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Abstract

Background: Exploring the associations of air pollution and weather variables with blood 

leukocyte distribution is critical to understand the impacts of environmental exposures on the 

human immune system.

Objectives: As previous analyses have been mainly based on data from cell counters, which 

might not be feasible in epidemiologic studies including large populations of long-stored blood 

samples, we aimed to expand the understanding of this topic by employing the leukocyte 

distribution estimated by DNA methylation profiles.

Methods: We measured DNA methylation profiles in blood samples using Illumina 

HumanMethylation450 BeadChip from 1,519 visits of 774 Caucasian males participating in the 
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Normative Aging Study. Leukocyte distribution was estimated using Houseman’s and Horvath’s 

algorithms. Data on air pollution exposure, temperature, and relative humidity within 28 days 

before each blood draw was obtained.

Results: After fully adjusting for potential covariates, PM2.5, black carbon, particle number, 

carbon monoxide, nitrogen dioxide, sulfur dioxide, temperature, and relative humidity were 

associated with the proportions of at least one subtype of leukocytes. Particularly, an interquartile 

range-higher 28-day average exposure of PM2.5 was associated with 0.147-, 0.054- and 0.101-unit 

lower proportions (z-scored) of plasma cells, naïve CD8+ T cells, and natural killers, respectively, 

and 0.059- and 0.161-unit higher proportions (z-scored) of naïve CD4+ T cells and CD8+ T cells, 

respectively.

Conclusions: Our study suggests that short-term air pollution exposure, temperature, and 

relative humidity are associated with leukocyte distribution. Our study further provides a 

successful attempt to use epigenetic patterns to assess the influences of environmental exposures 

on human immune profiles.
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1. Introduction

Air pollution, especially fine particulate matter [PM <2.5 μm (PM2.5)], and weather 

variations, such as changes in temperature and humidity, are critical factors for the increased 

risks of respiratory and cardiovascular diseases in varied populations (Brook et al. 2010; 

Koken et al. 2003; Schwartz et al. 2004). To date, one of the most widely accepted 

underlying mechanisms for these health effects is activation of systemic inflammatory 

responses (Brook et al. 2010; Halonen et al. 2010). Given that systemic inflammation 

activates/mobilizes inflammatory cells and may change the distribution of leukocytes (van 

Eeden and Hogg 2002), exploring the associations of air pollution and weather with 

leukocyte distribution is important to understand the impacts of environmental exposures on 

the immune system.

However, previous epidemiologic studies have mostly evaluated associations of 

environmental exposures with the distribution of leukocytes in freshly drawn blood samples 

using automated hematology cell counters, which mostly assess five types of blood 

leukocytes: neutrophils, basophils, eosinophils, lymphocytes, and monocytes (Bruske et al. 

2010; Chuang et al. 2011; Halonen et al. 2010; Herr et al. 2010; Hertz-Picciotto et al. 2005; 

Ma et al. 2017; Pope et al. 2004; Rich et al. 2012; Salvi et al. 1999; Schwartz 2001; 

Steenhof et al. 2014; Viehmann et al. 2015; Zuurbier et al. 2011). Estimation accuracy of 

cell counters is limited by several technical aspects, including the need for large volumes of 

fresh cells, high requirements for fresh cell processing and protection, and time-consuming 

cell analyses (Cembrowski and Clarke 2015). Therefore, to explore the impacts of 

environmental exposures at the population level, simpler yet comprehensive methods to 

assess leukocyte composition are warranted.

Gao et al. Page 2

Environ Int. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



DNA methylation, a major form of epigenetic changes with a heritable but dynamic nature 

(Bollati and Baccarelli 2010; Goldberg et al. 2007), can be used to distinguish cell lineages 

of blood leukocytes and describe differences in cell types with high sensitivity and 

specificity (Khavari et al. 2010). As epidemiologic studies often collect and archive blood 

DNA extracted from leukocytes, DNA methylation offers a new approach to estimate 

leukocyte distribution in large populations. This is especially useful when direct 

measurement of cell counts in fresh samples is not feasible, such as for long-stored blood 

samples, or was not performed at the time of sample collection with good reliability (Dugue 

et al. 2016). In 2012, Houseman et al. developed a reference-based algorithm to estimate 

cell-types (Houseman et al. 2012), which used cell-type-specific differentially methylated 

regions to infer the proportions of six subtypes of blood leukocytes: cytotoxic (CD8+) T 

cells, helper (CD4+) T cells, natural killers (NK), B cells, monocytes, and granulocytes. This 

method has now been widely accepted and used in epigenome analyses to control for 

confounding introduced by cell-type heterogeneity, especially in whole blood samples 

(Teschendorff and Zheng 2017; Titus et al. 2017). Horvath optimized this method by adding 

another four cell subtypes to his DNA methylation age predictors (Horvath 2013): plasma 

cells, exhausted CD8 T cells (defined as CD28-CD45RA- T cells), naïve CD8+ T cells, and 

naïve CD4+ T cells. Leukocyte distributions estimated by both methods are highly correlated 

with corresponding measures from automated hematology cell counters and may be 

minimally affected by external exposures (Horvath et al. 2016).

To expand our knowledge of the associations of leukocyte distribution with air pollutants 

and weather variations, we analyzed DNA methylation data from the Normative Aging 

Study (NAS), a cohort of older males in the greater Boston area. We estimated leukocyte 

distribution using algorithms from Houseman et al. and Horvath and investigated their 

associations with short-term exposures to ambient air pollution, temperature, and relative 

humidity.

2. Methods

2.1 Study design and population

The NAS is an ongoing longitudinal study on aging established by the U.S. Department of 

Veterans Affairs in 1963. Details of the study have been published previously (Bell et al. 

1972). Briefly, the NAS is a closed cohort of 2,280 male veterans living in the greater 

Boston area. Participants were enrolled after an initial health screening to determine whether 

they were free of known chronic medical conditions. Most participants were examined up to 

four times during 1999–2013. They have been reevaluated every 3–5 years on a continuous 

rolling basis using detailed on-site physical examinations and questionnaires. Eligible 

participants for this study were those who had continued participation as of 2000, when data 

on air pollution, temperature, and relative humidity started to be collected. To control for 

race heterogeneity, a total of 1,519 medical visits from 774 Caucasian participants aged 55–

85 years at initial visit were used in the analysis (visited in January 2003–December 2011). 

The NAS was approved by the Department of Veterans Affairs Boston Healthcare System, 

and written informed consent was obtained from each subject before participation.
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2.2 Data collection

As previously described (Mordukhovich et al. 2015), participants were asked to provide 

detailed information about their lifestyles, dietary habits, activity levels, and demographic 

factors at each visit. Height and weight were used to calculate body mass index (BMI, in 

kg/m2). Blood samples were collected at each medical visit to assess blood-based 

biomarkers, such as total cholesterol (mg/dL), serum triglycerides (mg/dL), and high-density 

lipoprotein (HDL, mg/dL), and were stored for future analysis. Systolic and diastolic blood 

pressures (SBP and DBP, respectively) were measured once on each arm using a standard 

cuff, while the subject was seated. Major diseases were assessed based on participants’ 

medical histories and prior diagnoses (Nyhan et al. 2018).

2.3 DNA methylation data

As previously described (Gao et al. 2018), we used the QIAamp DNA Blood Kit (Qiagen, 

CA, USA) to extract DNA from stored buffy coats and performed bisulfite conversion with 

the EZ-96 DNA Methylation Kit (Zymo Research, CA, USA). To minimize batch effects, 

we randomized chips across plates and randomized samples based on a two-stage age-

stratified algorithm so that age distributed similarly across chips and plates. We measured 

DNA methylation of CpG probes using the Illumina HumanMethylation450 BeadChip. 

After quality control, remaining samples were preprocessed using Illumina-type background 

correction, dye-bias adjustment, and BMIQ normalization (Teschendorff et al. 2013) to 

generate methylation status. Methylation status of a specific CpG site was quantified as a β-

value ranging from 0 (no methylation) to 1 (full methylation).

2.4 Estimation of leukocyte distribution

Leukocyte distribution was estimated using two well-established methods based on 

background-corrected DNA methylation profiles. The proportions of CD8+ T cells 

(CD3+CD8+ T-lymphocytes), CD4+ T cells (CD3+CD4+ T-lymphocytes), NK cells 

(CD56+ NK cells), B cells (CD19+ B-lymphocytes), monocytes (CD14+ monocytes), and 

granulocytes (CD15+ granulocytes) were estimated with Houseman et al.’s algorithm 

(Houseman et al. 2012) embedded in R package ‘minfi’ with the default option (quantile 

normalization for blood samples). The proportion of exhausted CD8 T cells (CD28-

CD45RA- T cells), naïve CD8+ T cells, naïve CD4+ T cells, and plasma cells (effector B 

cells) were estimated with the Horvath’s algorithm embedded in the ‘Advanced Blood 

Analysis’ of the online DNA methylation age predictor with internal normalization (Horvath 

2013).

2.5 Assessments of air pollution exposure and weather variations

As previous studies demonstrated robust inflammatory responses after short-term exposures 

to air pollution and weather variations (Dauchet et al. 2018; Halonen et al. 2010; Zuurbier et 

al. 2011), we focused on short-term air pollution exposures, temperature, and relative 

humidity measured on the same day of the visit and mean values at 7, 14, 21, and 28 days 

before visits for each blood draw. The air pollutants were PM2.5, black carbon (BC), particle 

number (PN), carbon monoxide (CO), nitrogen dioxide (NO2), ozone (O3), and sulfur 

dioxide (SO2).
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As previously described (Bind et al. 2014a; Bind et al. 2014b; Mehta et al. 2015), particulate 

concentrations were measured at the Harvard University supersite located near downtown 

Boston and approximately 1 km from the examination center. Because study participants 

lived in the greater Boston area with a median distance of 20 km from center, we assumed 

that the ambient air pollutant concentrations could serve as surrogates of participant 

exposures. Concentrations of PM2.5 (μg/m3) and BC (μg/m3) were measured hourly using a 

tapered element oscillation microbalance (Model 1400A, Rupprecht and Pastashnick) and 

aethalometer (Magee Scientific Co., Model AE-16). We measured hourly PN, which were 

fine and ultrafine particles with a diameter of 0.007–3 μm, using a condensation particle 

counter (TSI Inc., Model 3022A). Hourly CO, NO2, O3, and SO2 concentrations [parts per 

million (ppm)] were measured by local state monitors within the greater Boston area and 

were averaged based on data from all available sites.

We also obtained temperature and relative humidity data from the National Weather Service 

Station at Logan Airport (Boston, MA, USA), located approximately 12 km from the 

examination site. Because study participants lived throughout the metropolitan area, we 

assumed that the monitored temperature and humidity could serve as surrogates of their 

exposures.

2.6 Statistical analysis

Descriptive statistics were used to summarize socio-demographics and lifestyle factors for 

the first visit and all visits of the participants.

We examined whether the same-day and up to 28-day (7, 14, and 28 days prior to visit) 

average air pollution exposures, temperature, and relative humidity were associated with the 

distribution of 10 types of leukocytes estimated by DNA methylation data. We z-scored the 

distributions of 10 leukocytes for all visits to unify the scale of estimates from Houseman et 

al.’s and Horvath’s algorithms. We used time-varying linear mixed-effect regression models 

with random participant-specific intercepts (via PROC MIXED), accounting for the 

correlation of repeated measures. We treated the z-score of blood cells as outcomes and the 

exposures at certain exposure windows as predictors as shown in Formula 1:

Y i j = β0 + β1 * Ei j + β3 *  Covariate 1i j + ⋯ + μi (1)

where Yij is the z-scored proportion of a certain cell subtype of subject i at visit j, Eij is 

average levels of a certain air pollutant/weather variation before visit j, Covariate 1ij is 

subject i’s first covariate at visit j (this notation is relevant to all other potential covariates, 

because we used values assessed at each visit in our analyses), and ui is the random intercept 

that accounts for correlation within subjects. We adjusted for the following potential 

covariates: age (years), BMI (underweight or normal weight/overweight/obese), smoking 

status (current/former/never smoker), alcohol intake (<2 drinks per day or ≥2 drinks per 

day), total cholesterol, triglycerides, HDL, SBP, hypertension, stroke, coronary heart disease 

(CHD), diabetes and cancer diagnosed by physician (yes/no), and season of medical visits 

(spring/summer/fall/winter). Specifically, models of air pollution additionally adjusted for 

corresponding temperature and relative humidity in different exposure windows. Models for 
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weather variations mutually adjusted for relative humidity and temperature, given that both 

factors were highly correlated, to understand their independent associations with leukocyte 

distributions. Effect estimates were reported as change in the z-score of blood cells per 

interquartile range (IQR) increase in exposure. Exposure IQRs were calculated separately 

for exposures on the same day of the visit and mean exposures computed up to 28 days 

before each visit. IQR reflects distribution (25th–75th percentile) in the observed data while 

also enabling comparison of effects of different exposure types measured with different 

units.

As one of the sensitivity analyses, PM2.5 was additionally added in the model for other 

pollutants to explore whether there was a confounding effect of PM2.5 on the associations 

between other pollutants and leukocyte distribution. Further, as with all longitudinal studies, 

healthier study participants may be more likely to participate in subsequent clinical 

examinations over time (Seaman and White 2013). To evaluate the validity of the missing at 

random assumption and assess the impact of potential selection bias caused by non-random 

unavailability for follow-up, we used inverse probability weighting (IPW) to correct for this 

potential survival bias as another sensitivity analysis. We estimated the inverse probability of 

coming to a subsequent clinical visit using logistic regressions given all relevant covariates 

at the previous visit among eligible participants: age, BMI, smoking status and pack-years, 

cholesterol level, hypertension, and medication use (diuretics and beta blockers). Rather than 

a constant of ‘1’, the inverse probability of being included in the analysis was assigned to the 

baseline visit. A weighted model simultaneously adjusted for the inverse probability and the 

aforementioned potential covariates of the main analysis.

Additionally, given the compositional nature of leukocytes, we speculated that this may 

influence the patterns we identified in the main analysis. Since we were unable to unify the 

proportions estimated by the two different methods using isometric log-ratio transformation 

(Egozcue et al. 2003), we conducted a sensitivity analysis using the cell counts of six 

subtypes calculated from the total number of leukocytes measured by cell counters 

(1000/mm3) and Houseman et al.’s cell proportion (counts = total number of leukocytes 

estimated by cell counters * proportions estimated by Houseman et al.’s algorithm) to 

understand to what extent the compositional nature could influence the identified patterns. 

We analyzed associations (z-scored) of the cell counts with environmental exposures using 

the same analysis models and compared outcomes with the main findings. Finally, we 

inspected the linearity of the associations between temperature and cell proportions using a 

generalized additive mixed model with the ‘mgcv’ R package. We fitted penalized splines 

for temperature to detect potential deviations from linearity.

SAS version 9.4 (SAS Institute Inc., Cary, NC, USA) was used to perform data cleaning and 

all analyses. A two-sided p-value of <0.05 was considered statistically significant.

3. Results

3.1 Characteristics of participants

Table 1 shows characteristics of the 774 study participants. Overall, average age at the initial 

visit was ~72 years. More than 60% of participants were former smokers, and <5% were 
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current smokers. Most the participants were overweight or obese and consumed <2 drinks 

per day. Participants were healthier at baseline than at subsequent visits in terms of the 

prevalence of major diseases. Most visits (>80%) were in March–November. Average 

proportions of cell types in first-visit samples estimated by Houseman et al.’s algorithm 

were: ~5.2% for CD8+ T cells, ~10.1% for CD4+ T cells, ~4.7% for NK cells, ~3.1% for B 

cells, ~9.5% for monocytes (CD14+ monocytes), and ~67.0% for granulocytes. Proportions 

were similar in all visit samples. Most proportions of leukocyte subtypes were significantly 

correlated (p < 0.05, Table 2). However, correlation coefficients were relatively low, which 

might be explained by different immunological functions of those subtypes.

3.2 Distributions of air pollution, temperature, and relative humidity

Average values of environmental exposures over the follow-up period remained stable across 

the 28-day exposure window (Table 3). The 28-day average exposure was 10.00±2.77 μg/m3 

(IQR = 3.23) for PM2.5, 0.74±0.18 μg/m3 (IQR = 0.28) for BC, 2.29±1.02 ×104 counts/cm3 

(IQR = 1.39) for PN, 4.18±1.98 ×10−1 ppm (IQR = 2.65) for CO, 1.91±0.36 ×10−2 ppm 

(IQR = 0.56) for NO2, 2.45±0.72 ×10−2 ppm (IQR = 1.19) for O3, and 4.07±2.28 ×10−3 ppm 

(IQR = 3.03) for SO2. The average temperature was 12.58°C with an IQR of 13.58°C, and 

the relative humidity was 68.27% with an IQR of 8.11%. Table 4 lists correlations of 28-day 

average air pollution exposures, temperature, and relative humidity. Most mutual 

correlations were statistically significant (p < 0.05), except for correlations between PM2.5 

and PN, and between CO and relative humidity. For a given exposure, its levels in different 

time windows were highly correlated (p < 0.01, Table S1).

3.3 Associations of leukocyte distribution with air pollution, temperature, and relative 
humidity

After adjusting for all potential covariates, PM2.5, PN, CO, NO2, and SO2 showed strong 

associations with the proportions of at least two subtypes of leukocytes (Figures 1–5), while 

BC, temperature, and relative humidity only showed relatively weak associations with one 

cell type (Figures S1, S3, S4). O3 showed no associations with any leukocyte subtype 

(Figure S2). Corresponding estimations by IQR for 28-day average environmental exposures 

are summarized in Table 5. Tables S2–S5 show the estimates for 1-day, 7-day, 14-day, and 

21-day average exposures, respectively.

PM2.5 was negatively associated with plasma cells, naïve CD8+ T cells, and NK cells, and 

positively associated with naïve CD4+ T cells and CD8+ T cells (Figure 1, p < 0.05). An 

IQR-higher 28-day average exposure to PM2.5 was associated with 0.147-, 0.054- and 0.101-

unit lower proportions (z-scored) of plasma cells, naïve CD8+ T cells, and NK cells, 

respectively, and 0.059- and 0.161-unit higher proportions (z-scored) of naïve CD4+ T cells 

and CD8+ T cells, respectively (Table 5). As an important component of PM2.5, BC showed 

similar but weaker associations with leukocyte distribution than PM2.5 and was only 

significantly associated with the reduced proportion of plasma cells (Figure S1). An IQR-

higher 28-day average BC exposure was associated with a 0.138-unit lower proportion (z-

scored) of plasma cells (Table 5).
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Similar to PM2.5, PN was also associated with reduced proportions of plasma cells and naïve 

CD8+ T cells, in addition to reduced total granulocytes. However, the proportions of CD8+ 

T cells and monocytes slightly increased in response to PN (Figure 2). Specifically, an IQR-

higher 28-day average exposure to PN was associated with a 0.257-unit decreased 

proportion (z-scored) of plasma cells (Table 4). CO, NO2, and SO2 were also highly 

associated with reduced total granulocytes, and exposures to NO2, and SO2 were also 

associated with decreased proportions of plasma cells (Figures 3–5). CO was additionally 

associated with a decreased proportion of naïve CD4+ T cells and increased proportion of B 

cells. NO2 was associated with a decreased proportion of naïve CD8+ T cells, while SO2 

was associated with an increased proportion of CD8 T cells. Temperature and relative 

humidity were only associated with CD8+ T cells, but in opposite directions (Figures S3 & 

S4). The effect of environmental exposures on leukocyte distribution became progressively 

stronger with increasing exposure length for several cell types and exposures (e.g., PM2.5 & 

plasma cells, PM2.5 & CD8+ T cells, PN & plasma cells).

Sensitivity analyses separately controlling for PM2.5 and IPW yielded essentially unchanged 

estimates for each environmental exposure from the main analysis models (data not shown), 

suggesting that results were not biased by loss to follow-up. There was no confounding 

effect of PM2.5 on the associations between other air pollutants and leukocyte distribution. 

In another sensitivity analysis with cell counts, most directions of effects of environmental 

exposures on cell counts were essentially unchanged or slightly attenuated compared to 

main results, and trends of the effects across 28-day windows were also similar (Figures S5–

S13, detailed data not shown). This further suggests that the compositional nature of 

leukocyte distribution may influence our main findings to a limited extent. Finally, regarding 

linearity tests for temperature–cell proportions relationships, penalized splines estimated 1 

degree of freedom for each exposure window, suggesting that the effect of temperature on 

cell proportions was linear.

4. Discussion

In the present study, we investigated the associations of air pollution, temperature, and 

relative humidity with leukocyte distribution estimated by DNA methylation profiles from 

774 older males within 28 days before the blood draw. After adjusting for potential 

covariates, most air pollutants (except O3), temperature, and relative humidity were 

associated with the proportion of at least one subtype of leukocytes. Particularly, an IQR 

increase in the 28-day average PM2.5 level was associated with lower proportions of plasma 

cells, naïve CD8+ T cells, and NK cells and higher proportions of naïve CD4+ T cells and 

CD8+ T cells. We successfully demonstrated differences in leukocyte proportions in 

response to short-term air pollution exposures, temperature, and relative humidity using 

DNA methylation-based approaches.

To the best of our knowledge, this is the first study to use leukocyte distribution estimated by 

DNA methylation profiles to predict the impacts of air pollution and weather variations on 

human immune profiles. Since DNA methylation profiles can also be retrieved from 

different blood samples (e.g., fresh, frozen, and dry), our study further implies the possibility 

of assessing immune modulations in virtually any blood sample including archived samples 
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previously precluded from such analysis. Further, our results suggest that the effect of 

environmental exposures on leukocyte distribution may accumulate over time with sustained 

exposure. This implies that medium-term (>one month) to long-term (up to one year) effects 

of those exposures on cell subtypes warrant further investigation. Additionally, we note the 

compositional nature of leukocytes warrants caution when interpreting causal associations of 

exposures with certain cell subtypes. Although we demonstrated that this had limited impact 

on our main findings, optimized DNA methylation-based methods to describe the full 

landscape of leukocytes are still needed to address this concern.

Our findings suggest that short-term environmental exposures may contribute to systemic 

inflammation and may partly explain the established connection between ambient PM 

exposure and the risks of cardiovascular disease and hypertension (Chi et al. 2016; Miller et 

al. 2007). The change in leukocytes may mechanistically linked atherosclerosis to 

inflammatory responses to PM (Adar et al. 2013; Brook and Rajagopalan 2010; Diez Roux 

et al. 2008; Kunzli et al. 2005; Perez et al. 2015) and may be related to the activation of 

adhesion and coagulation molecules after the PM inhalation, which could lead to increased 

leukocyte content (Baccarelli et al. 2007; Bind et al. 2012; O’Neill et al. 2007; CA Pope et 

al. 2016; Rückerl et al. 2006; Tsai et al. 2012). Our results share some similarities with 

previous studies of the impact of air pollution on blood cells using data assessed by 

automatic cell counters. We observed positive associations between levels of most air 

pollutants (except O3) and the proportion of monocytes. This is in line with Steenhof et al.’s 

report of increased monocytes numbers in response to PM10 and PM2.5 exposures among 31 

healthy adults (Steenhof et al. 2014). This positive association can be explained by higher 

production of monocytes from bone marrow in response to the acute inflammation triggered 

by air pollution. As granulocytes are a major type of leukocytes, a large decrease in 

granulocytes may also drive a decrease in total leukocytes (Monie 2017). In our study, PN, 

NO2, and SO2 showed robust negative relations with the proportion of total granulocytes. 

These results are consistent with a study showing negative associations of neutrophils and 

total leukocytes with PN among 34 healthy adults (Zuurbier et al. 2011) and another study 

showing significantly decreased eosinophils after exposure to NO2 (Steenhof et al. 2014). 

However, other previous studies have yielded different results. For instance, we did not find 

an association between total proportion of granulocytes and PM2.5, whereas Frampton et al. 

(Frampton et al. 2004) found a decreased proportion of basophils and increased proportion 

of neutrophils among 28 people in response to PM2.5 exposure. Riediker et al. (Riediker et 

al. 2004) also found an increased proportion of neutrophils in response to PM2.5 among 9 

healthy men in four successive days.

Unlike most previous investigations, which mostly focused on total blood lymphocytes 

measured only by blood cell counters, our study examined associations of environmental 

exposures with each subtype of lymphocytes and plasma cells. We found that PM2.5, BC, 

PN, NO2, and SO2 showed strong negative associations with the proportion of plasma cells, 

and most pollutants (except NO2) were associated with an increased proportion of CD8+ T 

cells. Also, the five air pollutants showed much weaker associations with the proportion of B 

cells. Therefore, we speculate that these air pollutants might act in the lung and then elicit a 

systemic inflammatory response by triggering upregulation of T-cell-mediated immunity, 
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rather than humoral immunity mediated by macromolecules (e.g., antibodies released by 

plasma cells).

Increased T cells induced by air pollution have been observed in different populations and 

tissues. For instance, Salvi et al. (Salvi et al. 1999) found increased CD8+ T cells in 

bronchial biopsies of healthy volunteers obtained six hours after the exposure to diesel 

exhaust, a major contributor to PM pollution. Ma et al. (Ma et al. 2017) also observed 

elevated cytotoxicity in CD8+ T cells in response to PM2.5 exposure in peripheral blood 

cells of healthy individuals. Similar patterns also appeared in cord blood samples collected 

from pregnant women at early gestation, in which Herr et al. found significant associations 

of PM2.5 exposure with lower proportions of CD19+ B cell and NK cells (Herr et al. 2010). 

However, all these reports showed higher CD4+ cells associated with PM2.5, which we did 

not find in our study. Further, our study was the first to describe an association of 

temperature and humidity with CD8+ T cells, although previous studies have found that 

outdoor temperature and relative humidity are associated with global DNA methylation and 

gene-specific methylation in blood cells (Bind et al. 2014b; Bind et al. 2016; Lim et al. 

2017).

Because leukocyte distribution was estimated by reference-based methods using DNA 

methylation data, a critical question is whether and to what extent the epigenetic patterns 

used to estimate leukocyte distribution mediate the associations between environmental 

exposures and change in blood cells. Even though previous epigenome-wide association 

studies (EWASs) have identified several CpG sites associated with air pollution, including 

PM2.5 (Panni et al. 2016) and NO2 (Gruzieva et al. 2017), and with leukocyte proportions, 

such as CD4+ T cells (Martino et al. 2014), no CpG sites associated with both air pollution 

and leukocytes have been identified. Since leukocyte distribution is indeed a critical factor 

that affects the results of EWAS based on whole blood samples — as it may reflect indirect 

effects of any external exposures on measured DNA methylation profiles—it is also 

important to understand the biological connections of the CpG sites used in Houseman et 

al.’s and Horvath’s algorithms with leukocytes. Such CpG sites may indicate genomic areas 

that are not only related to hematopoiesis and immune cell development (Teschendorff and 

Zheng 2017) but also may be sensitive to environmental exposures (Bauer et al. 2012; CA 

Pope, 3rd et al. 2016). Future multidisciplinary studies are required to establish the roles of 

CpG sites used to estimate leukocyte distributions in the biological connections of air 

pollution and weather variations with systemic inflammatory responses.

Strengths of the present study include measurements of DNA methylation profiles, multiple 

air pollutants, and weather variations in a longitudinal setting. Several limitations should 

also be noted when interpreting these results. First, the DNA methylation-based methods we 

used remain at the population level and cannot provide more detail about the change in 

immune cells at the individual level or account for cell-cell interactions, which might come 

from minor leukocytes comprising <5% of total leukocytes (Teschendorff and Zheng 2017; 

Titus et al. 2017). Second, each participant’s real exposure to some air pollutants might 

differ from the average city level that we used in our analyses, as exposure also depends on 

the time spent at home, rates of penetration of ambient particles into the house, and presence 

of indoor sources of particles. However, we noted that it is more likely that NAS participants 
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spent a large part of their days at home. Exposure misclassification is likely to be non-

differential and to bias results toward the null, rather than causing the observed associations 

(Kioumourtzoglou et al. 2014). Additionally, multiple comparisons between cell types and 

exposures may also potentially induce findings by chance, but we observed consistencies of 

the significant associations between certain exposures and cell subtypes across each time 

window. Together with similar findings from previous reports based on data from cell 

counters, these results indicate that our findings were not incidental. Lastly, the selected 

participants of this study were Caucasians and older males, which limits generalizability of 

our results to other racial/ethnic groups and to women.

5. Conclusions

In conclusion, our study represent a successful attempt to use DNA methylation data to 

assess the impact of air pollution on human immune profiles. Our findings confirm that 

short-term ambient exposure to air pollutants, temperature, and relative humidity may be 

associated with subclinical, but epidemiologically relevant, inflammatory responses across 

the population and that these associations may be captured using DNA methylation data. 

Our study also demonstrates that DNA methylation markers are highly likely to be 

implemented to describe ambient exposure impacts. Future interdisciplinary studies with 

population-based mediation analyses and explorations of biological functions will provide 

novel insights into epigenetic mechanisms (e.g., DNA methylation) underlying the impact of 

environmental exposures on the human immune system and provide new hints for large-

scale immunological studies of environmental health.
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PM2.5 fine particulate matter with diameter <2.5 μm

NK natural killers

BMI body mass index

HDL high-density lipoprotein
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DBP diastolic blood pressure

CpG cytosine-phosphate-guanine

IPW inverse probability weighting

NAS Normative Aging Study

BC black carbon

PN particle number

PPM parts per million

IQR interquartile range

SD standard deviation
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Highlights

• We estimated leukocyte distribution using DNA methylation data.

• Environmental exposures are found to be associated with the change of 

estimated leukocyte distribution.

• Changes in leukocyte distribution varied by the exposures.

• Epigenetic patterns can assess the influences of environmental exposures on 

human immune profiles.
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Figure 1. 
Associations between PM2.5 and leukocyte distribution in the 28-day exposure window. 

Dark blue dots represent point estimates; light blue lines represent 95% confidence levels. 

*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001
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Figure 2. 
Associations between PN and leukocyte distribution in the 28-day exposure window. Dark 

blue dots represent point estimates; light blue lines represent 95% confidence levels. *p < 

0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001
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Figure 3. 
Associations between CO and leukocyte distribution in the 28-day exposure window. Dark 

blue dots represent point estimates; light blue lines represent 95% confidence levels. *p < 

0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001
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Figure 4. 
Associations between NO2 and leukocyte distribution in the 28-day exposure window. Dark 

blue dots represent point estimates; light blue lines represent 95% confidence levels. *p < 

0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001
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Figure 5. 
Associations between SO2 and leukocyte distribution in the 28-day exposure window. Dark 

blue dots represent point estimates; light blue lines represent 95% confidence levels. *p < 

0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001
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Table 1

Characteristics of Normative Aging Study participants on the first visit and at all visits
a

Characteristic First visit (N=774) All visits (N=1519)

Age (years) 72.64 (6.82) 74.60 (7.06)

Total cholesterol (mg/dL) 192.28 (37.70) 187.62 (38.42)

Serum triglyceride (mg/dL) 141.18 (92.07) 132.27 (81.69)

HDL cholesterol (mg/dL) 49.21 (12.87) 48.82 (12.87)

Systolic blood pressure (mm Hg) 131.98 (17.12) 128.91 (17.56)

Smoking status

 Current smoker 32 (4.1%) 60 (3.9%)

 Former smoker 503 (65.0%) 981 (64.6%)

 Never smoker 239 (30.9%) 478 (31.5%)

Body mass index

 Underweight or normal weight (<25.0) 152 (19.6%) 335 (22.1%)

 Overweight (≥25 to <30) 415 (53.6%) 787 (51.8%)

 Obese (≥30.0) 207 (26.7%) 397 (26.1%)

Alcohol consumption (≥2 drinks per day) 147 (19.0%) 278 (18.3%)

Major diseases

 Hypertension 550 (71.1%) 1123 (73.9%)

 Stroke 56 (7.2%) 121 (8.0%)

 Coronary heart disease 228 (29.5%) 497 (32.7%)

 Diabetes 107 (13.8%) 234 (15.4%)

 Cancer 383 (49.5%) 833 (54.8%)

Season of visit

 Spring (March-May) 113 (23.2%) 358 (23.6%)

 Summer (June-August) 120 (24.6%) 412 (27.1%)

 Fall (September-November) 168 (34.4%) 483 (31.8%)

 Winter (December-February) 87 (17.8%) 266 (17.5%)

a
Mean values (standard deviation) for continuous variables and n (%) for categorical variables;
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