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Abstract
Proteases from flaviviruses have gained substantial interest as potential drug targets to combat infectious diseases caused by
dengue, West Nile, Zika and related viruses. Despite nearly two decades of drug discovery campaigns, promising lead com-
pounds for clinical trials have not yet been identified. The main challenges for successful lead compound development are
associated with limited drug-likeness of inhibitors and structural ambiguity of the protease target. This brief review focuses on the
available information on the structure of flavivirus proteases and their interactions with inhibitors and attempts to point the way
forward for successful identification of future lead compounds.
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Introduction

The genus flavivirus includes over 50 viruses and belongs to
the family of Flaviviridae (Barrows et al. 2018). Each year,
millions of people worldwide are infected by members of the
flavivirus genus (Boldescu et al. 2017). Some like yellow
fever, Japanese encephalitis or tick-borne encephalitis can be
prevented through the use of established vaccines. Others like
dengue, West Nile or Zika represent major health burdens
without available specific antiviral treatments or effective
and safe vaccines. Flaviviruses are usually vector-
transmitted (e.g. by the mosquitos Aedes aegypti and Aedes
albopictus), restricting their distribution to the continuously
expanding vector habitats. Additional transmission routes for
Zika virus involving sexual contact have recently been pro-
posed (Baud et al. 2017; Poland et al. 2018).

Estimates of the annual dengue virus infections are be-
tween 284 and 528 million, of which between 67 and 136
million cases manifest clinically (Bhatt et al. 2013). The effi-
cacy of the recently approved vaccine CYD-TDV
(Dengvaxia) differs amongst the four known dengue sero-
types and age groups of those receiving the vaccine. In addi-
tion, the vaccine performs differently in individuals with evi-
dence of prior dengue infection (seropositive) and those

without (seronegative), with an increased risk for
hospital isat ion in the lat ter group (WHO 2018).
Consequently, the WHO recommends the current vaccine on-
ly for seropositive patients.

West Nile virus affects animals (e.g. birds and horses)
and humans (Suthar et al. 2013). Approximately 80% of
human West Nile virus infections are asymptomatic, 20%
cause self-limiting symptoms (West Nile fever) and less
than 1% are characterised by neuroinvasive disease, with
10% of this subgroup resulting in fatality (Burki 2018).
Although candidates are in clinical trials, noWest Nile virus
vaccine for humans has yet been approved. During 2018,
Europe registered an alarming increase of West Nile cases
with more than 2000 reports of autochthonous infections
and 180 deaths, exceeding the total number of cases report-
ed during the previous 7 years (ECDC 2018).

The Zika virus has emerged very recently as a health-
threatening pathogen after epidemic outbreaks in Latin
America (Baud et al. 2017). Most infections are asymptom-
atic; however, neurological complications in patients and
severe fetal disorders (microcephaly) prompted the WHO
to declare Zika virus a Public Health Emergency of
International Concern in 2016 (Baud et al. 2017). Since that
time, several vaccine candidates have been developed, of
which four are currently in clinical trials (Poland et al.
2018). Potential cross-reactions between Zika and dengue
virus antibodies (antibody-dependent enhancements) may
lead to increased viremia and severity of the disease and
thus challenge vaccination campaigns where dengue and
Zika co-circulate (Poland et al. 2018).
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These examples describing the challenges of vaccine de-
velopment illustrate that anti-flaviviral drugs must be pursued
in addition to vaccination campaigns to present therapeutic
options for the treatment of symptomatic patients and individ-
uals where vaccination is not recommended (e.g. dengue se-
ronegative individuals). In what follows, the current state of
play in targeting the protease of flaviviruses is described.

Function of the NS2B-NS3 protease

All members of the flavivirus genus contain a single-
stranded RNA genome that is translated by the host cell
into a single polyprotein (Barrows et al. 2018). Embedded
into the membrane of the endoplasmatic reticulum, this
precursor protein is post-translationally processed by host
cell proteases and the viral protease NS2B-NS3 into three
structural and various non-structural (NS) proteins
(Ba r rows e t a l . 2018 ; Bo ldescu e t a l . 2017 ) .
Consequently, the NS2B-NS3 protease is essential for vi-
ral replication and thus presents itself as a promising drug
target (Nitsche 2018; Nitsche et al. 2014). The catalytical-
ly active protease complex consists of the actual protease
unit located at the N-terminal part of the non-structural

protein 3 (NS3) and requires approximately 40 residues
of a hydrophilic domain of the membrane-associated non-
structural protein 2B (NS2B) as a cofactor. NS2B-NS3 is
a serine protease with the highly conserved catalytic triad
(serine 135, histidine 51 and aspartate 75) (Nitsche et al.
2014). According to the nomenclature for protease sub-
sites suggested by Schechter and Berger (1967), the
NS2B-NS3 proteases show a common preference to
cleave peptidic backbones after two basic residues (argi-
nine or lysine) in P1 and P2. In contrast to other viral
protease drug targets that tolerate more hydrophobic sub-
strate residues in these key positions (e.g. HIV, HCV),
this dibasic recognition motif has manifested as a major
challenge to the drug discovery process against
flaviviruses.

Constructs for drug discovery

Protease constructs with full-length NS2B that rely on lipid
support (e.g. micelles) have been reported (Choksupmanee
et al. 2012; Huang et al. 2013; Ng et al. 2019), but the most
commonly used constructs for biochemical and structural
studies comprise only the hydrophilic core segment of

Fig. 1 Ligand-bound X-ray co-crystal structures of active flavivirus
NS2B-NS3 proteases. (a) Dengue protease serotype 3 with the covalently
bound aldehyde ligand 1 (3U1I) (Noble et al. 2012). (b) West Nile pro-
tease with the covalently bound boronate ligand 2 (5IDK) (Nitsche et al.
2017). (c) Zika protease with the covalently bound boronate ligand 2
(5LC0) (Lei et al. 2016). (d) Superimposition of active conformations

of NS2B-NS3 proteases from dengue (3U1I), West Nile (5IDK) and
Zika (5LC0) viruses. Co-crystallised ligands have been removed from
the structures. Residues of the catalytic triad are indicated. Residues
marked with an asterisk indicated NS2B. This figure has been generated
with Chimera (Pettersen et al. 2004)
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NS2B, excluding the hydrophobic membrane-associated do-
mains. These truncated constructs have been designed with
and without covalent linkage between NS2B and NS3
(Nitsche et al. 2014). The most frequently used truncated con-
struct includes a covalent Gly4-Ser-Gly4 linker between NS2B
and NS3, as initially introduced for dengue serotype 2 (Leung
et al. 2001), followed byWest Nile (Nall et al. 2004), the other
dengue serotypes (Li et al. 2005) and most recently Zika virus
protease (Lei et al. 2016). Unlinked constructs rely either on
an NS2B/NS3 autocleavage site (de la Cruz et al. 2014; Phoo
et al. 2016) or co-expression systems (Kim et al. 2013; Zhang
et al. 2016). There is an ongoing debate in the literature

whether the linked or unlinked protease constructs are
more suitable for drug discovery campaigns (Kang et al.
2017; Nitsche 2018; Nitsche et al. 2014). The linked con-
structs tend to be more stable, whereas the unlinked con-
structs are thought to resemble a state that is closer to the
native one (de la Cruz et al. 2014; Hill et al. 2018; Li
et al. 2017a). Recent studies with Zika virus protease sug-
gest that the covalent linker may prevent the formation of
the catalytically active complex to a certain degree (Li
et al. 2017a), whereas no significant differences for inhib-
itor binding could be observed between linked and un-
linked Zika virus protease constructs (Nitsche et al. 2019).

Fig. 2 X-ray crystal structures of
inactive (open) and active
(closed) conformations of flavivi-
rus NS2B-NS3 proteases. Co-
crystallised ligands have been re-
moved from the active (closed)
structures. (a) Inactive (open)
conformation of the dengue pro-
tease serotype 2 (2FOM) (Erbel
et al. 2006). (b) Active (closed)
conformation of the dengue pro-
tease serotype 3 (3U1I) (Noble
et al. 2012). (c) Inactive (open)
conformation of the West Nile
protease mutant H51A (2GGV)
(Aleshin et al. 2007). (d) Active
(closed) conformation of theWest
Nile protease (5IDK) (Nitsche
et al. 2017). (e) Inactive (open)
conformation of the Zika protease
(5GXJ) (Chen et al. 2016). (f)
Active (closed) conformation of
the Zika protease (5LC0) (Lei
et al. 2016). This figure has been
generated with Chimera
(Pettersen et al. 2004)
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Structure of the NS2B-NS3 protease

Figure 1 shows the NS2B-NS3 proteases from dengue, West
Nile and Zika viruses in their catalytically active form (Lei
et al. 2016; Nitsche et al. 2017; Noble et al. 2012). These
structures were produced by co-crystallising substrate-derived
ligands in the active site. In case of dengue, an active structure
could so far only be solved for serotype 3 (Noble et al. 2012).
These protease structures share a high degree of similarity
with several conserved structural features, as illustrated by
superimposition (Fig. 1d). This has raised hopes that once a
promising lead compound is discovered, it could be consid-
ered as a potential pan-flaviviral protease inhibitor to treat
dengue, West Nile, Zika and related flaviviral infectious dis-
eases. In its active form, the protease adopts a chymotrypsin-
like fold where the N-terminal β-strand of NS2B integrates
into the N-terminal domain of NS3 and the C-terminal β-hair-
pin of NS2B wraps around the active site of NS3. The latter
interaction forms the S2 pocket and is thus essential for sub-
strate recognition and catalytic activity. Only the protease
from Zika virus can engage in a salt bridge between the P2
side chain and the NS2B aspartate residue D83* (Fig. 1c),
which is not conserved in West Nile and all four dengue sero-
types. It has been suggested that this additional ionic interac-
tion between substrate (P2) and NS2B (S2) is partially respon-
sible for the observed hyperactivity of Zika virus protease (Lei
et al. 2016). A second substantial interaction involves the
highly conserved NS3 aspartate residue D129 and the basic
P1 substrate side chain, which form a salt bridge in all struc-
tures (Fig. 1a–c).

Open or closed?

Two major groups of X-ray crystal structures have been
solved for each viral protease (dengue, West Nile, Zika) that
differ substantially in the C-terminal NS2B domain (Fig. 2).
One group (crystallised in the absence of inhibitor) observes
the C-terminal part of NS2B, either dissociated from NS3, or
not defined by electron density (Fig. 2a, c, e). The second
group (usually crystallised in the presence of an inhibitor)
defines the C-terminal NS2B domain as a β-hairpin wrapped
around the active site (Fig. 2b, d, f). The former inactive state
is often referred to as open, whereas the latter active one is
known as closed. These crystallographic observations indicat-
ed substantial conformational changes of NS2B upon activa-
tion by substrate or inhibitor. Particularly, the early unliganded
open crystal structures from dengue (Erbel et al. 2006) and
West Nile (Aleshin et al. 2007) proteases imply this conclu-
sion. However, recent observations of a crystal structure of
Zika virus protease in the closed conformation were made
for the unlinked protease construct in the absence of a
ligand (Zhang et al. 2016). In contrast, unliganded

structures from linked constructs of dengue (Erbel et al.
2006), West Nile (Aleshin et al. 2007) and Zika (Chen
et al. 2016) proteases all revealed inactive open states,
suggesting that the covalent Gly4SerGly4 linker between
NS2B and NS3 prevents the formation of the closed con-
formation in the absence of substrate or inhibitor.

Various biomolecular NMR studies were conducted to an-
alyse the conformational ambiguity of flavivirus proteases in
solution, particularly with respect to the localisation of the C-
terminal part of NS2B. After initial challenges with heteroge-
neity in sample preparations, most reports concluded that
both, the dengue andWest Nile virus proteases, predominately
adopt the closed conformation in solution, regardless of the
construct (linked or unlinked) or the presence of an inhibitor
(de la Cruz et al. 2014, 2011; Kim et al. 2013; Su et al. 2009).
Observed conformational flexibilities may relate to exchange
phenomena between open and closed states, the extent of
which can differ between constructs (Hill et al. 2018). In the
case of Zika virus protease, NMR experiments indicated sam-
ple heterogeneity promoted by the Gly4SerGly4 linker and
ligand-binding events (Li et al. 2017a; Mahawaththa et al.
2017). Distances measured by double electron-electron reso-
nance in the linked construct of the Zika virus protease
matched the closed conformation in presence and absence of
a ligand (Mahawaththa et al. 2018). In case of the unlinked
Zika virus protease constructs, the closed conformation was
found to be dominant in solution with a tendency of additional

�Fig. 3 X-ray co-crystal structures of flavivirus NS2B-NS3 proteases in
complex with active-site inhibitors. (a) Dengue protease serotype 3 in
complex with compound 1 (3U1I) (Noble et al. 2012). The aldehyde in
1 forms a covalent hemiacetal with S135 (not shown). (b) West Nile
protease in complex with compound 2 (5IDK) (Nitsche et al. 2017).
The boronic acid in 2 forms a cyclic ester adduct with glycerol (as shown)
and a covalent boronate with S135 (not shown). (c) West Nile protease in
complex with compound 3 (2YOL) (Hammamy et al. 2013). (d) West
Nile protease in complex with compound 4 (3E90) (Robin et al. 2009).
The aldehyde in 4 forms a covalent hemiacetal with S135 (not shown). (e)
West Nile protease in complex with compound 1 (2FP7) (Erbel et al.
2006). The aldehyde in 1 forms a covalent hemiacetal with S135 (not
shown). (f) Zika protease in complex with compound 2 (5LC0) (Lei et al.
2016). The boronic acid in 2 forms a cyclic ester adduct with glycerol (as
shown) and a covalent boronate with S135 (not shown). (g) Zika protease
C143S mutant in complex with compound 5 (5YOF) (Li et al. 2018). The
aldehyde in 5 forms a covalent hemiacetal with S135 (not shown). A
similar structure of lower resolution has also been reported for compound
5 in complex with the Zika protease wildtype (5H6V) (Li et al. 2017b).
(h) Zika protease in complex with fragment 6 (5H4I) (Zhang et al. 2016).
(i) Zika protease in complex with a benzoyl fragment (5YOD) (Li et al.
2018). Transesterification between Zika protease and compound 7 results
in the formation of a S135 benzoate (covalent bond not shown). (j) Zika
protease C143S mutant in complex with proteolytically cleaved com-
pound 8 (5ZMQ) (Phoo et al. 2018). (k) Zika protease C143S mutant in
complex with proteolytically hydrolysed compound 9 (5ZMS) (Phoo
et al. 2018). (l) Zika protease C143S mutant in complex with compound
10 (5ZOB) (Phoo et al. 2018). This figure has been generated with
Chimera (Pettersen et al. 2004)
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stabilisation in the presence of a ligand (Li et al. 2018, 2017b;
Phoo et al. 2016; Zhang et al. 2016).

Most importantly, all studies showed that regardless of
the protease construct, the enzymes are folded correctly in
solution. Ambiguities are mainly attributed to partial disso-
ciations between NS2B and NS3 as well as inhibitor-
binding events. A certain degree of conformational flexibil-
ity of NS2B-NS3, particularly in the C-terminal region of
NS2B is not surprising, as the substrate must enter the active
site prior cleavage reaction. Substrate binding stabilises the
active conformation but is not an essential requirement to
assemble the active closed NS2B-NS3 complex. Therefore,
the closed state should be the preferred template for rational
drug discovery attempts. There is a general tendency that
the unlinked constructs resemble the closed and active state
more reliably than the linked variants.

Inhibitors

Several inhibitors of flaviviral proteases have been described
and comprehensively reviewed (Behnam et al. 2016;
Boldescu et al. 2017; Lim and Shi 2013; Lim et al. 2013;
Nitsche 2018; Nitsche et al. 2014; Poulsen et al. 2014;
Timiri et al. 2016). They can generally be categorised as either
substrate-derived peptides/peptidomimetics or small mole-
cules without substrate character (Nitsche 2018). The former
group is usually characterised by high affinity and limited
drug-likeness, whereas the latter group implies the opposite
properties: improved drug-likeness, but lower affinity. Only
few inhibitors have been reported that display dissociation
constants with flaviviral proteases in the desirable lower
nanomolar range, i.e. clearly below 100 nM (Behnam et al.
2015; Nitsche et al. 2017; Schüller et al. 2011; Shiryaev et al.
2006; Stoermer et al. 2008; Yin et al. 2006) and all of them are
peptidic-based substrate mimetics with the majority bearing
warheads that allow covalent modification of the catalytically
active serine residue 135.

Most campaigns focused on the discovery of competitive
inhibitors that bind to the active site. As a consequence, the
undesirable dibasic substrate recognition motif is reflected in
several compounds. Out of those inhibitors that have been
proven to bind to the active site by X-ray crystallography
(Fig. 3), only two are non-peptidic and do not comprise at
least two basic side chains. Only a few attempts were made
to discover allosteric inhibitors that do not interact with the
active site (Brecher et al. 2017; Nitsche et al. 2019; Roy et al.
2017; Shiryaev et al. 2017; Wu et al. 2015; Yildiz et al. 2013).
To date, a distinct binding mode has not been reported for any.
Once structural data will become available, more rational at-
tempts towards allosteric inhibitors can be pursued.

Co-crystal structures of NS2B-NS3
and inhibitors

Over the past 3 years, massive efforts in X-ray crystallog-
raphy have generated substantial structural information
about the activation of flavivirus proteases and their inter-
actions with inhibitors.

Many crystal structures of dengue virus NS2B-NS3 prote-
ase have been solved for serotypes 1 (3L6P, 3LKW)
(Chandramouli et al. 2010), 2 (2FOM, 4M9K, 4M9M,
4M9I, 4M9F, 4M9T) (Erbel et al. 2006; Yildiz et al. 2013),
3 (3U1I, 3U1J) (Noble et al. 2012) and for the full-length
protease-helicase complex of serotype 4 (2VBC, 2WHX,
2WZQ) (Luo et al. 2010, 2008). Recently, additional NS2B-
NS3 structures with full-length NS3 (protease and helicase) of
serotype 4 have been deposited in the protein data base
(5YVU, 5YVJ, 5YVW, 5YVY, 5YW1). Two structures were
solved in complex with the 6.5 kDa broad-spectrum protease
inhibitor aprotinin (also referred to as BPTI) for serotypes 3
(3U1J) (Noble et al. 2012) and 4 (5YW1). Despite the large
total number of available crystal structures, only one describes
a small molecule inhibitor (1) in complex with the dengue
serotype 3 protease (Fig. 3a) (Noble et al. 2012).
Tetrapeptide 1 resembles the non-prime site of the substrate
recognition sequence from P1 to P4 (Nle-Lys-Arg-Arg), which
was previously identified from a large screening campaign (Li
et al. 2005). An additional aldehyde function at the peptide C-
terminus allows covalent linkage to serine 135.

In stark contrast to dengue, the majority of crystal struc-
tures of the West Nile virus protease have been solved in
complex with inhibitors. One unliganded (2GGV) and one
structure in complex with aprotinin (2IJO) have been reported
(Aleshin et al. 2007), all others feature small molecules (Fig.
3b–e). Compound 2 represents a short peptide mimetic that
binds covalently to the catalytic serine 135 via a boronic acid
warhead (Fig. 3b), while its two basic side chains occupy the
S1 and S2 pockets (Nitsche et al. 2017). Compound 3 is the
only co-crystallised small molecule that does not covalently
modify the West Nile virus protease (Fig. 3c) (Hammamy
et al. 2013). Similar to the complex of dengue protease with
compound 1, the three basic side chains of inhibitor 3 occupy
S1-S3, which is a common feature in several structures of
flavivirus proteases in complex with peptide inhibitors (e.g.
Fig 3a, c, d, e, j, k, l). Compounds 4 and 1 are tri- and
tetrapeptide aldehydes, respectively, that bind covalently to
serine 135 (Fig. 3d, e) (Erbel et al. 2006; Robin et al. 2009).
The binding mode of compound 1 to West Nile protease (Fig.
3e) is similar to the interaction of 1 with dengue protease
serotype 3 (Fig. 3a).

Recently, several crystal structures of Zika virus protease
were reported, of which some lack ligands, like 5GXJ (Chen
et al. 2016), 5GPI (Zhang et al. 2016), 5T1V, 5TFN and
5TFO. Others revealed active-site complexes with terminal
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peptide chains from NS2B (5GJ4) (Phoo et al. 2016) or NS3
5GPI (Zhang et al. 2016). Additional structures have been
solved in complex with small molecule inhibitors bound to
the active site (Fig. 3f–l). The first crystal structure became
available in complex with compound 2 covalently linked to
S135 (Lei et al. 2016). The binding mode of 2 is similar to that
one observed in complex with West Nile virus protease (Fig.
1b, Fig. 3b), except the additional salt bridge between P2 and
D83* of NS2B (Fig. 1c, Fig. 3f). Compound 5 is a short
dipeptide aldehyde that binds covalently to S135 and occupies
S1 and S2 with its two basic side chains (Fig. 3g) (Li et al.
2018, 2017b) similarly to boronate 2. The low-affinity frag-
ment 6 represents the first very small molecule co-crystallised
with a flavivirus protease (Fig. 3h) (Zhang et al. 2016). It is
involved in stacking interactions with Y161 and hydrogen
bonding with Y150 in the S1 pocket without any contacts to
NS2B. Activated pyrazole ester 7 and analogues are known to
inhibit the proteases from dengue, West Nile and Zika viruses
by transesterification (Johnston et al. 2007; Koh-Stenta et al.
2015; Li et al. 2018; Sidique et al. 2009). In the final inhibition
state, the benzoate is covalently linked to S135, engaging in
π-π stacking with Y161 and hydrogen-bonding with H51 in
the S1 pocket (Fig. 3i) (Li et al. 2018). Finally, the peptidic
inhibitors 8–10 have been co-crystallised with Zika virus pro-
tease (Fig. 3j-l) (Phoo et al. 2018). Only compound 10 was
found be resistant to proteolysis. With two glycines in P1’ and
P2’, compound 8 acts as a substrate of Zika virus protease and
only the non-prime site residues remain bound to the protease,
indicating the possibility of product inhibition (Fig. 4).

Conclusion

Despite two decades of active research, the suitability of
flaviviral proteases to serve as drug targets is yet to be proven.
For a long time, the debate was dominated by subtle

differences and structural uncertainties in artificial model
systems that were mainly designed for screening campaigns
and only reflected the in vivo situation to a limited degree.
This has constrained efforts to identify promising lead com-
pounds and distracted the attention from the actual main
challenge: How drug-like and high-affinity compounds
can be generated, given the fact of such an unfortunate di-
basic substrate recognition motif. Options are available to
address this dilemma: First, active-site inhibitors that are
structurally unrelated to the substrate should be pursued
more intensively. Fragment-based techniques could be one
way of doing this and the recently solved first co-crystal
structure of a flavivirus protease with an active-site frag-
ment (Zhang et al. 2016) may be a promising step in the
right direction. Second, highly modified, metabolically sta-
ble and target-selective substrate mimetics might reach the
protease in vivo, if modern drug delivery concepts are ex-
plored. Third, yet underexplored allosteric inhibitors may
offer a convenient option to circumvent the difficulties as-
sociated with active-site ligands. The upcoming decade of
research will show whether one of these avenues will pro-
vide the first clinical candidate to combat diseases associat-
ed with dengue, West Nile and Zika virus infections.
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ligand is highlighted in black. Inhibitor moieties that have been cleaved or

hydrolysed by proteolytic digest are shown in grey. Compounds 1, 2, 4, 5
and 7 bind covalently to the catalytically active residue S135
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