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Abstract

Purpose of review: Glycoimmunology is an emerging field focused on understanding how 

immune responses are mediated by glycans (carbohydrates) and their interaction with glycan-

binding proteins called lectins. How glycans influence immunological functions is increasingly 

well understood. In a parallel way, in the HIV field, it is increasingly understood how the host 

immune system controls HIV persistence and immunopathogenesis. However, what has mostly 

been overlooked, despite its potential for therapeutic applications, is the role that the host 

glycosylation machinery plays in modulating the persistence and immunopathogenesis of HIV. 

Here, we will survey four areas in which the links between glycan-lectin interactions and 

immunology, and between immunology and HIV are well described. For each area, we will 

describe these links and then delineate the opportunities for the HIV field in investigating potential 

interactions between glycoimmunology and HIV persistence/immunopathogenesis.

Recent findings: Recent studies show that the human glycome (the repertoire of human glycan 

structures) plays critical roles in driving or modulating several cellular processes and 

immunological functions that are central to maintaining HIV infection.
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Summary: Understanding the links between glycoimmunology and HIV infection may create a 

new paradigm for discovering novel glycan-based therapies that can lead to eradication, functional 

cure, or improved tolerance of lifelong infection.
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I. Introduction

The main barrier to HIV eradication is the ability of HIV to establish latent infection in 

long-lived CD4+ T cells, which persist in the blood and tissues [1]. These latently-infected 

cells are the source of viral rebound after interruption of antiretroviral therapy (ART), and 

their continual reactivation in vivo probably contributes, among other drivers, to the immune 

activation, chronic inflammation, and organ damage that persist despite long-term 

suppressive therapy [2, 3]. These realities have prompted a renewed interest in developing 

new effective and accessible therapies that can lead to eradication, functional cure, or 

improved tolerance of lifelong infection.

Many studies have described the important role the immune system plays in regulating HIV 

infection during suppressive ART [4–7]. These studies suggest that a comprehensive 

understanding of the host immune determinants shaping the persistence and 

immunopathogenesis of HIV is a critical step in developing new strategies to cure HIV 

and/or prevent or delay the development of inflammation-associated co-morbidities, which 

are more prevalent in HIV+ individuals compared to the general population, despite long-

term suppressive ART [8–16].

After the initial success of the genome-wide association approach, it became evident that 

genetic information was only one of the layers of biologic complexity and that knowledge 

about several additional layers would be needed to understand life at the molecular level. A 

particularly important layer in this respect is glycomics. Glycobiology is an emerging field 

focused on defining the structures and functional roles of complex carbohydrate structures, 

called glycans, in biological systems. These glycan structures, composed of branched chains 

of monosaccharides, are added to a wide variety of biological molecules (such as proteins 

and lipids) through a biological process called glycosylation. Glycosylation alters not only 

protein/lipid structure but also their function. The specific structure of a glycan allows it to 

bind to a specific type of glycan-binding proteins called lectins, leading to activation of 

downstream signaling pathways. Glycans integrate genetic and environmental factors, 

contribute significantly to variability in protein structure, and function as a bridge between 

cells and their complex environments; thus, aberrations of glycan structures closely associate 

with complex diseases [17–19]. Evolutionary conservation is in the order of: genetic code 

‘Genome’ > RNA sequences ‘Transcriptome’ > primary protein sequence ‘Proteome’ > 

metabolic pathways ‘Metabolome’ > cellular lipid composition ‘Lipidome’ > glycan 

structures ‘Glycome’. The reverse order generates structural diversity and richness of 

biological information. In other words, the genome is the most evolutionarily conserved and 
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the least diverse, and the glycome is the least evolutionarily conserved and the most diverse, 

rich with biological and chemical information [20].

Recent advances in glycobiology show that the glycome (the repertoire of glycan structures 

of an organism) is not just a biomarker of biological functions but actually plays critical 

roles in modulating immune responses [21] and in cell-cell [22] and cell-pathogen 

interactions [23]. Since glycans affect protein structure and function, it is not surprising that 

they play an important role in regulating both physiological and pathophysiological 

processes. The recent consensus report of the National Research Council concluded that 

“glycans are directly involved in the pathophysiology of every major disease” … “additional 
knowledge from glycoscience will be needed to realize the goals of personalized medicine 
and to take advantage of the substantial investments in human genome and proteome 
research and its impact on human health” [24].

At the intersection of immunology and glycobiology is “glycoimmunology”, an emerging 

field focused on understanding how immune responses are mediated by glycans and glycan-

lectin interactions. How glycans influence immunological functions is increasingly well 

understood. In a parallel way, in the HIV field, it is increasingly understood how the host 

immune system controls HIV infectivity, persistence, and immunopathogenesis. However, 

how the host glycosylation machinery may modulate the persistence and 

immunopathogenesis of HIV has been mostly overlooked. An association between glycomic 

alterations and HIV infection was suggested over two decades ago [25–27], but the precise 

role of the host glycome in HIV infection was never characterized due to lack of 

glycobiological technologies that can analyze clinical samples at a large scale. Now a wide 

range of advanced glycomic technologies are emerging, and we are becoming able to tackle 

the complexity of the host glycome. Using these new tools to understand the role of 

glycoimmunology in the maintenance of HIV latency, and the development of the aging- and 

inflammation-associated co-morbidities, may allow us to develop novel therapies that can 

lead to eradication, functional cure, or improved tolerance of lifelong infection.

Although the glycosylation of the HIV envelope (Env) protein and the potential for 

exploiting this glycan shield to elicit antibodies with broad neutralizing activity have been a 

key area of interest in the HIV vaccine field, here we will not discuss this area as excellent 

reviews have already been published [28, 29]. We rather will focus on the potential role of 

the host glycosylation machinery, including the binding of virus glycans to host lectins, in 

regulating HIV persistence and immunopathogenesis, as this area remains completely 

understudied, despite its potential for therapeutic applications. We will survey four areas in 

which the links between glycan-lectin interactions and immunology, and between 

immunology and HIV are well described. For each area, we will describe these links and 

then delineate the opportunities for the HIV field in investigating potential links between 

glycoimmunology and HIV persistence/immunopathogenesis.
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II. The potential role of the circulating human glycome in modulating 

immunological responses during HIV infection

Glycomic analyses of circulating biofluids such as serum/plasma, cerebrospinal fluid (CSF), 

and urine have provided many biomarkers of human diseases and biological states, such as 

cancer progression [30–38]. These studies have suggested that the circulating glycome plays 

an important role in regulating the immunological responses to disease. Within the human 

circulating glycome, glycans on circulating immunoglobulins (Igs) are known to play an 

important role in regulating several immunological functions [39]. Igs are glycoproteins 

produced by plasma cells that contain two domains separated by a hinge region. The Fab 

(Fragment, antigen binding) domain determines specificity towards antigens and the Fc 

(Fragment, crystallizable) domain is involved in binding to Fc receptors on the surface of 

immune cells. The most abundant Ig in humans is immunoglobulin G (IgG), with many non-

neutralizing effector functions, such as antibody-dependent cellular phagocytosis (ADCP), 

complement-dependent cytotoxicity (CDC), antibody-dependent cell mediated cytotoxicity 

(ADCC), and several pro- and anti-inflammatory activities [40–42]. The ability of IgG to 

function in these capacities is conferred and modulated by its glycosylation at an 

evolutionarily conserved N-glycosylation site at Asn-297 of the Fc domain and by variable 

glycosylation sites resulting from somatic hypermutation [43] in the Fab domain (15–20 % 

of IgG molecules) [44]. Glycans of the Fc domain are positioned in a hydrophobic pocket 

and quite rigid; these enable binding to the Fcγ receptors, likely by keeping the Fc domain 

in an open conformation [45]. On the other hand, glycans on the Fab domain are more 

flexible, contain more sialylated glycans and more glycans with a bisecting N-

Acetylglucosamine (GlcNAc) [44] and can modulate antigen binding [45]. The next two 

sections will discuss the potential role of the IgG glycome in regulating both inflammatory 

responses and plasma-mediated innate immune effector activities during HIV infection. Note 

that although the glycosylation of other circulating glycoproteins in biofluids likely also 

plays an important role in regulating immune functions, these influences are much less well 

understood and will not be reviewed here.

a) Chronic inflammation has been associated with aberrant IgG glycosylation patterns 
and is prevalent in HIV+ individuals, despite ART

Even after long-term suppressive ART, HIV+ individuals suffer from a high incidence of 

diseases that are commonly associated with aging and that are caused, at least in part, by low 

grade, systemic, chronic inflammation, observed typically in elderly individuals, and termed 

inflammaging [46–49]. Examples include cardiovascular disease, cancers, neurocognitive 

disorders, and osteoporosis. It is hypothesized that inflammaging occurs in HIV+ individuals 

at younger ages than in HIV- counterparts [50]. Although considerable gaps remain in our 

understanding of the pathophysiological mechanisms driving the development of aging-

associated co-morbidities in HIV+ individuals, the chronic inflammatory state caused by 

HIV infection is likely a key. Indeed, in HIV+ individuals, systemic inflammation, as 

measured by serum markers, can predict the incidence of mortality, cardiovascular disease, 

lymphoma, type 2 diabetes, cognitive dysfunction, and frailty [51–56]. Chronic 

inflammation likely involves multifactorial mechanisms, not all of which are well 

characterized. Sources of chronic inflammation in HIV+ individuals include on-going HIV 
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production, cytomegalovirus infection, loss of regulatory T cells, and microbial translocation 

[57–64]. Comprehensively understanding the causes of HIV-associated chronic 

inflammation can lead to the development of tools to prevent it, and thereby prevent or delay 

the development of aging-associated co-morbidities in HIV+ individuals.

Since immunological functions are shaped by the host glycome, it is not surprising that 

inflammation is associated with aberrant glycosylation. A number of studies have linked 

altered IgG glycosylation, in particular, lowered levels of sialic acid, to systemic 

inflammatory responses [65–67]. A reduction in IgG sialylation, termed hypo-sialylation, 

increases the pro-inflammatory function of IgGs [65–68]. The exact mechanism of this 

action is not clear. One suggestion is that sialylation switches the antibody’s binding from 

classical to non-classical Fc receptors [69]; however other studies suggest that this switching 

is minimal [70, 71]. Another suggestion is that binding of sialic acid-containing glycans to 

the sialic acid binding immunoglobulin-like lectins (siglecs) on the surface of monocytes/

macrophages initiates an inhibitory signal that leads to an anti-inflammatory response, 

through inhibition of TLR4 signal transduction. Such TLR4 inhibition reduces the 

production of pro-inflammatory cytokines such as TNFα and induces the production of anti-

inflammatory cytokines [72–74]. This anti-inflammatory effect of sialic acid is supported by 

studies showing that the anti-inflammatory effect of intravenous immunoglobulin (IVIg), 

used to treat rheumatoid arthritis and other inflammatory conditions, is driven by sialic acid-

containing N-linked glycans [75, 76, 66].

IgG glycosylation also has been closely linked to both chronological and biological age, in 

several large glycomic studies in the general population. Intriguingly, certain glycomic traits 

were found to predict chronological and biological age better than typical markers such as 

telomere length [77, 78]. Altered glycosylation also has been shown to associate with age-

related illness: large patient cohorts showed that IgG glycosylation is significantly altered in 

patients with inflammatory bowel disease, systemic lupus erythematosus, cardiovascular 

disease (CVD), cancer, and diabetes [79–83, 17, 84, 85]. Whether IgG glycosylation is a 

driver or simply a biomarker of aging and aging-associated co-morbidities is still a matter of 

debate. However, evidence that altered glycosylation actually drives disease comes from 

recent studies indicating that IgG glycosylation changes years before the onset of disease 

[86, 87].

HIV infection causes certain IgG glycomic alterations including hypo-sialylation and 

agalactosylation (lack of galactose) [88]. Lower levels of galactosylation in HIV+ 

individuals compared to healthy controls are most pronounced in the IgG1 subclass [89]. 

Interestingly, agalactosylation has also been associated with pro-inflammatory functions of 

IgGs [90]. The pro-inflammatory action of IgG agalactosylation is thought to be conferred 

both indirectly, because galactose is a prerequisite for terminal sialylation, and directly, by 

activating the complement system through either the alternative pathway [91] or the 

mannose-binding lectin-dependent pathway [92]. Intriguingly, HIV-associated 

agalactosylation is reversible by ART, whereas hypo-sialylation is not [88]. These glycomic 

alterations may reflect a chronic inflammatory state as they are also observed in other 

inflammatory conditions [89] such as inflammatory bowel disease [79], rheumatoid arthritis 

[93], systemic lupus erythematosus [94], as well as with aging [77, 39].
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Although it is becoming increasingly established that there is a link between the circulating 

glycome and the development of several pro- and anti-inflammatory responses (Fig. 1), 

whether the HIV-induced changes in the circulating glycome are linked to inflammaging and 

HIV-associated co-morbidities (during both viremic and ART-suppressed HIV infection) is 

less clear. Recently, plasma glycomic biomarkers were identified (using lectins) to predict 

HIV-associated cardiovascular events [95]. However, more work is needed in this direction. 

Understanding the link between circulating glycomic alterations and inflammation, during 

HIV infection, may provide clues about the mechanistic underpinnings of age- and 

inflammation-associated diseases in HIV+ individuals. This line of research might allow for 

discovering novel glycomic-based biomarkers of inflammaging during HIV infection or 

novel glycan-based interventions to prevent inflammation- and aging-associated diseases in 

HIV+ individuals.

b) Antibody-mediated effector functions are significantly affected by changes in IgG 
glycosylation and are important for preventing and controlling HIV infection

The importance of the non-neutralizing Fc-mediated effector functions of antibodies 

(including ADCC) in preventing and controlling HIV infection has been highlighted by 

several studies [96–103]. In addition, the recently discovered broadly neutralizing antibodies 

(bNAbs) are being investigated within HIV curative strategies, especially in combination 

with latency reversal agents that may provoke antigen presentation [104, 103]. ADCC is one 

of the potential mechanisms by which bNAbs may target the latent HIV reservoirs [104, 

103]. However, the molecular determinants of ADCC and other Fc-mediated effector 

functions (such as ADCP and CDC), especially during ART-suppressed HIV infection, are 

not fully characterized.

Effector and antigen-binding functions of IgG are significantly affected by changes in 

glycosylation. The absence of core fucose results in a stronger binding to Fcγ receptor IIIA 

and leads to enhanced ADCC activity, while the presence of core fucose reduces ADCC 

[105]. Although core fucose has the greatest impact on ADCC activity, terminal galactose 

also has been shown to increase ADCC [106], as well as CDC [107] and ADCP [108] (Fig. 

2). Despite these results, the role of galactosylation in ADCC activity is somewhat 

controversial, likely because the effects of terminal galactosylation are not singular [109, 

106]. For example, recent research shows that the effect on ADCC activity differs between 

galactose bound to antenna of the α1–3-mannose of IgG Fc-glycan (inversely correlated 

with ADCC activity) and galactose bound to antenna of the α1–6-mannose (directly 

correlated with ADCC activity) [108].

The HIV field has started to investigate whether IgG glycosylation is important for HIV 

infection. Changes in global and antigen-specific antibody glycosylation have been 

associated with a differential ability of anti-HIV antibodies to control HIV infection [110]. 

Lower abundance of Fc glycans with core fucose (afucosylation) has been observed in 

antigen-specific anti-HIV antibodies, suggesting that there is active tuning of glycosylation 

by B-cells to increase antiviral control during HIV infection [110]. This afucosylation, in 

addition to agalactosylation, were also linked to enhanced natural killer (NK) cell activity in 

spontaneous controllers of HIV [110]. During suppressive ART, certain plasma and antibody 
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glycomic traits, in particular, levels of non-fucosylated galactosylated glycans, are 

negatively associated with levels nucleic acid-based measures of HIV reservoir (CD4+ T 

cell-associated HIV DNA and RNA) [88]. These findings, during suppressive ART, are 

intriguing as these particular glycomic features imply higher antibody-mediated effector 

functions, as described above. However, it is not clear if the documented roles of non-

fucosylated galactosylated glycans in promoting ADCC and ADCP activities translate into 

an impact on viral control during ART, because ADCC and ADCP require antigen 

presentation (viral production) on the cell surface, which is debatable during ART [111, 

112]. Continuing this work to understand the role of antibody glycosylation in regulating 

HIV persistence may reveal new mechanistic underpinnings of HIV persistence, which can 

serve as a foundation of novel, glycomic-based HIV curative strategies. In addition, this 

understanding may lay the groundwork to engineer bNAbs and improve their ADCC/ADCP 

activities for HIV curative purposes.

III. Complex interactions between HIV glycans and host lectins modulate 

viral attachment, entry, and spreading

The glycosylation of HIV virions has been well described [113]. HIV gp120 is heavily N-

glycosylated, with a majority of high-mannose N-glycan structures and a lower proportion 

of complex N-glycans carrying lactosamine residues and terminal sialic acid. HIV particles 

themselves contain cell-derived glycolipids, including the sialic acid-containing GM3 

ganglioside [114].

These various glycan structures on HIV gp120 and HIV particles interact with a wide range 

of host lectins during HIV infection, promoting viral spreading or immunological responses. 

The dendritic cell- specific intercellular adhesion molecule-3-grabbing non-integrin (DC-

SIGN), is a member of the C-type lectin family and an HIV receptor [115]. DC-SIGN 

recognition of HIV high mannose glycans mediates HIV capture by dendritic cells (DC), 

which can subsequently lead to CD4+ T cell trans-infection. B cells also express DC-SIGN, 

and a similar role of HIV capture and presentation to CD4+ T cells has been described 

[116]. Langerin is another C-type lectin, which is expressed on Langerans cells (LCs) and 

binds to high-mannose HIV glycans [117]. In contrast, to capture by DC-SIGN, HIV capture 

by Langerin was associated with viral clearance, as LCs are mostly resistant to HIV 

infection and rapidly degrade the virus [118]. However, the role of Langerin in HIV 

clearance or spreading remains controversial [119, 120]. A third C-type lectin that can bind 

gp120 HIV high-mannose structures is the mannose-binding lectin (MBL) [121]. This 

soluble lectin has been shown to compete in vitro with DC-SIGN for HIV binding, thereby 

inhibiting DC-mediated CD4+ trans-infection [122]. However, in vivo, the association 

between HIV progression and MBL level/genotype remains elusive [123–125]. Recently, the 

C-type lectin L-selectin has also been described as an HIV adhesion receptor that facilitates 

infection of CD4+ T cells [126]. Three additional C-type lectins can bind to HIV gp120 high 

mannose structures: the DC-immunoreceptor (DCIR) [127], the DC-SIGN-related protein 

(DC-SIGNR) [128], and the surfactant protein D (SFTPD) [129]. DCIR has been shown to 

play a role similar to DC-SIGN. In addition, DCIR is expressed on the surface of CD4+ T 

cells of HIV infected patients, enhancing HIV attachment, entry, and transfer [130]. The 
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DC-SIGN homolog DC-SIGNR is expressed mostly on endothelial cells, including in lymph 

nodes, and can promote viral trans-infection [128]. SFPTD is a soluble protein present in 

mucosal secretions [131]. The role of HIV-SFPTD binding remains unclear [129, 131].

A second layer of complexity in the interaction between HIV glycans and host lectins is 

conferred by sialic acid – siglec binding. Sialic acid present on gp120 complex N-glycans or 

HIV gangliosides is recognized by different members of the family of sialic acid-binding 

immunoglobulin-type lectins called siglecs. On macrophages and dendritic cells, it is 

siglec-1 that binds to sialic acid on HIV and mediates particle-capture and trans-infection of 

CD4+ T-cells [132, 133]. Interestingly, the macrophage siglec-1 is described to recognize 

HIV ganglioside, mostly GM3, whereas the DC siglec-1 is thought to interact with gp120. 

Despite these interactions, a loss-of-function mutation in siglec-1 in vivo did not 

significantly impact HIV prevalence and progression [134]. On monocyte/macrophage and 

NK cells it is siglec-7 that interacts with HIV to facilitate CD4+ T-cell infection [135]. 

Finally, soluble galectin-1 has been described to directly bind to HIV particles and increase 

HIV infectivity, apparently by interacting with CD4 glycans and gp120 lactosamine 

containing complex N-glycans [136].

It is unclear to what degree these complex interactions between HIV glycans and host lectins 

influence viral attachment, entry, and spreading in vivo, and whether they play any role 

during suppressive therapy, especially in tissues, where ART penetration might be 

suboptimal and on-going HIV replication is debatable [111, 112]. Understanding the forces 

that lead to HIV acquisition, pathogenesis, and persistence, especially in tissues, will be 

needed to develop effective therapeutic strategies to clear the infection. These glycomic 

interactions could be a key for this understanding and may also play a role in improving 

antigen presentation, which can be critical for developing effective vaccination strategies.

IV. Cell-surface glycan-lectin interactions mediate signals that define 

cellular processes and immunological functions; many of which are central 

to HIV infection

During HIV infection, the host immune system experiences several dysfunctions that are not 

fully recovered by ART. Several of these dysfunctions can be linked to glycan-lectin 

interactions. The specific structure of a glycan allows it to bind to specific lectins, leading to 

activation of downstream signaling pathways. These pathways are critical for a variety of 

cellular processes and, importantly here, immunological functions. For example, galectins 

(lectins that bind β-galactoside), promotes immune evasion by inducing T-cell exhaustion 

and apoptosis, expanding regulatory T cells, and inhibiting NK cells [137–141]. Siglecs 

(lectins that bind sialic acid) plays an essential role in inflammation, cell death, and immune 

suppression [142, 75, 143, 144, 66, 145–147, 138]. Selectins (lectins that bind fucosylated 

and sialylated glycans) regulate leukocyte recruitment and migration to sites of 

inflammation [148–150]. Fig. 3 summarizes some of the glycan-lectin interactions that 

regulate important cellular and immunological functions and that can be critical for HIV 

persistence and immunopathogenesis. After first summarizing the roles of various immune 
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cell types in HIV infection, we will describe some of the glycan-lectin interactions that 

modulate function in these different cell populations.

T cells.

T cell activation, CD8+ T cell dysfunction, T cell proliferation, and bystander CD4+ cell 

death are all critical components of HIV infection, persistence, and disease progression 

[151–157]. Glycan lectin interactions are known to regulate several of these functions. One 

class of glycan binding proteins that have been described to play critical roles in T cell 

function activation and apoptosis are the galectins, a family of β-galactoside-binding soluble 

lectins. Galectins-1 −3 and −9 induce T cell apoptosis, and increased expression a classical 

galectin receptor, lactosamine chains, has been associated with HIV infection [25]. This 

upregulation of galectin ligands has been proposed as a possible mechanism for the 

bystander T cell death during HIV infection. A rapid secretion of galectin-9 has been 

described after HIV infection, and the increased serum concentration of galectin-9 does not 

return to normal after ART suppression [158]. Galectin-9 has several effects on T cells in 

addition to inducing apoptosis; it activates cells through T cell Receptor (TCR) signaling 

[159], reactivates latent-HIV [6], renders CD4+ T cells less susceptible to HIV infection via 

induction of host restriction factors [160], and increases the cell-surface concentration of 

protein disulfide isomerase (PDI) that alters redox state and increases HIV entry [161]. 

Galectin-9 also has the ability to increase the function of regulatory T cells (T-regs) through 

interaction with CD44 [162]. Conversely, galectin-3 reduces T-cell activation through direct 

interaction with the TCR and alters TCR functional state through interaction with LAG3 and 

other immune negative checkpoints [163]. Intriguingly, the glycosylation of T cell immune 

negative checkpoints (including PD-1) significantly impacts their functions and response to 

cancer immunotherapy [164–166]. How glycan-lectin interactions impact these important T 

cell functions during HIV infection is yet not clear. Clarifying the role these interactions 

play during HIV infection can provide insights that may lead to the development of novel 

therapies.

NK cells.

NK cells are important innate effector immune cells during HIV infection [167, 168] whose 

functions can be influenced by glycan-lectin interactions. Altered NK function has been 

described for two families of lectins, the siglecs and the galectins. A decreased level of the 

lectin siglec-7 has been described to be a marker for a dysfunctional NK subset (CD56dim) 

in HIV viremic individuals [169]. Siglec-9, which is also expressed on the NK cell surface 

and known to play an important role in anti-tumor NK activity [170, 171] is yet to be studied 

in the context of HIV infection. Galectins interfere with NK cell-mediated antitumor 

immunity by modulating NK cell recruitment, lytic activity, and cytokine production. 

Galectin-9 impairs NK cytotoxicity and cytokine production through a Tim-3 independent 

mechanism [172]. Galectin-3 also antagonizes NK cell-mediated antitumor immunity by 

diminishing the affinity of MHC I-related chain A (MICA) for the NKG2D receptor [173] or 

by acting as an inhibitory ligand of the NKp30 receptor [174]. These glycan-lectin 

interactions represent potential novel targets to enhance NK functionality during HIV 

infection to either cure HIV or prevent immune dysfunction and the subsequent development 
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of immune dysfunction associated diseases such as AIDS-defining and AIDS-non-defining 

cancers.

B cells.

B-cells are crucial for the humoral response during HIV infection. Subsets of B-cells have 

been described to be altered in HIV chronic infection, including exhausted tissue-like 

memory B-cells [175]. This exhausted phenotype has been associated with an increased 

expression of B-cell-inhibitory glycan receptors, including siglec-2 and siglec-6 [176, 175]. 

Consistently, knock-down siglec-6 in tissue-like memory B-cells restores normal function 

[176]. The ligands of siglec-6 in this context are not known, but the ligand is probably a 

sialylated glycan. In addition to siglecs, galectins can play an important role in B cell 

development and function. Galectin-1 is a pre-B cell receptor ligand that induces receptor 

clustering, leading to efficient B cell differentiation [177–179]. Recently, it was shown that 

galectin-9 suppresses B cell receptor signaling [180, 181]. Understating the impact of these 

interactions on B cell development and function, during HIV infection, could be crucial for 

the effective development of therapies and vaccines.

Myeloid-derived suppressive cells.

Regulatory myeloid cells, including myeloid-derived suppressive cells (MDSC), expand 

during chronic infections and have several immunosuppressive activities [182]. Increased 

levels of MDSC have been associated with HIV disease progression [183]. This MDSC 

expansion during HIV infection has been shown to promote the differentiation of regulatory 

T cells and to impair T cell function [183]. One driver of CD11b+ly6G+ MDSC expansion 

is the galectin-9/Tim3 interaction [184]. A second glycomic change that may augment 

immune suppression occurs as granulocytic MDSCs induce γδ-T cells to produce 

galectin-1, thus transforming them into immunosuppressive cells that abrogate protective 

antitumor immunity. These important roles of galectins in regulating immune responses 

could have a direct impact on immune functionality during HIV infection; however, they are 

yet to be studied.

V. The potential role of the gut glycome in regulating the homeostatic 

relationship between the host and its gut microbiota, during HIV infection

The gastrointestinal (GI) tract plays key roles in HIV pathogenesis and persistence during 

suppressive ART [185]. HIV infection is associated with changes in gut structure [186] and 

in a breakdown of the epithelial barrier [187, 188], which may increase permeability to gut 

microbial products [189]. This microbial translocation is thought to be a major cause of local 

and systemic immune activation and inflammation, which may further increase HIV 

replication (resulting in a positive feedback cycle [189–194]) and contribute to the 

development of non-AIDS co-morbidities [195, 196, 51, 197, 52]. In addition, the loss of 

cellular immune subpopulations such as Th17 and Th22 reduces mucosal immunity [198, 

199]. These cells are crucial in responding to bacterial antigens and play an important role in 

maintaining gut epithelium integrity. Unfortunately, even with ART, the damage to the 

epithelial barrier caused by HIV infection is never fully repaired, allowing microbial 

translocation and inflammation to continue [200–202].
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Gut cells are heavily glycosylated, and the intestinal epithelium is covered by a layer of 

mucus, which differs along the GI tract in composition, organization, and thickness. In 

addition, glycans expressed on gut epithelial cells have physiological, immunological and 

functional characteristics as they are in contact with multiple types of environmental 

antigens. Interestingly, the glycosylation on these cells can adapt in response to 

environmental stimuli including microbial stimulation [203–205]. The degree of 

glycosylation in the gut directly impacts the ability to maintain functional and healthy 

intestines. Furthermore, the availability of host and diet-provided carbohydrates in the GI 

tract shapes the nature and function of the gut microbiome [206, 207]. Aberrant 

glycosylation patterns in the gut are strongly associated with chronic inflammation. For 

example, a unique, inflammation-associated glycome has been described on memory CD4+ 

T cells in the inflamed colon [208, 209]. In addition, impaired expression of intestinal O-

glycans has been observed in patients with ulcerative colitis, and deletion of intestinal core 1 

O-glycans caused spontaneous colitis in mice [210].

The role of the gut glycome in regulating the homeostatic relationship between the host and 

its gut microbiota is complex and involves multiple glycan structures. Here we will give one 

example by illustrating the role of gut fucosylation in the host-microbe interplay [211, 212]. 

Gut α1,2-fucosylation is induced by the presence of commensal and some pathogenic 

bacteria and acts as a food source for beneficial gut symbionts [213]. Fucosylated sugar 

chains are synthesized by fucosyltransferases (FUT) [214, 215]. Bacterial components, such 

as lipopolysaccharide (LPS), stimulate gut DCs via the TLR–Myd88 pathway [216]. IL-23 

produced by gut DCs induces IL-22 production by Type 3 innate lymphoid cells (ILC3s) 

[203, 217]. IL-22 produced by ILC3s provides activation signals to ECs via the IL-22R–

STAT3 pathway, leading to the subsequent induction of FUT2 and α1,2-fucosylation [203]. 

Fucose is then liberated by microbial fucosidases and becomes available for consumption by 

the downstream microbiota. Recent reports showed that fucose could enhance the beneficial 

activity of symbionts and improve colonization resistance against pathogens and 

pathobionts. In the absence of gut fucosylation, beneficial symbionts are weakened and 

decreased in abundance, and pathogenic bacteria increase, which leads to microbial 

translocation, inflammation, and breakdown of the epithelial barrier [211, 212] (Fig. 4). 

Some pathogenic microorganism can hijack epithelial fucosylation to colonize the host 

gastric and intestinal epithelial cells; these include Helicobacter pylori, norovirus, and 

rotavirus [211, 212]. Interestingly, ~20% of humans harbor homozygous loss-of-function 

mutations for FUT2 [218, 219]. FUT2 mutant humans are more susceptible to several 

inflammation-related diseases such as Crohn’s disease, Type I diabetes, and psoriasis [220–

223, 219, 224, 225]. They also are more susceptible to several infections, including Candida 
albicans, Streptococcus pneumoniae, and urinary tract infections [226–229]. On the other 

hand, these individuals are more resistant to Helicobacter pylori, norovirus, rotavirus 

infections [230–235].

Fucosylated glycans are only one group out of many glycan structures composing the gut 

glycome. These collective glycan structures are used as communication tools to shape the 

relationship between the gut and its microbiota. A change in the gut glycome, possibly 

induced by HIV infection and associated inflammation, may alter the distribution of 

microbial species. Therefore, it is possible that alterations in glycan metabolism may 
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contribute to HIV-mediated intestinal damage, microbial translocation, and chronic 

inflammation. Given the importance of microbial translocation in shaping HIV disease 

progression, even after suppressive ART, understanding the functions of the large spectrum 

of glycan structures in the gut could be essential to understanding the forces that shape the 

microbiota during HIV infection and how to design strategies to manipulate these forces.

VI. Conclusions

The human glycome might hold the key to better understand immunological functions that 

are central to HIV persistence and immunopathogenesis. More studies are needed at the 

intersection between glycobiology, immunology, and HIV research, to take advantage of the 

recent advances in the emerging field of glycoimmunology. Studies to comprehensively 

investigate the links between host glycomic alterations and inflammation, during HIV 

infection, may provide novel glycomic-based diagnostic or prognostic biomarkers of HIV-

associated inflammaging. These studies may also allow for the development of novel 

glycan-based interventions to prevent/delay the development of inflammation- and aging-

associated diseases during ART-suppressed HIV infection. For example, the information to 

be obtained from these studies could be used to develop novel strategies to manipulate the 

forces that shape the gut microbiota during HIV infection and reduce the degree of microbial 

translocation and associated inflammation. Additional studies will be also needed to 

investigate the extent to which cell-surface glycans, and their interactions with host lectins, 

interfere with the function of the immune system, during ART-suppressed HIV infection. 

These studies could lead to the design of novel immunotherapies to either cure HIV or 

prevent HIV-associated immune dysfunction. For example, targeting siglec interactions, on 

NK cells, and galectin interactions, on T cells, may induce the function of these immune 

cells, during HIV infection.

Importantly, recent advances in the cancer field focusing on glycobiology demonstrated that 

the aberrant glycosylation pattern of cancer cells alters their interaction with the immune 

system and allows them to evade immunosurveillance [236–238]. Such advances have 

promoted an increasing interest in developing tools that can target the tumor “glyco-code” 

[238]. Recently, a number of glycan-based strategies have been tested as novel cancer 

immunotherapy agents, e.g., anti-glycan vaccines, glycan lectin interaction blockers, glycan-

specific monoclonal antibodies, glycan-coated nanoparticles, and metabolic inhibitors for 

certain glycans [239–249, 171]. These, and other tools, could be used in the HIV field to lay 

the groundwork for discovering novel glycan-based interactions that can be targeted for 

novel strategies to eradicate, functionally cure, or improve tolerance of lifelong HIV 

infection.
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Figure 1. Circulating IgG glycans mediate pro-or anti-inflammatory responses.
Sialylated and galactosylated glycans have been associated with anti-inflammatory 

responses while bisected N- acetylglucosamine (GlcNAc) has been associated with pro-

inflammatory responses. HIV infection causes pro-inflammatory changes, e.g., ART-

irreversible loss of sialic acid and ART-reversible loss of galactose. Whether the HIV-

induced changes in the circulating glycome are linked to inflammaging and HIV-associated 

co-morbidities (such as cardiovascular diseases and neurological impairments) is not clear. 

Asn = Asparagine.
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Figure 2. Antibody-mediated effector functions ADCC, ADCP, and CDC are significantly 
affected by changes in IgG glycosylation.
The presence of core fucose reduces ADCC, and the presence of galactose induces ADCC, 

ADCP, and CDC. The size of the HIV reservoir, measured using nucleic acid-based methods 

(CD4+ T cell-associated HIV DNA and RNA), negatively associates with levels of non 

fucosylated galactosylated glycans, during suppressive ART. However, it is not clear if the 

documented roles of non-fucosylated galactosylated glycans in promoting ADCC and 

ADCP impact viral control during ART. C1q = Complement component 1q.
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Figure 3. Cell-surface glycan-lectin interactions mediate signals that define several cellular 
processes and immunological functions central to HIV infection.
The specific structure of a glycan allows it to bind to specific lectins, leading to activation of 

downstream signaling pathways. These pathways are critical for a variety of cellular 

processes and immunological functions. T cells. Galectin-1 induces T cell apoptosis. 

Galectin-9 induces TCR signaling, while galectin-3 reduces it. Galectin-3 alters T cell 

function through interaction with LAG3 and other immune negative checkpoints. Last, the 

fucosylation of PD-1 impacts its function. NK cells. Siglecs-7 and −9 inhibit NK activity. 

Galectin-9 impairs NK function/cytotoxicity and cytokine production through a Tim-3 

independent mechanism. Galectin-3 antagonizes NK cell-mediated antitumor immunity by 

diminishing the affinity of MHC I-related chain A (MICA) for the NKG2D receptor or by 

acting as an inhibitory ligand of the NKp30 receptor. B cells. Siglec-6 induces B-cell 

exhaustion. Galectin-1 is a pre-B cell receptor ligand that induces receptor clustering, 

leading to efficient B cell differentiation. Galectin-9 suppresses BCR signaling. T-regs. 
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Galectins-1 and −9 can expand T-regs. Myeloid-derived suppressive cells (MDSC). The 

galectin-9/Tim3 interaction drives the expansion of CD11b+ly6G+ MDSC. Granulocytic 

MDSCs induce γδ-T cells to produce galectin-1, thus transforming them into 

immunosuppressive cells. These glycan-lectin interactions represent potential novel targets 

to enhance immune functionality during HIV infection to either cure HIV or prevent HIV-

associated immune dysfunction and the subsequent development of immune dysfunction-

associated diseases.
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Figure 4. The gut-associated glycome is critical for maintaining a homeostatic relationship 
between the host and its gut microbiota.
The degree of glycosylation in the gut directly impacts the ability to maintain functional and 

healthy intestines. Here we give one example, by illustrating the role of gut fucosylation in 

the host-microbe interplay. Fucosylated glycans in the gut (left) enhance the beneficial 

activity of symbionts and improve resistance against colonization by pathogens and 

pathobionts. In the absence of gut fucosylation (right), beneficial symbionts are weakened 

and decreased in abundance, and pathogenic bacteria increase, which leads to microbial 

translocation, inflammation, and breakdown of the epithelial barrier. Fucosylated glycans are 

only one group out of many glycan structures composing the gut glycome. A change in the 

gut glycome may alter the distribution of microbial species. Therefore, it is possible that 

alterations in glycan metabolism may contribute to HIV-mediated intestinal damage, 

microbial translocation, and chronic inflammation.
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