

The effect sizes from these models acted as weights. Weighted z-scores were summed for 

each gene, and this gene-trait association statistic was divided by its standard deviation 

while accounting for LD between GWAS statistics. Standardized gene-level scores were 

tested against the standard normal distribution on both sides. The FDR was calculated to 

account for multiple testing across genes with calculated P values; genes that had an FDR < 

0.05 were considered significant. We also determined whether genes passed a 0.05 

significance threshold after Bonferroni correction. Genes were then filtered by their model 

expression fit; genes which had a genetic model R2 < 0.01 were discarded.

We also performed a permutation test to determine the role the eQTL data played in the 

associations: for genes with a TWAS P value of less than 0.001, weights were randomly 
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assigned to SNPs and the gene-level z-scores was recomputed for an adaptive number of 

iterations to generate a null distribution against which the original TWAS statistic was 

tested14. See Supplementary Notes for details on the methods used for the conditional 

TWAS test.

Differential expression.

Differential expression was assessed using the limma package in R version 3.34.248 with a 

significance threshold of FDR ≤ 0.20. MGS was treated as an ordinal variable in pairwise 

comparisons between controls and each AMD stage. Differential expression was performed 

with adjustments for sex and batch effects (22 surrogate variables), and with and without age 

as a covariate. Age is the most significant non-genetic risk factor for AMD, and age-related 

gene expression changes would likely be relevant to AMD. We therefore also performed 

differential expression analysis without correcting for age to generate a comprehensive list 

of candidate genes that require further investigation to ascertain their contribution to AMD 

pathogenesis. Additional differential expression analyses, performed after removing samples 

with conditions such as hypertension, high cholesterol and cardiovascular disease, were 

consistent across all comparisons made (data not shown).

Gene Set Enrichment Analysis and Leading-Edge Analysis.

Gene set enrichment analysis (GSEA) was performed by pre-ranking genes by significance 

and direction of fold change from differential expression analysis, and then testing for 

association with the Gene Ontology biological process gene set deposited in the GSEA 

MSigDB resource version 2.2.449. Leading edge analysis was performed on gene sets 

reaching a significance threshold of FDR ≤ 0.25 and absolute normalized enrichment score 

of ≥ 2.0. Significant gene sets were further classified into common functional categories by 

visualizing the gene ontology structure as described in Supplementary Notes (see URLs).

Weighted Gene-correlation Network Analysis.

WGCNA50 was performed on all 453 samples that passed RNA-seq QC in order to group 

genes by expression profile, using its associated software version 1.51. log-transformed 

expression values were corrected for age, sex, and batch effects (determined by SSVA29–31). 

Adjacency was calculated using Spearman correlation, and the power with which to raise the 

absolute values of the correlation to obtain the adjacency matrix was k = 3. Using 

hypergeometric testing at a significance threshold of 0.05 alpha-level after Bonferroni 

correction for multiple testing, modules were assessed for the enrichment of the following 

types of genes: (1) genes deemed relevant to macular degeneration pathogenesis in the 

literature, (2) genes within 500 kb of the 34 AMD loci identified through GWAS3, and (3) 

genes identified as leading edge by GSEA49. A list of genes that were relevant to AMD was 

obtained from one of the previous published studies51 and was updated through extensive 

PubMed search (through December 2017) using one of several search terms (See 

Supplementary Notes). Pathway analysis was performed on each module using Gene 

Ontology biological process terms35, 36 through clusterProfiler version 3.4.437. The 

connections between genes in modules were visualized using Cytoscape version 3.5.152.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
EyeGEx: retinal transcriptome and eQTL analyses.

(a) Reference transcriptome output from 105 MGS1 control donor retinas. Top: Fraction of 

expressed genes in Ensembl gene biotypes. Below: Percentage of gene expression in distinct 

gene subtypes.

(b) Within-tissue sample similarity and transcriptome comparison across the retina (n = 105 

MGS1 retinas) and the GTEx tissues (v7) (n = 6,421 samples across all body sites) based on 

normalized gene expression levels. Each color represents a distinct tissue. Left: 

multidimensional scaling. Right: tissue hierarchical clustering.

(c) A summary of retinal cis-eQTLs, eGenes and eVariants. 1.8% of the top eVariants 

(14,565) regulate more than one eGene. Variants in LD with the most significant eVariant 

are indicated as LD proxies. LD, linkage disequilibrium.

(d) The proportion of cis-eQTLs in the retina (y-axis) that are detected in GTEx (x-axis), 

ordered by the sample size of each tissue. Color and shape of each point represent the tissue 

and sample size, respectively.
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Figure 2. 
Genes and variants associated with AMD using retina eQTL data (n = 406 retinas) and 

summary level AMD-GWAS data (based on z-scores of two-sided t-tests using 33,976 

individuals)3.

(a) Violin plots of the relationship between the variant at a GWAS locus and the target gene 

identified by eCAVIAR. At three loci, the target gene shown was the only one significantly 

associated (FDR ≤ 0.05) by TWAS. The y-axis represents the distribution of expression 

levels (CPM) of each gene, whereas the x-axis shows the genotype (orange; homozygous 

minor allele, green; homozygous major allele, and blue; heterozygous) for a given SNP. Box 

plots depict the median (thick black horizontal bar), the interquartile range, and minimum 

and maximum CPM values.

(b) TWAS results (n = 406 retinas) for genes that pass Bonferroni-corrected significance 

identified within 1 Mb on either side of the lead SNP at previously-reported GWAS loci. 

PLEKHA1 (TWAS P value = 7.91 × 10−119) was omitted for appropriate scaling, and the 

horizontal lines indicate y-axis break.

(c) Manhattan plot of TWAS-identified genes outside the reported lead SNP (> 1 Mb on 

either side) at the GWAS loci. Of the genes with expression model R2 > 0.01, 23 genes met 
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the FDR threshold of 0.05 (red line), and three of these passed Bonferroni-corrected 

significance (cutoff shown as blue line).

(d) LocusZoom plots showing empirical GWAS association for top three TWAS signals 

outside GWAS loci. The diamonds indicate top eVariants for independent eQTL signals. The 

coloration of the points is determined by their LD with respect to the eQTL in purple. The 

top GWAS variant in the region is also labeled. The recombination rate is shown as a blue 

line.
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