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Abstract

Purpose of Review The design of an HIV vaccine remains an elusive but top priority. Data from the non-human primate model
and the first moderately protective HIV vaccine trial (RV144) point to a role for qualitative changes in humoral immune functions
in protection from infection. Here, we review the current understanding of the antibody response throughout HIV infection, the
known correlates of protection, and current strategies to manipulate antibodies to put an end to the epidemic.

Recent Findings Recent studies point to innate immune-recruiting antibody function in preventing infection as well as controlling
viremia following infection. These data have begun to inform next-generation design of HIV vaccines and antibody therapies by
uncovering new viral targets and antibody architectures to improve potency and breadth.

Summary Emerging data illustrate a role for innate immune recruiting-antibodies in conferring protection against HIV infection
as well as promoting viral control and clearance, offering an unprecedented opportunity to modulate and improve antibody

function to fight HIV more effectively.

Keywords Antibodies - HIV-1 - Vaccination - Natural HIV control - Innate immunity

Introduction

Empirical vaccine design has led to the generation of
clinically approved vaccines against 26 pathogens, yet
similar approaches have failed against HIV [1]. This is
due in part to the uniquely high mutation rate of HIV
and the low density of envelope (Env) protein on the viral
surface, which together restrict the evolution of neutraliz-
ing antibodies. Only a limited number of sites of neutral-
izing vulnerability have been defined on the HIV Env
protein, which require highly specialized attachment foot-
prints and angles of attack for antibody-mediated neutral-
ization [2, 3]. This knowledge has driven vaccine design
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efforts to focus on the development of immunogens that
display only minimal scaffolded surfaces that solely pres-
ent the site of neutralization attack [4]. Additionally,
methods have been developed to deliver sequential Env
immunogens through vaccination. This approach is meant
to direct the evolution of humoral immunity to HIV epi-
topes that render the virus more vulnerable to neutraliza-
tion [5]. These strategies, among others, have emerged
from the hypothesis that neutralizing antibodies are essen-
tial for global protection against HIV. However, accumu-
lating data from human and non-human primate (NHP)
vaccine studies have systematically challenged this dogma
by pointing to non-neutralizing functional antibodies as
correlates of protection [6, 7].

The first large-scale HIV vaccine trials starting in the late
1980s aimed to induce neutralizing antibodies against the HIV
envelope (Env) protein [8]. Using a recombinant gp160 pro-
tein antigen for immunization, the first vaccine instead elicited
high titer binding antibodies in the absence of significant neu-
tralization, and no protection was observed in the trial [9]. The
next two large trials VAX003 and VAX004 induced neutral-
izing antibodies but afforded no significant protection [10].
When vaccination could not drive the development of robust
neutralizing antibody responses to confer protection, the field
shifted focus to emerging data indicating a critical role for T
cells in viral control [11]. This inspired the testing of a T cell-

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s11904-019-00432-x&domain=pdf
mailto:galter@mgh.harvard.edu

170

Curr HIV/AIDS Rep (2019) 16:169-179

focused vaccine (adenovirus 5—Ad5) strategy. Unfortunately,
the AdS-based vaccine study was halted prematurely due to
evidence of increased risk of HIV acquisition among vacci-
nees [12], which was linked to enhanced T cell activation
particularly in the gastrointestinal tract [13]. These data hinted
that T cell vaccines may be insufficient to drive protection
from infection; although it was unclear whether the lack of
efficacy was due to the specific vector used or if results would
generalize across all vectored T cell-inducing approaches
[14].

Concomitantly, a viral vector prime, protein boost strategy
was underway using a pox virus prime (ALVAC) and a re-
combinant Env boost, which resulted in a modest vaccine
efficacy of 31.2% [6, 15, 16]. Importantly, this RV144 trial
provided the first evidence of vaccine-mediated protection
against HIV in the absence of responses originally hypothe-
sized to be correlates of immunity: neutralizing antibodies and
cytotoxic T cell responses. Instead, this protection was linked
to the induction of non-neutralizing IgG1 antibodies targeting
the variable loop 2 capable of driving antibody-dependent
cellular cytotoxicity [15]. However, this same strategy using
a different viral vector for prime/boost, DNA/AdS (also
aimed at inducing both T and B cell responses), resulted
in no evidence of protective immunity [12], suggesting
that the quality of the prime/boost may be essential for
tuning vaccine-induced immunity for protection.
Collectively, these data clearly indicated that (1) protec-
tion against HIV may be achievable through vaccination,
(2) protection does not require neutralizing antibodies or
cytotoxic T cells, and (3) qualitatively superior functional
antibodies may be essential for protection.

In addition to their role in protection, amassing evidence
suggests that antibodies may also contribute to natural control
of HIV. Specifically, while only a fraction of spontaneous HIV
controllers harbor broad T cell immunity [17], a large propor-
tion of controllers possess highly functional antibodies capa-
ble of inducing potent innate antiviral responses [18]. Studies
have linked higher levels of such antibody effector functions
to lower viral loads [19] and slower disease progression [20].
Moreover, functional non-neutralizing antibodies have been
shown to drive antiviral control when induced prior to chal-
lenge [21]. Thus, defining the specific antibody effector func-
tions that track with enhanced viral control may provide valu-
able insights that can be applied to vaccine design not only for
prevention of infection but also for therapeutic control of the
viral reservoir.

In this review, we summarize the knowledge related to the
evolution of functional humoral immunity in HIV infection
and the correlates of both spontaneous control and vaccine-
conferred protection from infection. Finally, we explore how
dissecting protective profiles can inform the design of im-
proved HIV vaccines and monoclonal antibody therapies.
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Targets of Protective Antibodies

For most diseases, vaccines are designed to induce antibody
responses against the most abundant and immunogenic sur-
face antigen(s) [22]. This is often informed by the natural
antibody-specificities associated with pathogen control or
containment. For HIV, only one antigen—Env—composed
of gp120 and gp41 subunits, is expressed on the viral surface
at low densities (only 7-14 Env trimers/virus) [23]. Moreover,
the Env antigen can adopt several states including (1) a trimer
(3 gp120 and 3 gp41 units) required for infection, (2) non-
infectious monomers (gp120/gp41), and (3) unassembled
gp41 “stumps” [24]. Since HIV steals its membrane envelope
from the host cell, most antigens on the surface of the infecting
virion are human-derived. This renders the virion nearly in-
visible to the immune system. While it is clear that the “tri-
mer” represents the key target for neutralizing antibodies [25,
26], it is unclear what form of the antigen is presented by
infected cells to stimulate the killing mediated by protective
functional antibodies.

In order to address this question, discussions have emerged
concerning which antigenic targets are most relevant for
targeting by non-neutralizing killer antibodies. Upon CD4+
T cell infection, expression of the HIV Nef gene product drives
the rapid downregulation of CD4 from the surface of the in-
fected cell [27]. This permits newly produced HIV virions,
decorated in Env proteins, to avoid binding —in-cis—to CD4
(the HIV Env receptor), allowing the virus to successfully
leave the cell and bud off [27]. The elimination of in-cis bind-
ing also protects the infected cell from ADCC activity [28]. As
aresult, several groups have argued that killing cells which are
actively producing virus is likely to be focused on cells that no
longer express CD4. More critically, several ADCC-inducing
antibody epitopes have been identified that bind to unique
sites that are unmasked upon HIV Env binding to CDA4.
These CD4-inducible (CD4i) epitopes are not exposed on
the native trimer present on the virus until after Env binding
to CD4 [29]. Given the low level of CD4-bound Env on pro-
ductively infected cells, producing virus, it is argued that these
ADCC antibodies may instead target uninfected bystander
cells that have incidentally picked up Env on CD4. Since
several in vitro antibody-effector assays either capture HIV
Env on the surface of CD4-expressing cells or include cells
at different stages of CD4-downregulation, concerns have
emerged related to the interpretation of “relevant” functional
correlates of protection.

This important question remains largely unanswered but
may be less concerning in the setting of a protective vaccine
response. In this case, few cells are successfully infected [30],
and cells that are infected are thought to exist in limited foci of
infection. These foci likely contain cells at multiple stages of
infection with variable amounts of surface-expressed CD4 and
variable levels of virus production. Antibodies specific for
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CD4-bound HIV Env that can destroy cells in different stages
of infection, despite changes in epitope availability and
amount of CD4-bound targets, are likely to confer the greatest
level of protection against HIV. However, death of bystander
cells is one potential consequence of employing antibodies
targeting cells that continue to express CD4. While this phe-
nomenon is clearly undesirable in the setting of high-level
disseminated HIV infection, the elimination of a few non-
infected CD4-expressing bystander cells may be acceptable
if more non-specific antibody-mediated killing contributes to
the effective deletion of all originally infected cells within
limited foci of infection. This may also be true in the context
of HIV eradication, where infected cells may not be actively
producing virus but may still express some CD4 on the sur-
face. Moreover, CD4i-specific antibodies are abundant in HIV
controllers, who do not exhibit a significant decline in CD4+
T cell numbers [31]. This suggests CD4-targeted antibody
responses do not cause immunopathology and instead are
enriched in a setting where effective viral control is main-
tained. Therefore, it is possible that polyclonal pools of anti-
bodies that target cells downregulating CD4 to varying de-
grees may be most desirable to ensure the effective elimina-
tion of cells at both early and late stages of HIV infection
during the acute phase. While this represents the ideal case,
efforts to define the specificities of protective functional anti-
bodies are still underway.

Despite these unknowns, emerging data continue to uncov-
er details about the early development of functional antibodies
that predict antiviral control and disease progression.
Additionally, given the field’s new appreciation for the evolu-
tion of neutralizing antibodies in a significant proportion of
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infected individuals, studies investigating the natural progres-
sion of protective humoral immune responses over the course
of HIV infection in different populations continue to provide
critical clues for the development of vaccines able to leverage
protective functions of antibodies.

Antibody Functional Evolution From Acute HIV
Infection

The acute window of HIV infection occurs in the first 2—4 weeks
following acquisition. During this time, diagnostic tests often fail
to detect infection, as antibodies are still developing during this
phase. Importantly, the HIV Env gp160 protein is cleaved intra-
cellularly into two gene products: gp41 that forms the transmem-
brane region, co-receptor binder, and fusion machinery; and
gpl120, the extracellular envelope region involved in initial
CD4 binding. Although gp41 is more recessed on the viral sur-
face, antibody responses to this epitope evolve first (Fig. 1).
Gp41 responses are often detected in the first 1-2 weeks of
infection [32] and are thought to arise earliest through the recruit-
ment of pre-existing microbiome memory B cells specific for
antigen epitopes that overlap with those found on gp41 [33].
Gag-specific IgG antibodies (p24, p55), used diagnostically, ap-
pear 2-3 weeks after infection, followed by gp120-specific anti-
bodies [26]. Interestingly, epitope-specific recognition across
HIV Env also emerges over time. V3-loop-specific [26, 34]
and CD4 binding site antibodies appear after 1 month of infec-
tion [35], and although rare, recessed membrane-proximal exter-
nal region (MPER)-specific gp41 IgG antibodies arise after 5—
10 weeks of infection [36] (Fig. 1).

Chronic Infection
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Fig. 1 Humoral immunity timeline in HIV. During the first weeks of
acute infection, HIV envelope-specific IgM and IgG antibodies are
produced sequentially to a number of epitopes (gp41, gp120, V3 loop,
CD binding site, and MPER) and are non-neutralizing but capable of
inducing Fc-mediated functions, such as antibody-dependent cellular
cytotoxicity (ADCC) by natural killer (NK) cells. The first neutralizing

antibody responses appear after months of infection and are specific to
autologous viral strains. Over the following years, some individuals
spontaneously control infection. These individuals harbor innate
immune-recruiting antibodies. Broadly neutralizing antibody responses,
conversely, evolve largely in individuals who fail to control infection

@ Springer



172

Curr HIV/AIDS Rep (2019) 16:169-179

While early antibodies do not neutralize HIV [34], they
still contribute to antiviral immunity by recruiting innate
immune effector functions, such as natural killer (NK) cell
induced antibody-dependent cellular cytotoxicity (ADCC)
[37]. Specifically, evidence of in vitro ADCC activity
during acute HIV infection was demonstrated when pa-
tient plasma and purified IgG were shown to hamper viral
replication in the presence of NK cells from healthy do-
nors [38]. Substantial inhibition of viral replication was
observed when plasma from acutely infected patients was
combined with infected target cells in the presence of NK
cells but not in the absence of these effector cells, sug-
gesting antibodies play an important role in controlling
infection in the absence of neutralizing activity.
Importantly, this innate immune recruiting activity was
found to be broadly reactive and inversely correlated with
plasma viremia during acute infection. This indicated a
potential role for these antibodies in establishing set point
viremia. Bolstering these in vitro data, studies have iden-
tified antibodies capable of mediating ADCC in patients
with lower viral set points across the globe [39-42].

Studies highlighting that robust early ADCC activity
predicts slower disease progression throughout chronic
infection [37] have further supported the protective role
for these antibody functions in viral clearance. However,
whether these antibody functions that arise in parallel to T
cell responses work in concert with T cell immunity, pro-
posed to be key a mediator of early viral control [43],
remains unclear. Yet, vaccination resulting in the induc-
tion ADCC prior to infection has been shown to reduce
viremia in non-human primates [44], providing direct ev-
idence for the role of ADCC-inducing antibodies in anti-
viral immunity. Analyses of the evolution of these func-
tional antibodies in acutely infected patients have pointed
to the development of early ADCC responses against the
conformationally intact Env trimer on the virion surface
which is followed by the expansion of ADCC-inducing
antibodies against linear epitopes [42]. Interestingly, these
NK cell-recruiting antibodies were shown to evolve recip-
rocally with that of neutralizing antibodies, suggesting
mutually exclusive paths of antibody effector develop-
ment [45]. These data potentially argue for an important
shift in ADCC-inducing antibody specificity, with quali-
tatively superior virus-sensing antibodies early in disease.

Chronic HIV Infection

Following the first month of infection, neutralizing antibodies
(nAbs) specific for the autologous infecting HIV strain appear,
marking the transition to chronic infection [26]. The virus rapidly
mutates in response to the immune pressure exerted by these
nAbs, and in turn, the host develops new autologous nAbs to
the evolving virus. This cycle continuously occurs, with the virus
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consistently remaining one step ahead of the neutralizing anti-
body response [46]. Even after a few months, newly generated
nAbs continue to exhibit limited potency and show restricted
specificities in about 80% of patients. Over years of chronic
infection, in the setting of a perpetually mutating virus, these
neutralizing antibody responses diversify, and in a fraction of
infected individuals, gain the capacity to neutralize heterologous
strains of the virus [47]. In a large African sero-surveillance
study, antibodies able to neutralize multiple viral strains were
observed in 34% of volunteers [48]. Additional studies have
highlighted the presence of cross-reactive neutralizing antibodies
in approximately 25% of infected individuals [32, 49, 50].
However, broadly neutralizing antibodies (bNAbs) that can neu-
tralize global variants across HIV clades develop in only about
1% of infected individuals, otherwise known as “elite” neutral-
izers [48]. The detection of neutralization breadth across popula-
tions around the world shows that the evolution of bNAbs, while
rare, is immunologically tolerated and possible.

While breadth of neutralization evolves in a significant
proportion of the infected individuals, several years of infec-
tion are required to acquire these protective immune re-
sponses. Specifically, evolution of breadth of neutralization
occurs over the first 1-3 years of infection, with the percent-
age of individuals’ neutralizing responses against multiple
strains and clades increasing from less than 30 to 75% [51].
Epidemiologic analyses aimed at identifying the clinical char-
acteristics associated with developing neutralizing antibody
breadth have identified that higher viral load set point, in-
creased viral diversity, elevated CD8:CD4 lymphocyte num-
bers, increased HIV-specific B cell frequencies, greater im-
mune activation, higher Env-specific IgG titers, and early en-
velope diversity are all associated with the evolution of anti-
body breadth [32, 51-53].

In addition to these clinical and immunological correlates,
studies have clearly demonstrated an intimate interaction be-
tween viral mutational events and neutralizing antibody pro-
gression [49, 50]. Perpetual waves of HIV mutation forced by
nAbs throughout infection drive the production of new clonal
antibody repertoires with enhanced affinity and avidity as
HIV-specific B cells cycle through many rounds of selection.
However, HIV subverts immunity so successfully that this
immune pressure has limited antiviral impact [46]. This is
further evidenced by the enrichment of broadly neutralizing
antibody responses among individuals with high viral loads,
high levels of immune activation, and low CD4+ T cell counts
[54, 55]. Yet, while these nAb responses fail to control viremia
in humans over years of infection, the passive transfer of hu-
man bNADbs into non-human primates (NHPs) confers robust
protection from viral challenge [56-58]. This highlights the
possibility that a vaccine able to generate these responses prior
to viral exposure could effectively prevent infection in
humans, as the appropriate antibodies would be present before
HIV escape could occur.
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Similarly to neutralizing antibodies, non-neutralizing anti-
bodies have been observed to influence viral escape and mu-
tation [59, 60]. However, unlike bNAbs, non-neutralizing an-
tibodies are largely enriched among individuals with lower
viral set points [18, 37, 61-65, 66¢, 67, 68], suggesting that
these responses may have a more significant impact on diver-
sified viral populations. These data may also imply that HIV
escape mechanisms are insufficient to evade these functional
antibody responses. Supporting the unique role for functional
antibodies in chronic infection, longitudinal analysis in rthesus
macaques showed sustained plasma ADCC activity, resulting
in higher CD4 T cell counts and delayed progression to AIDS
as compared to other NHPs that experienced waning titers of
ADCC-mediating activity early after viral inoculation [69].
These data strongly argue that ADCC and potentially other
effector functions may play a more critical role than neutrali-
zation in antiviral control throughout chronic infection.

Correlates of Spontaneous HIV Control

One of the characteristics of chronic HIV infection is the hetero-
geneity in disease progression rates across HIV-infected popula-
tions [70, 71]. Specifically, viral load set point is a strong predic-
tor of the rate of progression to AIDS. Subjects with high viral
loads progress more rapidly than those who spontaneously con-
trol viral replication to low levels, known as controllers or long-

Control

Fig. 2 Known correlates of protection and viral control. Polyfunctional
HIV-specific antibody responses (able to recruit multiple innate immune
effector cell populations), higher HIV-specific IgG3 antibodies, unique
HIV-specific antibody glycan profiles, and elevated ADCC activity are
enriched in both spontaneous controllers and in animals or humans
protected from infection. Controllers also exhibit elevated levels of p24-
specific antibodies. Additionally, protected vaccinated humans and NHPs

term non-progressors (LTNP) [70, 71]. Intriguingly, a small sub-
set of HIV-infected individuals, referred to as elite controllers
(ECs), maintain stable CD4+ T cell counts and virtually unde-
tectable levels of viremia [72]. Elite controllers exhibit reduced
HIV-specific T cell activation and maintain polyfunctional T cell
responses [73].

Efforts to define the mechanism(s) that may account for viral
control identified an enrichment of genome wide-associated sin-
gle nucleotide polymorphisms (SNPs) within the major histo-
compatibility complex (MHC) [74] in controllers. These SNPs,
localized to specific class | MHC-B and MHC-C alleles, were
associated with the presentation of more conserved HIV-derived
peptides as well as improved interactions with NK cells, resulting
in more effective killing of HIV-infected cells [75]. However,
these alleles are present in only a fraction of ECs [17] and these
SNPs account for just 15% of the variation in viral set point [74].
This suggests other features of the host/pathogen interaction are
critical for antiviral control at a global level. Additional explana-
tions for suppression have argued that some controllers are in-
fected with attenuated viral strains, enabling these individuals to
control the virus more effectively [76]. However, most control-
lers are infected with replication-competent virus [77].

To understand the factors that contribute to viral control be-
yond genetics and viral infectivity, the field has sought to identify
additional immune responses that may be uniquely enriched in
ECs (Fig. 2). Analyses of the HIV-specific humoral immune
responses in this unique patient population have shown an

Protection

V1V2 nnAbs

harbor elevated V1V2-specific antibodies and antibodies able to drive
antibody-dependent cellular phagocytosis (ADCP). Finally, while not
enriched in naturally protected individuals, the administration of
broadly neutralizing antibodies (bNAbs) can confer protection against
infection. Thus, many shared, but some unique humoral profiles, are
associated with protection from infection and control of viremia
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enrichment of ADCC-inducing antibodies [18, 37, 61-65, 66¢,
67, 68]. Specifically, ECs and LTNPs appear to have enhanced
ADCC response and target both the viral Env and regulatory/
accessory viral proteins, such as Vpu, that are not observed in
progressors [66°]. Moreover, ADCC activity against the structur-
al Env V3 loop region as well as against Gag and Tat proteins is
disproportionately higher in controllers [78, 79]. Importantly,
although abundant, ADCC is not the only innate effector func-
tion induced at high levels in controllers. Studies have clearly
illustrated that unlike the general HIV-positive population, elite
controllers produce a highly polyfunctional humoral response
[64]. This drives the generation of HIV Env-specific antibodies
able to access a broader array of innate immune functions includ-
ing ADCC via NK cells, antibody-dependent cellular phagocy-
tosis (ADCP), antibody-dependent complement deposition
(ADCD), and antibody-dependent neutrophil phagocytosis
(ADNP). This enhanced polyfunctionality is associated with an
enrichment of more functional HIV-specific antibody subclass
profiles in controllers. This is marked by elevated levels of
IgG3 antibodies, known to have enhanced affinity for Fc-
receptors and complement to enable the more effective induction
of innate immune effector functions [80, 81].

Despite robust evidence supporting a role for ADCC in
natural antiviral control, functional antibodies have not yet
been shown to provide protection from infection when trans-
ferred into NHPs before viral challenge. For example, transfer
of polyclonal antibodies from ECs had no impact on HIV
acquisition in NHPs. However, titers of these transferred an-
tibodies were associated with a trend towards lower levels of
viremia in animal plasma [82]. It remains unclear if this lack of
protection was due to infusion of low titers of antibodies in-
capable of forming the types of immune complexes needed to
drive innate immune effector function. Although effector
functions may not be primary drivers of protection, they are
still known to have therapeutic value. Passive transfer of
monoclonal bNAbs into chronically infected NHPs and
humans has had profound therapeutic effects on suppressing
viremia [58, 83¢¢]. In NHPs, this has been linked to the mag-
nitude of antibody-mediated activation of NK cells and neu-
trophils [84], suggesting that Fc-functionality is key to antivi-
ral control and clearance. While passive transfer studies have
yet to causally link ADCC or other innate immune effector
functions with protection from infection, these non-
neutralizing antibody-mediating responses still appear to be
critical predictors of both viral set point and viral control fol-
lowing immunization.

Observations of unique functional responses in controllers
have prompted deeper investigation into the specific mecha-
nisms that controllers selectively evolve to access broader
innate immune activity. Beyond the role of different antibody
subclasses in driving enhanced antibody effector function, an-
tibody Fc-glycosylation is also a key modulator of Fc-receptor
and complement activation [85, 86]. Interestingly, early
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studies in HIV-infected patient populations noted elevated
levels of agalactosylated antibodies, associated with autoim-
mune disease [87], in HIV-infected patient populations [88].
Follow-up analyses pointed to an enrichment of inflammatory
agalactosylated antibodies among controllers [89] despite
lower immune activation [73, 89]. Moreover, controllers ap-
pear to skew glycosylation of HIV-specific antibodies to en-
hance antibody effector function [89]. Specifically, controllers
selectively generate Env-specific antibodies with less galac-
tose and higher levels of n-acetyl glucosamine residues,
thought to be key for promoting enhanced binding to
FcyR3a found on NK cells. These data provide evidence of
two mechanisms by which controllers selectively enhance Fc-
effector activity, via both (1) the selection of more functional
antibody subclasses and (2) the generation of antibodies with
Fc-glycans engendering enhanced affinity for specific Fc-
receptors.

While ADCC activity trends higher in controllers [18, 37,
61-68], these individuals do not necessarily elicit higher titers
of total or subclass-specific antibody responses [80]. Yet interest-
ingly, they consistently possess higher levels of p24-specific IgG
[80, 90, 91] (Fig. 2). However, it is unclear if these higher p24-
specific responses contribute directly to antiviral control, due to
the negligible level of p24 expressed on the surface of infected
cells or simply reflect the conservation of a more functional
immune response. Nevertheless, this increase in p24 antibodies
is characteristic of controllers worldwide [92].

Conversely, neutralizing antibodies are largely found in
equal or lower frequencies in controllers than in the overall
HIV-positive population [93]. Large cross-cohort analyses
have linked the evolution of neutralizing antibodies with
higher viral loads and lower CD4+ T cell counts [55, 93],
which supports their development in HIV progressors rather
than in controllers. Yet, some of the field’s most promising
broadly neutralizing antibodies have been cloned from con-
trollers [94]. How controllers can develop neutralizing anti-
bodies in the absence of high levels of antigen exposure and
viral evolution is perplexing. Recent data point to the evolu-
tion of bNADs in controllers who exhibit a unique inflamma-
tory signature marked by elevated levels of CXCL13, TNF,
RANTES, 1P10, and sCD40L [95]. Interestingly, this unique
inflammatory profile was linked to detectable viral RNA, sug-
gesting that the controllers who evolve neutralizing antibody
breadth experience constant antigenic exposure, potentially
required to drive the development of broadly neutralizing an-
tibodies. These data suggest that vaccine strategies aimed at
eliciting bNAbs will require persistent antigenic exposure to
drive ample B cell evolution and selection.

Overall, clues from natural infection point to a critical en-
richment of functional antibodies in patients who spontane-
ously control HIV. These data also point to unique approaches
to co-evolve nAb and non-nAb activities to leverage both ends
of the antibody in HIV prevention.
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Correlates of Protection From Infection

Correlates of protection from infection have emerged from
active and passive immunization studies in humans and non-
human primates (NHPs) [96]. Remarkably, the passive trans-
fer of neutralizing antibodies (nAbs) into NHPs has consis-
tently afforded protection even at low doses [57, 97-102]. In
contrast, passive transfer of functional non-neutralizing anti-
bodies has not demonstrated the same level of protection. For
example, in a study where pooled IgG from Simian immuno-
deficiency virus (SIV)-infected macaques was infused into
uninfected monkeys preceding HIV challenge, non-
neutralizing antibodies failed to provide sterilizing protection.
However, infected monkeys still showed slower progression
to AIDS as well as a decrease in plasma viremia, which was
linked to antibody-dependent effector functions [103].

Active immunization in both humans and NHPs repeatedly
fail to induce broadly neutralizing antibodies [104]. Still, pro-
tection from infection has been observed across multiple NHP
studies and in one human vaccine trial [15, 96, 105-112]. In
these cases, protection was linked to the induction of specific
Fc-effector profiles. Human correlates of immunity have
largely emerged from the RV 144 vaccine trial, which showed
a moderate level of protection in approximately 31% of vac-
cines [15]. Correlates of protective immunity included V1/V2-
specific IgG1 and IgG3 responses [113], low IgA responses
[6], and higher levels of ADCC activity [15] (Fig. 2). In addi-
tion to ADCC, V1/V2-specific complement activating serum
IgG was shown to correlate with reduced HIV infection in the
RV 144 vaccine trial [114]. Moreover, vaccination in RV144
led to the induction of polyfunctional antibody effector pro-
files [16] similar to those observed in spontaneous controllers
of HIV [64], which was not the case in trials that did not elicit
protective responses. This revealed common Fc-effector cor-
relates across natural and vaccine-induced protection.

While only one HIV vaccine has shown promise for pro-
tection in humans, a variety of immunization regimens have
prevented viral acquisition in NHPs [96, 105—112]. Protection
from infection ranging from 20 to 66% has been found to be
associated with antibody binding to HIV-infected cells,
ADCC, antibody-induced activation of MIP-1f3 in NK cells,
Env-binding antibodies, V2-specific antibodies,
polyfunctional antibodies, and ADCP. For example, using ad-
enovirus 26 (Ad26) and protein boosting, 50% and 66% pro-
tection was observed against STV and SHIV challenge, respec-
tively, in the absence of neutralizing antibody activity [105,
115]. Analysis of correlates of immunity identified antibody
titer and antibody Fc-effector function as primary mediators of
protection. Similarly, multiple antibody functions were linked
to protection following both poxviral vector (ALVAC) prime/
protein boosting [111] and administration of DNA/AdS [110,
116¢¢]. Specifically, in the latter DNA/AdS study, phagocyto-
sis emerged as a key correlate. This was mediated by distinct

innate immune effector cells and depended on the route of
immunization [116¢¢]. Specifically, intramuscular protection
was tightly linked to monocyte-mediated phagocytosis, while
mucosal vaccination was tied to neutrophil phagocytosis with
a specific role for IgA. In both vaccine arms, protection and
function involved antibody binding to FcyR2. The same Fc-
phagocytic/FcyR2 correlates predicted protection in the
ALVAC/protein vaccine study [110], and ADCP has been
associated with protection from infection following
Ad26/protein immunization as well [105]. These results illus-
trate the universality of these protective correlates across dif-
ferent vaccine platforms in NHPs. Therefore, accumulating
data indicate a critical role for phagocytosis, mediated by a
variety of cells, through FcyR2 signaling, in protection
against infection.

Along these lines, passive transfer of broadly neutralizing
antibodies (bNAbs) also supports the importance of Fc-
effector function in protection. Using a mouse model of HIV
infection, some, but not all, bNAbs required Fc-effector func-
tion to confer protection from infection [117]. Moreover, the
passive transfer of the bNAb PGT121 in NHPs resulted in
robust non-sterilizing protection from infection, linked to in-
nate immune activation [118<¢] even at distal sites days after
viral challenge. Notably, eliminating Fc-effector function
from bNAbs compromised protection from NHP infection
[119]. However, specific Fc-mutations meant to enhance
ADCC activity did not improve the protective activity of
broadly neutralizing antibodies [120]. These data highlight
that even broadly neutralizing antibodies may require Fec-
mediated effector activity, but functions beyond ADCC may
be required for protection.

Thus, like correlates of spontaneous control, insights
gleaned from active and passive immunization strategies col-
lectively demonstrate the need to harness both ends of the
antibody to fully capitalize on the protective nature of the
humoral immune response and prevent HIV infections at a
global level.

Opportunities for the Future

The vast knowledge acquired by the HIV field in the last
three decades provides exciting opportunities to guide the
design of protective vaccines and therapeutics. These in-
clude approaches to leverage both ends of the antibody to
enhance both the blockade and killing of the virus and
virally infected cells. Despite the successes of pre-
exposure prophylaxis (PrEP) and anti-retroviral therapy
(ART), a globally protective vaccine remains the simplest
and most effective approach to end the HIV epidemic.
Adherence to a daily regimen is necessary for the effec-
tiveness of both PrEP and ART, whereas the development
and deployment of a durable vaccine is likely to reach a
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larger fraction of the globe. However, there are still many
obstacles to overcome due to the complexity of HIV in-
fection, global diversity, and the subsequent highly heter-
ogenous immune response. Nevertheless, defining corre-
lates of spontaneous HIV control and protection from in-
fection has brought us many steps closer to achieving
better control of the disease across the globe and reaching
the goal of vaccine design that may leverage these natural
immune responses to gain control over the virus. While
empirical vaccine design approaches have failed in HIV
for the past four decades, emerging correlate-inspired vac-
cines and therapeutics are certain to revolutionize our
fight against HIV.
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