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Abstract

Background: Days of extreme temperature may be associated with transiently higher risk of 

preterm birth, but prior studies have been limited and results have been heterogeneous.

Objectives: To evaluate the association between days of extreme heat and cold and risk of 

preterm birth among ~32 million live singleton births between 1989 and 2002 across 403 counties 

in the contiguous United States (US).

Methods: We used a distributed lag nonlinear model to estimate the association between 

population-weighted daily mean temperature and risk of preterm birth in each county and then 

pooled results across geographic regions and climate zones. We defined extreme heat and cold as 

the 95th and 5th percentile of the county-specific temperatures, respectively.

Results: Preterm birth accounted for 9.3% of deliveries. There was a monotonic association 

between ambient temperature and risk of preterm birth. Days of extreme heat and cold were 

associated with a relative risk of preterm birth of 1.025 (95% CI: 1.015, 1.036) and 0.985 (95% 

CI: 0.976, 0.993) over the subsequent four days, respectively, relative to the county-specific 

median temperature. If causal, the fraction of preterm births attributable to extreme heat was 

0.17% (empirical 95% CI: 0.14%, 0.19%), corresponding to 154 (empirical 95% CI: 127, 173) 

preterm births per million births. Extreme heat was more strongly associated with preterm birth in 

regions with colder and drier climates, and among younger women. Days of extreme cold 

temperature were associated with lower rather than higher risk of preterm birth.
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Conclusions: Days of extreme heat, but not extreme cold, are associated with higher risk of 

preterm birth in the contiguous US. If causal, these results may have important implications for the 

management of pregnant women during forecasted periods of extreme heat.
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1. Introduction

Preterm birth is one of the leading causes of neonatal death worldwide and the second most 

common cause of death in children under five years old (Blencowe et al., 2012; Liu et al., 

2012). Additionally, preterm birth is associated with higher risk of children developing a 

range of complications later in life (e.g., behavioural and cardiorespiratory illness), imposing 

a substantial burden on healthcare delivery systems (Saigal and Doyle, 2008). In most 

countries the proportion of infants born preterm has increased in recent decades (Blencowe 

et al., 2012). Approximately 14.9 million infants were born prematurely in 2010 globally, 

accounting for about 11% of all livebirths worldwide (Blencowe et al., 2012). With more 

than 500,000 preterm births (12% of all livebirths) in 2010, the United States ranked 6th in 

the world with regards to absolute number of preterm births (Blencowe et al., 2012; Martin 

et al., 2012).

Although two recent reviews reported that heat was associated with higher risk of preterm 

birth (Carolan-Olah and Frankowska, 2014; Zhang et al., 2017), these reviews also 

highlighted the inconsistency in results across prior studies. For example, studies in 

Montreal (Auger et al., 2014), London (Lee et al., 2008), or Germany (Wolf and Armstrong, 

2012) failed to find these associations, highlighting the potential for heterogeneity of the 

association by geographic region, climate zone, population characteristics (e.g., 

socioeconomic conditions or adaptation) or other factors. In addition, most prior studies 

focused on heat (Auger et al., 2014; Avalos et al., 2017; Basu et al., 2010; Vicedo-Cabrera et 

al., 2014), with relatively fewer studies examining the associations between cold 

temperatures and risk of preterm birth (Bruckner et al., 2014; Cox et al., 2016; Giorgis-

Allemand et al., 2017; Guo et al., 2017; He et al., 2016).

Given the adverse health impacts and high prevalence of preterm birth, understanding 

potentially modifiable triggers of preterm birth is of interest to both clinicians and public 

health officials. Accordingly, we examined the associations between daily mean temperature 

and risk of preterm birth among approximately 32 million live singleton births from 1989 to 

2002 across 403 counties in the contiguous US. We additionally evaluated whether these 

associations varied by geographic region of the country, by climate zone, and by personal 

characteristics.
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2. Methods

2.1. Study Population

We obtained data on live births occurring in the US between 1989 and 2002 from the US 

Centers for Disease Control and Prevention’s National Centre for Health Statistics (Centers 

for Disease Control and Prevention, 2017). Data on county of residence were only available 

for births among women living in counties with a population of ≥100,000. We further 

limited the study population to singleton births in the 403 counties with data continuously 

available throughout the study period (Fig. 1).

We applied the following additional exclusion criteria. First, we excluded births missing data 

on date of last normal menstrual period (LMP) or gestational age, or delivered < 20 or > 44 

completed weeks of gestation. Second, to avoid artificial seasonal patterns in gestation 

length (“fixed cohort bias”) (Strand et al., 2011), we excluded pregnancies with a conception 

date more than 20 weeks before January 1, 1989, or fewer than 44 weeks before December 

31, 2002. Third, we excluded births with implausible combinations of birth weight and 

gestational age according to the Alexander criteria (Alexander et al., 1996). Because date of 

birth is not directly available in these data, we imputed this variable based on LMP, 

completed weeks of gestation, and the recorded weekday of birth, excluding births where 

month of the imputed and recorded date of birth differed. The application of these exclusion 

criteria yielded a final analytic sample of 31,921,046 singleton births (Fig. S1).

2.2. Assessment of Ambient Temperature

We estimated daily mean ambient temperature using the Parameter-elevation Relationships 

on Independent Slopes (PRISM) model, a gridded climate dataset consisting of spatially 

interpolated weather data on a 4-km grid (Daly et al., 2008). The PRISM dataset offers a 

more spatially explicit representation of meteorological exposures compared to observations 

at individual weather stations and has been validated against station observations in both 

urban and rural areas (Spangler et al., 2018). To represent population exposure to 

temperature, we calculated a population-weighted average of daily mean temperatures for 

each day in each county, as previously described (Spangler et al., 2018).

2.3. Geographic Region and Climate Zone

We classified each county into one of six geographic regions as defined by the US Global 

Change Research Program’s Third National Climate-Assessment (Melillo et al., 2014): 

Northeast [number of counties included in the analyses (n)=110], Southeast (n=94), 

Midwest (n=99), Great Plains (n=35), Northwest (n=17), and Southwest (n=48) (Fig. 1). We 

also categorized each county into one of five climate zones according to the US Department 

of Energy’s Building America Program (US Department of Energy, 2015): Hot-Humid 

(n=58), Mixed-Humid (n=113), Hot-Dry/Mixed-Dry (n=26), Cold/Very Cold (n=181), and 

Marine (n=25).

2.4. Outcome Assessment

We defined preterm birth as births with < 37 completed weeks of gestation, calculated as the 

number of completed weeks between the LMP and the imputed date of birth. We further 
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categorized preterm births into early (<34 weeks) and late preterm births (34–36 weeks) (Ha 

et al., 2016). For each county, we created a time-series of the number of preterm births per 

day. We also estimated the univariable association between each covariate and risk of 

preterm birth using logistic regression.

2.5. Statistical Analysis

For each county we linked time-series of the daily number of preterm births with the daily 

population-weighted average temperature. In the first stage of analysis we fit a distributed 

lag non-linear quasi-Poisson time-series model separately in each county to estimate the 

county-specific relative risk (RR) of preterm birth associated with daily mean temperatures 

(Gasparrini et al., 2015). This approach estimates the association between daily variation in 

temperature and daily variation in rates of preterm birth, adjusting for temporal trends and 

other time-varying factors (Peng et al., 2006). Under the assumption that the study 

population is in steady-state (conditional on the covariates in the model), individual-level 

covariates that do not change from day to day cannot confound the analyses. Associations 

between daily changes in temperature and health outcomes are typically non-linear 

(frequently U-, V-, or J-shaped) and delayed (lasting for several days after exposure to 

temperature extremes) (Gasparrini et al., 2015; Sun et al., 2016; Weinberger et al., 2017; 

Wellenius et al., 2017). The distributed lag non-linear model provides a flexible framework 

that permits non-linear exposure-response and time-response functions (Gasparrini, 2014). 

We modeled the association between daily mean temperature and preterm birth using a 

quadratic B-spline with 3 degrees of freedom (dfs) and modeled the lag function using a 

natural cubic B-spline with two knots placed at equal intervals on the log scale of lags up to 

4 days before delivery. The dfs for temperature and lag days were chosen to minimize the 

Akaike Information Criterion (AIC). We adjusted all models for seasonal and long-term 

trends using a natural cubic spline of time with 8 dfs per year, relative humidity using a 

natural cubic spline with 3 dfs, day of the week, and federal holidays. We accounted for 

daily variation in the number of pregnancies at risk of being preterm by calculating and 

applying a daily offset as previously described (Vicedo-Cabrera et al., 2014). In sensitivity 

analyses we varied the key model assumptions to assess the robustness of our findings.

We next pooled the county-specific RR calculated from the first stage of the analysis using a 

multivariate random-effects meta-analytic model to estimate the overall cumulative 

association of temperature with preterm birth (Gasparrini and Armstrong, 2013; Gasparrini 

et al., 2012). We report the RRs for extreme heat (95th percentile of county-specific 

temperature distribution) and extreme cold (5th percentile) (Tobias et al., 2012) with 

reference to the median of the county-specific temperature distribution (Cox et al., 2016; 

Vicedo-Cabrera et al., 2014).

2.5.1. Subgroup Analyses—We evaluated whether the association between extreme 

temperatures and risk of preterm birth varied by the degree of prematurity (early versus late 

preterm births) or across subgroups defined by the following personal characteristics: infant 

sex (male and female), maternal age (<25, 25–34, and ≥35 years), marital status (married 

and unmarried), maternal race (white and non-white), maternal education (<9 and 9–17 

years), and parity (0, 1, and ≥2). We also examined whether the association varied by 
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geographic region or climate zone by pooling the county-specific relative risk estimates 

across these categories. We implemented a Wald statistic for testing whether the association 

between preterm birth and daily temperature is homogeneous across strata (Rothman et al., 

2008).

2.5.2. Estimation of Attributable Risk—To assess the potential public health impact 

of heat on risk of preterm birth, we estimated the fraction and number of preterm births 

attributable to extreme heat and moderate heat (temperatures between 50th and 95th 

percentile) as previously described (Gasparrini and Leone, 2014). Briefly, for each county 

we obtained the best linear unbiased prediction of the county-specific cumulative association 

between temperature and risk of preterm birth (derived from the meta-analytic model) and 

summed the contributions from all days of extreme or moderate heat in that county. We 

defined the attributable fraction and attributable number as the total number of preterm 

births attributable to extreme or moderate heat divided by the total number of preterm births 

or total number of births, respectively. We used Monte Carlo simulations to estimate 

empirical 95% confidence interval (eCI) assuming a multivariate normal distribution of the 

coefficients in the best linear unbiased prediction.

All analyses were conducted in R (version 3.4.3). We used the “dlnm” package version 2.3.6 

for the distributed lag non-linear time-series analysis, and the “mvmeta” package version 

0.4.11 for the second-stage meta-analysis.

3. Results

Our analysis included 31,921,046 singleton births (59.2% of total singleton births in the US 

during the study period), of which 9.3% were preterm (Table 1). The median (interquartile 

range) gestational age at delivery was 35.0 (3.0) weeks for preterm births and 39.0 (2.0) 

weeks for term births (Table S1). At the time of delivery, most mothers were 25 to 34 years 

old (52.8%), married (68.9%), white (77.7%), and had at least 9 years of education (91.2%). 

A minority of mothers reported smoking (8.9%) or consuming alcohol (1.3%) during their 

pregnancy.

Preterm birth was more common among mothers who were < 25 years of age, unmarried, 

non-white, smoked or consumed alcohol during pregnancy, had fewer than 8 years of 

education, had chronic hypertension, or lived in the Southeast US or in the Hot-Humid 

climate zone (Table 1). Daily mean temperature and relative humidity showed the expected 

geographic and climate zone variation (Fig. S2).

We observed a monotonic association between daily temperature and risk of preterm birth, 

with higher relative risk associated with higher temperatures (Fig. S3). Extreme heat was 

associated with a statistically significant 1.025 (95% CI: 1.015, 1.036) fold higher risk of 

preterm birth. Conversely, days of extreme cold were associated with a modestly lower 

relative risk of preterm birth (RR: 0.985 [95% CI: 0.976, 0.993]). The impacts of both 

extreme heat and cold on preterm birth risk were delayed one day, with little or no evidence 

of an association across the subsequent three days (Fig. S3). Results were similar in 
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sensitivity analyses with varying dfs of the natural cubic spline of time per year or relative 

humidity (Table S2 and Fig. S4).

The associations between extreme temperatures and risk of preterm birth varied both by 

region of the country and by climate zone. The associations for extreme heat were strongest 

in the Southwest and in the Hot-Dry/Mixed-Dry climate zones followed by Midwest and the 

Cold/Very Cold climate zones (Fig. 2). The association between extreme heat and risk of 

preterm birth was more pronounced among mothers age < 25 years compared to older 

women (p for heterogeneity=0.010) (Fig. 3). Although the relative risk was somewhat higher 

among male infants and mothers who were unmarried or had fewer than 9 years of 

education, these differences were not statistically significant. The association between 

extreme cold and risk of preterm birth did not vary across any subgroups evaluated. We also 

found the association of preterm birth with extreme heat and cold was similar for early and 

late preterm births (Table S3 and Fig. S5).

Assuming that the observed association between heat and risk of preterm birth represents a 

causal effect, we estimated that days of extreme and moderate heat accounted for 0.17% 

(95% eCI: 0.14%, 0.19%) and 0.63% (95% eCI: 0.49%, 0.74%) of all preterm births, 

respectively, or 154 (95% eCI: 127, 173) and 586 (95% eCI: 457, 693) preterm births per 

million pregnancies in the study population, respectively (Table 2 and Table S4). Extreme 

and moderate heat accounted for a greater fraction of preterm births in the Southwest and 

Midwest of the country and Hot-Dry/Mixed-Dry and Cold/Very Cold climates, and a smaller 

fraction in the Northwest and Marine climate.

4. Discussion

This retrospective observational study of nearly 32 million live singleton births across 403 

counties in the contiguous United States provides evidence that days of extreme heat are 

associated with a higher relative risk of preterm birth. The association between extreme heat 

and risk of preterm birth varied by geographic regions and climate zones with stronger 

associations observed in the US Southwest and Midwest and in the Hot-Dry/Mixed-Dry and 

Cold/Very Cold climate zones. Days of extreme cold were associated with a modestly lower 

risk of preterm birth.

Our findings of a statistically significant positive association between extreme heat and 

preterm birth are broadly consistent with the findings of two recent reviews, which reported 

that high temperatures were associated with the occurrence of preterm births (Carolan-Olah 

and Frankowska, 2014; Zhang et al., 2017). For example, a study among 58,681 singleton 

births in California, USA, reported that a 10 oF increase in weekly average temperature 

before delivery was associated with an 8.6% (95% CI: 6.0%, 11.3%) higher risk of preterm 

birth (Basu et al., 2010).

Physiological changes during pregnancy may influence the thermoregulation efficiency of 

pregnant women. During pregnancy, the increase in weight may decrease the ratio of body 

surface area to body mass, which may limit a woman’s capacity for heat loss. In addition, 

heat production would increase due to fetal growth and metabolism (Wells and Cole, 2002). 
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Thus, the ability of pregnant women to mitigate heat stress may be limited due to the 

increase in internal heat production and the decrease in capacity for heat loss, potentially 

placing them more vulnerable to heat stress.

However, the potential mechanisms by which acute exposure to heat may influence the risk 

of preterm birth remain unclear. Animal and human studies both suggested that heat might 

lead to an increase in hormones of the hypothalamic-pituitary-adrenal axis, such as cortisol 

and adrenocorticotropic hormone (Ansari et al., 2014; Dreiling et al., 1991; Wang et al., 

2015). This is one of the primary pathways to activate myometrial function and increase 

uterine contractions (Finken et al., 2017; Sloboda et al., 2002), potentially leading to an 

early delivery. Heat may also cause dehydration, in turn increasing blood viscosity, elevating 

cholesterol levels, and shifting blood flow from the vital organs or the developing fetus to 

the skin’s surface to dissipate heat; this sequence of physiologic changes may decrease 

uterine oxygen and induce labor (Bouchama and Knochel, 2002; Dadvand et al., 2011; 

Keatinge et al., 1986).

We found that extreme cold was associated with a modestly lower risk of preterm birth. 

Relatively fewer prior studies have investigated the association of preterm birth with extreme 

cold, and the findings have not been consistent. For example, a study in Guangzhou, China 

(He et al., 2016) reported that extreme cold was associated with a 9% to 20% higher risk of 

preterm birth, whereas analyses of data from Flanders, Belgium (Cox et al., 2016), London, 

UK (Lee et al., 2008), and Rome, Italy (Schifano et al., 2013) did not find any statistically 

significant associations between extreme cold and preterm birth. Our results are consistent 

with a nationwide study in China among approximately 1 million singleton births from 132 

Chinese cities, which found that extreme cold during the four weeks prior to delivery was 

associated with lower risk of preterm birth, especially in regions with warmer climates (Guo 

et al., 2017).

The comparatively weaker association we observed between extreme cold (versus extreme 

heat) and risk of preterm birth might reflect a combination of physiologic and behavioral 

factors. Physiologically, pregnancy-related increase in fat deposition and decrease in the 

ratio of body surface area to body mass might make pregnant women less vulnerable to cold 

versus heat. Behaviorally, the vast majority of households in the US use heating equipment 

during winter (Residential energy consumption survey (RECS), 2017), and people tend to 

alter their behavior in response to cold to limit exposure (Sheridan, 2007).

We found the association between heat and preterm birth was more pronounced in counties 

and regions with colder and drier climates, consistent with previous studies of preterm birth 

(Guo et al., 2017). This finding may be attributable to a lesser degree of physiological, 

behavioral, and technological adaptation to extreme heat in areas with colder and drier 

climates. Although we did not observe any statistically significant differences in the 

susceptibility to heat across subgroups defined by individual characteristics, extreme heat 

was more strongly associated with preterm birth among the youngest mothers, a finding that 

is supported by previous studies (Basu et al., 2010; Schifano et al., 2013).
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Preterm birth is a complex syndrome initiated by multiple causes and the etiology of preterm 

birth remains poorly understood (Goldenberg et al., 2008). Despite increased efforts at 

prevention and intervention, the proportion of preterm births has increased in most countries 

in recent decades (Blencowe et al., 2012), suggesting that new risk factors may play a role. 

Our study found that days of extreme heat might be a novel environmental risk factor for 

preterm birth. Assuming that the associations observed in this study represent a causal 

effect, extreme heat accounted for 0.17% of all preterm births in the study population. 

Periods of extreme heat have occurred more frequently in recent years, and are projected to 

further increase in frequency, intensity, and duration due to continued climate change 

(Pachauri et al., 2014). Additional research is needed to identify strategies or interventions to 

reduce the risk of preterm births during days of extreme heat. This information is important 

for clinicians and public health officials who advise patients and the public.

Our study has several potential limitations. First, some degree of exposure misclassification 

is inevitable due to uncertainty in the imputed birth date and location of each mother on and 

in the days preceding her delivery. This limitation is shared by all time-series studies. On the 

other hand, exposure misclassification may have been lower in this study compared to many 

prior studies given our use of daily mean temperature estimated from a spatially refined, 

gridded climate dataset rather than observations from airport weather stations which 

typically do not represent population average exposures. Nonetheless, we expect that any 

remaining exposure misclassification would be non-differential and on average tend to bias 

our results towards the null hypothesis of no association. Second, given the lack of daily data 

on ambient fine particulate matter air pollution (PM2.5) during this time period, we cannot 

exclude the possibility of residual confounding by PM2.5, which has also been associated 

with higher risk of preterm birth (Shah et al., 2011). However, prior studies suggest that air 

pollution does not confound the short-term association between ambient temperature and 

risk of preterm birth (Basu et al., 2010; Cox et al., 2016; Ha et al., 2016; He et al., 2016; 

Vicedo-Cabrera et al., 2014). Third, we were not able to distinguish in our analyses between 

spontaneous and medically induced preterm deliveries as this information is not reliably 

available in this dataset (Schoendorf and Branum, 2006). Fourth, our analysis was limited to 

the 403 more populous counties of the contiguous US, accounting for nearly 60% of all 

births in the US during the study time period. Whether these results are generalizable to 

other counties with lower populations remains unknown. Similarly, whether the association 

would be similar today given ever-changing medical care, increasing number of days of 

extreme heat, and increasing prevalence of air conditioning (The U.S. Energy Information 

Administration, 2011) remains unknown. Nevertheless, to our knowledge, this is the largest 

analysis of daily ambient temperature and risk of preterm birth to date, including more than 

32 million US singleton births across different geographic regions and climates.

5. Conclusions

In this large retrospective observational study, we found that days of extreme heat were 

associated with a higher relative risk of preterm birth. Although the pathophysiologic 

mechanisms by which periods of extreme heat may trigger preterm births remain unknown, 

this information may be useful to clinicians, public health officials, and the public in light of 

the rapidly changing climate.
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Highlights

1. We examined the association between extreme temperature and PTB in the 

contiguous US.

2. Days of extreme heat were associated with higher risk of preterm birth.

3. The association was stronger in regions with typically colder and drier 

climates.
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Fig. 1. 
Distribution of the 403 US counties, 6 National Climate Assessment geographic regions, and 

7 US Building America Climate Zones.
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Fig. 2. Relative risks of preterm birth associated with temperature extremes over the subsequent 
four days overall and stratified by geographic regions and climate zones.
Abbreviations: CI, confidence interval.

Models were adjusted for long-term and seasonal trends using a natural cubic spline of time 

with 8 degrees of freedom per year, relative humidity using a natural cubic spline with 3 

degrees of freedom, day of the week, federal holidays, and the temporal variation of the 

daily expected count of preterm births.
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Fig. 3. Relative risks of preterm birth associated with temperature extremes over the subsequent 
four days by individual characteristics.
Abbreviations: CI, confidence interval.

Models were adjusted for long-term and seasonal trends using a natural cubic spline of time 

with 8 degrees of freedom per year, relative humidity using a natural cubic spline with 3 

degrees of freedom, day of the week, federal holidays, and the temporal variation of the 

daily expected count of preterm births.
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Table 1.

Demographics of preterm births among 403 US counties from 1989 to 2002.

Characteristics, No. (%) Preterm births (20–36 weeks) OR for preterm birth (95% CI)
a

Total birth 2,973,909 (9.3) —

Gestational age, weeks, median (IQR) 35.0 (3.0) —

Maternal age, years

 <25 1,179,350 (10.7) 1.34 (1.33, 1.34)

 25–34 1,390,758 (8.3) 1 [Reference]

 ≥35 403,801 (9.9) 1.21 (1.21, 1.22)

Marital status

 Married 1,717,846 (7.8) 1 [Reference]

 Unmarried 1,256,063 (12.7) 1.71 (1.71, 1.72)

Maternal race

 White 1,999,007 (8.1) 1 [Reference]

 Nonwhite 974,902 (13.7) 1.81 (1.81, 1.82)

Years of education, years

 ≤ 8 227,284 (10.9) 1.04 (1.04, 1.04)

 9–12 1,571,182 (10.7) 1 [Reference]

 13–17 1,103,229 (7.7) 0.69 (0.68, 0.69)

 Unknown 72,214 (10.1) 0.95 (0.94, 0.95)

Smoking during pregnancy

 No 1,897,344 (9.1) 1 [Reference]

 Yes 344,353 (12.1) 1.36 (1.35, 1.36)

 Unknown
b 732,212 (8.8) 0.96 (0.96, 0.96)

Alcohol consumption during pregnancy

 No 2,264,166 (9.4) 1 [Reference]

 Yes 51,698 (12.4) 1.37 (1.35, 1.38)

 Unknown
b 658,045 (8.9) 0.94 (0.94, 0.94)

Parity

 0 1,261,636 (9.5) 1 [Reference]

 1 849,657 (8.3) 0.88 (0.87, 0.88)

 ≥ 2 850,362 (10.3) 1.11 (1.11, 1.11)

 Unknown 12,254 (10.7) 1.16 (1.14, 1.18)

Chronic hypertension

 No 2,865,650 (9.2) 1 [Reference]

 Yes 43,430 (20.9) 2.57 (2.54, 2.59)

 Unknown 64,829 (11.0) 1.23 (1.22, 1.24)

Season of conception
c

 Spring 690,569 (9.4) 0.98 (0.98, 0.99)

 Summer 718,648 (9.3) 0.97 (0.97, 0.98)

 Fall 803,703 (9.5) 1 [Reference]

Environ Int. Author manuscript; available in PMC 2020 May 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Sun et al. Page 17

Characteristics, No. (%) Preterm births (20–36 weeks) OR for preterm birth (95% CI)
a

 Winter 760,989 (9.2) 0.96 (0.96, 0.96)

Geographic region

 Northeast 715,500 (8.8) 1.01 (1.01, 1.01)

 Southeast 566,639 (10.8) 1.26 (1.25, 1.26)

 Midwest 591,021 (9.5) 1.10 (1.09, 1.10)

 Great Plains 347,421 (10.1) 1.19 (1.18, 1.19)

 Northwest 74,808 (7.4) 0.84 (0.83, 0.84)

 Southwest 678,520 (8.7) 1 [Reference]

Climate zone

 Hot-Humid 533,446 (10.6) 1.26 (1.26, 1.27)

 Mixed-Humid 839,539 (10.0) 1.18 (1.18, 1.18)

 Hot-Dry/Mixed-Dry 528,042 (9.0) 1.06 (1.05, 1.06)

 Cold/Very Cold 914,837 (8.6) 1 [Reference]

 Marine 158,045 (7.5) 0.86 (0.86, 0.87)

Abbreviations: IQR, interquartile range; OR, odds ratio; CI, confidence interval.

—
denotes not applicable.

a
Odds ratios were estimated from crude model that without including any covariates.

b
Smoking and drinking consumption were not recorded on California birth certificates.

c
Season of conception: spring (March-May), summer (June-August), fall (September-November), and winter (December-February).
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Table 2.

Fraction and number of preterm births attributable to extreme heat.

Subgroup Fraction of Preterm Births % (empirical CI) Number of Preterm Births per Million Pregnancies No. 
(empirical CI)

All US 0.17 (0.14, 0.19) 154 (127, 173)

Geographic Region

 Northeast 0.13 (0.08, 0.17) 116 (73, 153)

 Southeast 0.17 (0.13, 0.20) 181 (141, 219)

 Midwest 0.19 (0.13, 0.23) 176 (122, 220)

 Great Plains 0.14 (0.05, 0.21) 140 (50, 216)

 Northwest 0.12 (0.01, 0.22) 90 (10, 160)

 Southwest 0.20 (0.12, 0.26) 174 (108, 222)

Climate Zone

 Hot-Humid 0.14 (0.09, 0.19) 151 (93, 206)

 Mixed-Humid 0.14 (0.10, 0.18) 145 (99, 185)

 Hot-Dry/Mixed-Dry 0.21 (0.13, 0.29) 194 (113, 262)

 Cold/Very Cold 0.18 (0.14, 0.22) 158 (122, 189)

 Marine 0.09 (0.01, 0.16) 69 (7, 122)

Abbreviations: CI, confidence interval.

Extreme heat was defined as temperatures above 95th percentile of county-specific temperature distributions.
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