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Abstract

Background: Epigenetic mechanisms may alter the airway epithelial barrier and ultimately lead 

to atopic diseases such as asthma. Here we aim to identify DNA methylation profiles that are 

associated with -and accurately classify- atopy and atopic asthma in school-aged children.
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Methods: We conducted a genome-wide study of DNA methylation in nasal epithelium and 

atopy or atopic asthma in 483 Puerto Rican children ages 9–20 years, recruited from October 2013 

through August 2017 using multistage probability sampling. Atopy was defined as as ≥1 positive 

IgE (≥0·35 IU/mL) to common aeroallergens, and asthma was defined as a physician’s diagnosis 

plus wheeze in the previous year. Significant methylation signals were correlated with gene 

expression, and top CpGs were validated by pyrosequencing. We then replicated our top 

methylation findings in a cohort including 72 predominantly African American children, and in 

432 children from a European birth cohort. Next, we tested nasal methylation-based classification 

models of atopy or atopic asthma in all cohorts.

Findings: DNA methylation profiles were markedly different between subjects with (n=312) and 

without (n=171) atopy in the Puerto Rico discovery cohort. After adjustment for covariates and 

multiple testing, we found 8,664 differentially methylated CpGs by atopy, with FDR-adjusted P-

values ranging from 9·58×10−17 to 2·18×10−22 for the top 30 CpGs. These CpGs are in or near 

genes relevant to epithelial barrier function, including CDHR3 (cadherin-related family member 3) 

and CDH26 (cadherin 26), and in other biologically plausible genes like FBXL7 (F-box and 

leucine-rich repeat protein 7), NTRK1 (neurotrophic receptor tyrosine kinase 1), and SLC9A3 
(solute carrier family 9 member A3). Moreover, 28 of the top 30 CpGs replicated in the same 

direction in both independent cohorts. Nasal methylation-based classification models of atopy 

performed well in the Puerto Rico cohort (area under the curve=0·93–0·94 and accuracy=85%

−88%) and in both replication cohorts (AUC=0·74–0·92, accuracy=68%−82%). The models also 

performed well for atopic asthma in the Puerto Rico cohort (AUC=0·95–1.00, accuracy=88%) and 

the replication cohorts (AUC=0·82–0·88, accuracy=86%).

Interpretation: We identified specific methylation profiles in airway epithelium that are 

associated with atopy and atopic asthma in children, and a nasal methylation panel that classifies 

children by atopy or atopic asthma. Our findings support the feasibility of using the nasal 

methylome for future clinical applications, such as predicting the development of asthma among 

wheezing infants.

INTRODUCTION

Sensitization to allergens (atopy) is a key component of atopic diseases such as asthma and 

atopic dermatitis. Over the last few decades, allergic diseases have increased in 

industrialized nations, likely due to environmental changes. Such changes could alter 

epigenetic regulation and expression of atopy susceptibility genes, ultimately leading to 

atopic diseases.(1) Indeed, a recent meta-analysis of genome-wide association studies 

(GWAS) identified 18 genetic loci associated with asthma, but such loci explained only 

3.5% of disease risk, emphasizing the need to identify non-genetic, environmentally-

mediated (i.e. epigenetic) causal mechanisms for atopy and asthma.(2)

By modulating activating and inhibitory signals, the airway epithelium regulates immune 

responses to environmental challenges and airway inflammation.(3) Tobacco smoke, 

allergens, or pollutants could penetrate defective epithelial barriers, interact with dendritic 

cells, alter immune responses, and cause atopy in children. Several susceptibility genes for 

asthma are expressed in airway epithelium (e.g., cadherin-related family member 3 

[CDHR3], protocadherin-1 [PCDH1],(4) and orosomucoid-like 3 [ORMDL3/GSDMB]).(5) 
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CDHR3 is a receptor for rhinovirus C (implicated in asthma and severe asthma 

exacerbations),(6) and bronchial epithelial expression of ORMDL3 suffices for induction of 

Alternaria-related allergic airway disease in murine models.(7) Similarly, polymorphisms of 

filaggrin, a filament-associated protein that binds to keratin in skin epithelium, confer 

susceptibility to atopic dermatitis.(8)

In the U.S., asthma affects ~7 million children and ~10–12% of adolescents report 

respiratory or skin allergies. Puerto Ricans are disproportionately affected by asthma and 

atopy,(9, 10) and are often exposed to environmental agents linked to both DNA methylation 

and atopic diseases. We therefore hypothesized that DNA methylation of airway epithelium 

is linked to atopy and atopic asthma in Puerto Ricans. To test this hypothesis, we conducted 

genome-wide studies of DNA methylation in nasal epithelium (a surrogate marker for 

bronchial epithelium(11, 12)) and atopy and atopic asthma in Puerto Rican children and 

adolescents, a high-risk group. We then conducted replication studies for the top methylation 

signals in two cohorts.(5, 13) Moreover, we tested nasal methylation-based predictive 

modeling to classify children according to whether they had atopy or atopic asthma, as a 

necessary step to provide “proof of concept” and show the feasibility of future clinical 

applications using the nasal methylome.

METHODS

Please see the Methods in the Online Supplement for additional details.

Study population and procedures

The Epigenetic Variation and Childhood Asthma in Puerto Ricans (EVA-PR) is a case-

control study of asthma in subjects aged 9–20 years, recruited using a similar approach to 

that used in a prior study.(14, 15) Participants with and without asthma were recruited from 

households in San Juan (PR) from October 2013 through August 2017, using multistage 

probability sampling; 638 households had ≥1 eligible child, and 543 (85·1%) children (one 

per household) agreed to participate. There were no significant differences in age or sex 

between eligible children who did and did not participate. The study was approved by the 

institutional review boards of the University of Puerto Rico (San Juan, PR) and the 

University of Pittsburgh (Pittsburgh, PA). Written parental consent and assent were obtained 

from participants <18 years old, and consent was obtained from participants ≥18 years old. 

The study protocol included questionnaires on respiratory health, measurement of serum 

allergen-specific IgE, and nasal samples for DNA and RNA extraction. Atopy was defined as 

≥1 positive IgE (≥0·35 IU/mL) to five common aeroallergens in Puerto Rico: house dust 

mite, cockroach, cat dander, dog dander, and mouse urinary protein. Asthma was defined as 

a physician’s diagnosis plus at least one episode of wheeze in the previous year.

Nasal genome-wide methylation (GWM) and RNA sequencing (RNA-Seq)

DNA and RNA were extracted from nasal specimens collected from the inferior turbinate. 

To account for potential effects of different cell types, we implemented a protocol in a subset 

of nasal samples (n=31) to select CD326(+) nasal epithelial cells before DNA and RNA 

extraction. Whole-genome methylation assays were performed using HumanMethylation450 
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BeadChips (Illumina, San Diego, CA). After QC, 227,836 CpG probes remained. 

Methylation β-values were calculated as a percentage: β=M/(M+U+α), where M and U 

represent methylated and unmethylated signal intensities, respectively, and α is an arbitrary 

offset to stabilize β-values where fluorescent intensities are low. β-values were then 

transformed to M-values as log2(β/(1-β)), and M-values were used in all downstream 

analyses. RNA-Seq was performed with the Illumina NextSeq 500 platform, paired-end 

reads at 75 cycles, and 80M reads/sample; reads were aligned to reference human genome 

(hg19) and TPM (Transcripts Per Kilobase Million) were used as proxy for gene expression 

level. After QC, 16,487 genes were retained; our analysis focused on genes in cis (<10kbp) 

with significant CpGs from the methylation analysis (see below). For both GWM and RNA-

Seq, known batch effects (e.g. plates) were removed using an empirical Bayes framework, 

and sva was used to estimate latent factors (LFs) that capture unknown data heterogeneity.

Epigenome-wide (EWAS) and transcriptome-wide (TWAS) association studies

We conducted an EWAS using multivariable logistic regression with the general model: 

Atopy (or atopic asthma) = CpG M-value + age + sex + LFs + top five principal components 
from genotypic data + (for the analysis of atopy only) asthma status. Adjustment for 

multiple testing was performed using the false discovery rate (FDR); significance was 

defined as FDR-corrected P<0·01. Differentially methylated regions (DMRs) were analyzed 

using Python tool comb-p, with a seed p-value of 0·01 and a maximum extendable distance 

of 300bp. The regression output included the effect size and p-value for each CpG. For ease 

of interpretation, tables show the difference in mean betas between participants with atopy 

and those without atopy and expressed as a percent: Methylation Δ (%) = mean betaatopy – 

mean betano atopy.

To evaluate whether our significant methylation signals are associated with gene expression, 

we first conducted a TWAS (following a similar model but using log2-scaled TPM instead of 

M-values) and then performed an expression quantitative trait DNA methylation (eQTM) 

analysis of significant CpGs and genes in cis (<10 kbp) with those CpGs. We then 

performed a mediation analysis to evaluate whether any proportion of the association 

between methylation and atopy is mediated by differences in gene expression. In this 

mediation analysis, we assessed the contributions of the direct pathway between methylation 

and atopy (methylation → atopy) and the indirect (or mediated) pathway through changes in 

gene expression (methylation → expression → atopy). Finally, we conducted an Ingenuity 

Pathway Analysis (IPA) including all genes with FDR P-value <0·01 in the TWAS, EWAS, 

and eQTM analysis.

Classification models

To investigate whether GWM data can be used to classify atopy, we used three classic 

machine learning models to select the best performing panel for each method and their 

optimal probability cut-offs (see Online Supplement for details). For each method, we 

trained the model with the top 500 EWAS CpGs on all samples, and sorted all CpGs 

according to variable importance, defined as each CpG’s contribution to the model 

(Suplemental Figure 6). We then sequentially selected the top 10 through 100 CpGs to train 

and test the models (Supplementary Figures 6, 7) and to optimize the parameters 
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(Supplementary Figure 8). The performance of different methods using different numbers of 

features were compared based on the testing AUCs (area under the ROC curve), with the 

largest average AUC among 10 cross-validations indicating the best performance. On this 

basis, we selected a 30-CpG panel and evaluated its diagnostic test performance 

(Supplementary Table 10). In order to further compare the performance of the CpG panel, 

we used two “negative controls”: 1) a model using 30 randomly selected CpGs; and 2) a 

model using only demographic/questionnaire variables: age, sex, household income, parental 

history of asthma, tobacco smoke exposure in early life, obesity, and allergic rhinitis.

Validation and external replications

We performed an internal validation of top CpGs using pyrosequencing in a random sub-

sample of 40 participants with atopic asthma and 40 non-atopic non-asthmatic controls. We 

also performed external replication in two independent cohorts: a public dataset (GSE65205) 

from a case-control study of atopic asthma and nasal epithelial DNA methylation in 72 

predominantly African American children(5); and data from 432 16-year-old participants in 

the Prevention and Incidence of Asthma and Mite Allergy (PIAMA) cohort of Dutch 

children born in 1996–1997.(16)

RESULTS

A total of 523 participants had complete data for atopy, atopic asthma, and all covariates; 

483 had nasal genome-wide methylation (GWM) data and 456 had nasal RNA-Seq data 

(Supplementary Figure 1). The main characteristics of study participants are shown in Table 

1. Atopic subjects had higher mean total IgE (790 IU/mL vs. 110 IU/mL) and were more 

likely to have asthma (57% vs. 39%) than those without atopy, without significant 

differences in age or sex.

Nasal DNA methylation and atopy

DNA methylation profiles were remarkably different between subjects with and without 

atopy (Figure 1). After adjustment for covariates and multiple testing, we found 8,664 

differentially methylated CpGs by atopy (FDR P-value <0·01): 3,834 with higher 

methylation in atopic subjects and 4,830 with lower methylation in atopic subjects. Table 2 

shows the top 30 differentially methylated CpGs, with FDR-adjusted P-values ranging from 

9·58×10−17 to 2·18×10-22. Similarly, we found differentially methylated regions (DMRs) 

associated with those top genes (Supplementary Table 1). These CpGs and DMRs are in or 

near biologically plausible genes for atopy, such as FBXL7 (F-box and leucine-rich repeat 

protein 7, FDR-P=8·5×10−21), NTRK1 (neurotrophic receptor tyrosine kinase 1, FDR-

P=8·5×10−21), CDHR3 (FDR-P=8·5×10−21), CDH26 (cadherin 26, FDR-P=5·8×10−18), 

CAPN14 (calpain 14, FDR-P=9·5×10−18), GRK5 (G protein-coupled receptor kinase 5, 

FDR-P=5·2×10−18), and SLC9A3 (solute carrier family 9 member A3, FDR-P=5·6×10−18). 

There was no residual clustering by sex, batch group, or processing protocol (i.e. whole 

nasal sample vs. CD326+ epithelial cells) (Supplementary Figure 2). Moreover, we obtained 

similar results in analyses restricted to the 31 cell-sorted samples despite small sample size 

(Supplementary Table 2) or after removing samples from 12 subjects using nasal steroids.
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Epigenomic and transcriptomic integration

There was substantial overlap between differential methylation and expression (Figure 2), 

including 779 hyper-methylated CpGs corresponding to 514 down-regulated genes, and 

1,506 hypomethylated CpGs corresponding to 815 up-regulated genes. Among genes at or 

near our top EWAS results, 13/30 (43·3%) showed differential expression by atopy, 

including SLC9A3, PCSK6, CDH26, FBXL7, and NTRK1 (Supplementary Table 3). The 

eQTM analysis revealed 1,570 CpG-gene expression pairs, including 11/30 (36·7%) of the 

top 30 EWAS results (Supplementary Table 4). Based on these findings, we performed a 

mediation analysis for each top 30 CpG/gene pair to evaluate direct (methylation → atopy) 

and indirect (methylation → expression → atopy) pathways: we found significant 

mediation for 12/30 (40%) genes (Supplementary Table 5), including CDH26, PCSK6, 

PRKD1, SLC9A3, and MAP3K14. Results from the pathway analysis of the 724 genes that 

were significant in the EWAS, TWAS, and eQTM analyses are shown in Supplementary 

Table 6 and Figure 3. The top 20 enriched pathways were related to immune regulation (Th1 

and Th2 pathways; antigen presentation; T helper, Treg and NK cell signaling; etc), as well 

gap junction signaling and the ErbB or epidermal growth factor receptor pathway.

Atopic asthma

The results of the analysis of atopic asthma are shown in the Online Supplement. DNA 

methylation profiles were markedly different between children with atopic asthma and those 

without atopy or asthma: FDR-adjusted P-values for the top 30 CpGs in atopic asthma 

ranged from 2·2×10−13 to 1·3×10−16 (Supplementary Figure 3, Supplementary Table 7). 

There was substantial overlap between the results for atopy and those for atopic asthma 

(Supplementary Figure 4), and the top EWAS results for atopic asthma were similar to our 

results for atopy.

Validation and external replication

Pyrosequencing of 15 top CpGs (nine for atopy, six for atopic asthma) showed strong 

correlation with microarray results (Supplementary Figure 5; correlation coefficients ~0·84–

0·96, P-values 1·4×10−22 to 3·2×10−42). Furthermore, methylation of all CpGs measured by 

pyrosequencing were significantly associated with atopy in the same direction as the 

microarray EWAS (Supplementary Table 8).

Results from the replication analysis of our EWAS of atopy are shown in Table 2: using data 

from Yang et al.,(5) 28/30 CpGs replicated in the same direction with P<0·01. Likewise, in 

PIAMA, 29/30 CpGs replicated in the same direction with P<0·01. Fisher combined P-

values across the three cohorts ranged from 1·72×−19 to 1·05×10−47 (Table 2). In addition, 

we replicated most of the top results reported by Yang et al. (Supplementary Table 9).

Atopy classification panels

Based on our analysis using three models to determine the best “predictive” CpGs, optimal 

number of markers, and probability cut-offs (Supplementary Figures 6–8), we selected a 30-

CpG panel (Supplementary Table 10). Results from applying this panel to classify 

participants by atopy are shown in Figure 4: depending on the model, in the Puerto Rico 

cohort the AUC ranged from 0·93 to 0·94; accuracy was 85%−88%, sensitivity 0·85–0·87, 

Forno et al. Page 6

Lancet Respir Med. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



specificity 0·85–0·89, positive predictive value (PPV) 0·91–0·94, and negative predictive 

value (NPV) 0·76–0·80. Similar results were obtained after applying the same panel and 

model to data from Yang et al. for atopic asthma: AUC 0·91–0·92, accuracy 81%−82%, 

sensitivity 0·67–0·92, specificity 0·75–0·97, PPV 0·77–0·96, and NPV 0·74–0·90. In 

PIAMA, we obtained AUC 0·74–0·79, accuracy 68%−73%, sensitivity 0·51–0·62, specificity 

0·74–0·87, PPV 0·69–0·80, and NPV 0·65–0·69 for atopy. In contrast, our “negative control” 

models yielded AUCs of 0·57–0·63 (for a panel of 30 randomly selected CpGs) and 0·65–

0·69 (for the model including only demographic and questionnaire data) among Puerto 

Rican children in EVA-PR (Supplementary Figure 9).

Next, we applied the same CpG panel to classify atopic asthma (Supplementary Figure 10). 

In Puerto Rico, the panel yielded AUC 0·95–0·99 and accuracy of 88%. In PIAMA, the 

analysis of atopic asthma yielded AUC 0·82–0·88 and accuracy of 86%. Because Yang et al. 

compared atopic asthmatics vs non-atopic controls, the analysis of atopy and atopic asthma 

yielded the same results as that of atopy vs. no atopy.

DISCUSSION

Nasal epithelium is a non-invasive surrogate marker for bronchial epithelium in children.(11, 

12) We show that epigenomic profiles in nasal epithelium are significantly associated with 

atopy or atopic asthma in three cohorts of children and adolescents. Moreover, many top 

DNA methylation signals are associated with expression of their corresponding genes and, in 

several instances, the association between methylation and atopy is mediated by gene 

expression. Importantly, the 30-CpG panel we selected accurately identified atopy or atopic 

asthma. To our knowledge, this is the first genome-wide study of DNA methylation and 

atopy, and the largest such study of atopic asthma. Our results strongly suggest a key role for 

a dysfunctional airway epithelium in atopy and asthma.

Our enrichment analysis revealed that the methylation signals linked to atopy or atopic 

asthma are in pathways related to gap junction signaling and immune regulation, including 

antigen presentation and Th1/Th2 signaling. Indeed, several genes identified in this study are 

implicated in epithelial barrier processes and immune regulation, including CDH26, a 

cadherin family protein that is involved in allergic responses, modulates CD4+ T cells and 

IL-2 production,(17) and regulates airway epithelial cell structure and polarity(18). CDHR3, 

in the same family, has been strongly implicated in interactions between rhinovirus infection 

and asthma exacerbations, and in bronchiolitis.(19, 20) GJA4 (gap-junction protein alpha-4) 

expression in bronchiolar epithelium is markedly decreased in murine asthma.(21) CAPN14, 

a susceptibility locus for eosinophilic esophagitis (EoE), is induced by IL-13, and together 

they alter epithelial function and repair.(22–24) MTRNL (meteorin-like), part of our 

classification panel and a cytokine present in mucosal barrier and skin, is over-expressed in 

atopic dermatitis.(25) Our findings suggest that DNA methylation may alter airway 

epithelial integrity and function, leading to antigen penetration of the epithelial barrier, 

antigen presentation to dendritic cells, altered Th1/Th2 immune responses, and –ultimately– 

atopy or atopic asthma.
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Other genes present in both our top CpGs and the classification panel are involved in atopy, 

lung disease, or inflammation. We found decreased methylation (and increased expression) 

of NTRK1 in atopy. NTRK1 has been linked to circulating nerve growth factor (NRF) in 

children with asthma, with epistasis between both genes;(26) NTRK1 is induced by IL-13, 

enhances allergic inflammation, and is increased in EoE.(27) SLC9A3 codes for an Na+/H+ 

exchanger and has been linked to lower lung function in cystic fibrosis;(28, 29) to our 

knowledge, this is the first report linking SLC9A3 to atopy or asthma. Among genes 

significant at multiple levels (EWAS, eQTM, and mediation analyses), PCSK6 was among 

the top findings from Yang and colleagues; we also found decreased methylation of PCSK6 
in atopy, and further report a corresponding increase in gene expression. PCSK6 activates 

NF-κB, IL-1, and IL-6,(30) and may have a paracrine role in activating matrix 

metalloproteases.(31) We also found hypomethylation (and up-regulation) of FBXL7 in 

atopic subjects; FBXL7 expression has been associated with decreased inhaled 

corticosteroid response in asthma(32), and FBXL7 has been implicated in aspirin-induced 

urticaria and angioedema.(33) GRK5 (also hypo-methylated and up-regulated among atopic 

children in our study) may mediate β2-adrenergic receptor desensitization,(34) and PRKD1 
polymorphisms could interact with cleaning products on adult-onset asthma.(35) Finally, 

among genes that were not among the most significant by p-values but included in the 

classification panel, DUOX1 (dual oxidase-1) mediates inflammation, mucous cell 

metaplasia, and airway remodeling in asthma;(36) IL-4 signaling can activate IRS2 (insulin 

receptor substrate 2) leading to M2 polarization of lung macrophages, which has been linked 

to poor lung function in atopic asthma;(37) and LRP1 (LDL receptor-related protein 1) 

modulates dendritic cell responses and attenuates dust mite-induced eosinophilic airway 

inflammation.(38)

Our methylation results are biologically relevant. Beyond plausibility from existing 

literature, our TWAS and eQTM analyses examined whether methylation is associated with 

gene expression, and our mediation analysis further evaluated whether the methylation-atopy 

relationship is explained by transcriptomic differences. Several CpG/gene pairs showed 

significant mediation, including SLC9A3, CDH26, PCSK6, and MAP3K14; others, like 

FBXL7 or NTRK1, showed little or non-significant mediation, suggesting that the link 

between methylation and atopy occurs through other mechanisms. Moreover, we replicated 

>93% of our top EWAS results in two cohorts. Of note, two of our top genes (METTL1 and 

PCSK6) were also among the genes reported by Yang et al,(5) as were two genes in our CpG 

classification panel. We also provide the first replication of the top results in that study, 

which linked the nasal methylome to atopic asthma but had limited statistical power and 

lacked external replication.

With regard to the clinical significance of our findings, developing predictors of asthma or 

atopy in early life is a major need in pediatrics, as only ~41% of children who report any 

wheeze by age 3 years will go on to have “true asthma” by age 6 years, while the remaining 

59% of young children with “early wheeze” will report no wheeze at age 6 years. Using data 

from four clinical parameters and peripheral blood eosinophil count, Castro-Rodriguez et al 

developed an Asthma Predictive Index (API) to help differentiate young children with 

transient wheeze from those who go on to develop asthma(39). However, this API has 

limited predictive accuracy. For asthma at age 11 years, the “stringent API” has a sensitivity 
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of 15%, a PPV of 42%, and a NPV of 85.6%. At present, neither a child’s parents nor a 

child’s physician knows with certainty whether an infant with wheeze will go on to develop 

atopy or asthma at school age. Such knowledge could help guide treatment or reduce anxiety 

in the child’s family.

Our study is cross-sectional, and thus we cannot determine whether specific methylation 

marks preceded or were a consequence of atopy or atopic asthma. Moreover, we are unable 

to examine non-atopic asthma because of limited or no data on this outcome. However, our 

findings demonstrate the feasibility of using the nasal methylome to develop clinical tools in 

future longitudinal studies, as highlighted by the ability of the 30-CpG panel to identify 

atopic subjects in three studies despite racial/ethnic differences: our cohort included Puerto 

Ricans with ~24% African ancestry, the study by Yang predominantly (~92%) included 

African Americans, and PIAMA included mosty (~97%) Western Europeans. Furthermore, 

PIAMA participants were not selected for atopy or asthma and thus had lower total IgE 

(Table 1); this likely explains the somewhat smaller effect sizes in PIAMA, though a small 

contribution of European ancestry effects is also possible. Of note, the same CpG panel was 

able to reliably classify atopic asthma, with accuracy of 88% in Puerto Rico, 82% in the data 

from Yang, and 86% in PIAMA. While the PPV in PIAMA was lower at 0·42, this is 

expected from an unselected birth cohort with ~10% prevalence of the outcome (atopic 

asthma). These very promising results are far superior to predictive models using genetic 

variants, and also in clear contrast to those of our “negative control” analyses, in which 

panels composed of either 30 random CpGs (AUC ~0·57–0·63) or demographic and 

questionnaire data (AUCs of ~0·65–0·69) performed markedly worse than our selected CpG 

panel. Although nasal transcriptomics offers an alternative approach for asthma or atopy 

classification, DNA is more stable than RNA, and methylation marks offer a more direct 

assessment of environmental exposures. Moreover, preliminary (nonreplicated) findings 

from a small study in adults suggest that a panel of 90 genes (considerably larger than our 

30-CpG panel) may be needed for asthma diagnosis using transcriptomics(40). Our results 

suggest that nasal methylation patterns can reliably classify atopy or atopic asthma in 

children differing in age, race/ethnicity, and degree of atopy. Furthermore, novel genes in our 

predictive panel (e.g., MAP2K6, EPHA4, ACOX2, BBOX1, or AXIN2) are worthy of 

further study.

Our findings were robust to nasal sample collection and processing protocols. Indeed, our 

results were unchanged when excluding CD326+ sorted samples, and were consistent when 

analyzing only the CD326+ subset. Notably, the study by Yang used histology and gene 

expression to ensure high proportion of ciliated epithelial cells, and PIAMA included whole 

nasal samples collected using a protocol similar to ours. Of interest, none of our top results 

overlapped with the 14 CpGs reported in a recent EWAS of asthma in whole blood(13) 

(Supplementary Table 11), further highlighting the novelty of our findings in airway 

epithelium and the critical importance of tissue specificity in epigenomic studies.

In summary, we have identified novel and biologically plausible methylation markers of 

atopy and atopic asthma in nasal epithelium, which are located in or near genes related to 

immune regulation and airway epithelial integrity. Most of these genes were not identified in 

GWAS, and thus our results support a key role of epigenetic changes in the nasal epithelium 
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in the causality of atopy and atopic asthma in children. Moreover, we report a nasal 

methylation profile that accurately classifies subjects according to atopy or atopic asthma, 

thus supporting future longitudinal studies to develop predictive nasal methylation panels. 

Such panels could be used for early prediction of asthma, identifying early-life 

environmental risk factors for asthma, and assessing response to asthma therapies in 

children.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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RESEARCH IN CONTEXT

Evidence before this study:

A large meta-analysis of genome-wide association studies (GWAS) identified 18 loci 

associated with asthma but explaining only 3.5% of disease risk. Given that genes 

associated with childhood asthma are often expressed in airway epithelium, 

environmentally-influenced epigenetic regulation of that tissue could play a role in the 

pathogenesis of atopic asthma. We searched PubMed for articles in English and found 

prior reports of DNA methylation in blood or white blood cells and asthma, but minimal 

evidence of a link between airway epithelium DNA methylation and atopy or asthma.

Added value of this study:

To our knowledge, this is the first genome-wide study of the nasal epithelium methylome 

and atopy, and the first such study of atopic asthma in a large sample of children. We 

identified 8,664 CpG sites that were significantly associated with atopy and atopic 

asthma in Puerto Rican children; FDR P-values ranged from 9·58×10−17 to 2·18×10−22 

for the top 30 CpGs. Several top CpGs were located near genes associated with immune 

responses or epithelial barrier function, and a high proportion of significant CpGs were 

associated with changes in gene expression. We replicated 28 of the top 30 CpGs in two 

independent cohorts from different ethnic backgrounds; combined P-values for the three 

cohorts ranged from 1·72×−19 to 1·05×10−47. Moreover, we designed a 30-CpG panel that 

accurately classified children according to atopy (area under the curve [AUC] 0·93–0·94 

for the original cohort and 0·74–0·92 for the replication cohorts) or atopic asthma (AUC 

of 0·95–0·99 in the original cohort, and 0·85–0·88 in the replication cohorts).

Implications of all the available evidence:

We demonstrate that DNA methylation profiles in airway epithelium are significantly 

associated with atopy and atopic asthma, particularly near genes related to epithelial 

barrier integrity or function and other immune regulatory processes. Our findings are 

robust to differences in ethnic/racial background, geographic location, and environmental 

exposures across cohorts. None of the top 30 genes in our study overlaps with the 18 

asthma-susceptibility genes identified in a recent GWAS meta-analysis, emphasizing the 

novelty and importance of our results. Moreover, we identified a CpG panel that 

accurately classifies atopy and atopic asthma across three diverse populations. Our 

findings suggest a key role of epigenetic regulation of the airway epithelium in the 

pathogenesis of atopy and asthma, and support the feasibility of using the nasal 

methylome to develop much-needed research and clinical tools in future longitudinal 

studies. Such studies should help identify methylation marks that precede disease 

development or treatment response, and thus lead to clinical applications for the 

prediction of atopy or asthma in infants, and therapeutic responses in children with 

asthma.
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Figure 1 –. Epigenome-wide association study (EWAS) of atopy in nasal epithelium
Top panel shows the Manhattan plot, with –log10(P) on the y-axis and chromosome position 

in the x-axis; red line indicates FDP-P<0·01. Bottom panel shows the volcano plot, with –

log10(FDR P-value) in the y-axis and effect size in the x-axis. Hypermethylated CpGs (i.e. 

higher methylation level in participants with atopy compared to those with no atopy) are 

shown in red; hypomethylated CpGs in blue; non-significant (FDR P>0·01) in black.
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Figure 2 –. Integration of Epigenome-wide Association Study (EWAS) and Transcriptome-wide 
Association Study (TWAS) results for atopy
Figure shows the -log10(FDR P-value) for DNA methylation (EWAS) in the x-axis, and for 

gene expression (TWAS) in the y-axis; positive values indicate hypermethylation or over-

expression, and negative values indicate hypomethylation or under-expression. Pairs where 

both EWAS and TWAS results are non-significant (FDR P>0·01) are shown in black. 

Significantly hypermethylated CpGs with under-expressed corresponding genes are shown 

in purple (right lower quadrant; 779 CpGs, 514 genes); hypomethylated and over-expressed 

genes shown in dark blue (left upper quadrant; 1506 CpGs, 815 genes).
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Figure 3 –. Pathway analysis of nasal epigenomics and atopy
Left panel shows the top 20 enriched canonical pathways for our analyses of atopy. Blue 

bars depict -log(P-value) and orange symbols depict enrichment ratios. Right panel shows 

the overlap between these top 20 pathways. Only connections between pathways with ≥5 

genes in common are shown. Pathway analysis performed including all genes that were 

significant (FDR P<0·01) in the EWAS, TWAS and eQTM analyses (n=724 genes). See 

supplementary table 6 for further details.
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Figure 4 –. DNA methylation panel and classification/prediction of atopy in study cohorts
Top panels show the receiver operating characteristic (ROC) curves for Puerto Rico (left), 

Yang (middle), and PIAMA (right) using three different statistical approaches (GLMNET, 

GBM, RF; see Methods for details). Middle row shows heat maps for the three cohorts using 

the 30 CpG in the GLMNET model. Bottom row shows classification tables for atopy in the 

three cohorts. Results shown are from using the same 30-CpG panel, coefficients, and 

probability cut-offs trained from the Puerto Rico cohort data, then applied to both 

independent cohorts. Sens: sensitivity. Spec: specificity. PPV: positive predictive value. 

NPV: negative predictive value. Accuracy: (True positives + true negatives) / (total N).
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