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Abstract

Size and shape are important properties of shrub crops such as blueberries, and they can be particularly useful for
evaluating bush architecture suited to mechanical harvesting. The overall goal of this study was to develop a 3D
imaging approach to measure size-related traits and bush shape that are relevant to mechanical harvesting. 3D point
clouds were acquired for 367 bushes from five genotype groups. Point cloud data were preprocessed to obtain clean
bush points for characterizing bush architecture, including bush morphology (height, width, and volume), crown size,
and shape descriptors (path curve A and five shape indices). One-dimensional traits (height, width, and crown size) had
high correlations (R> = 0.88-0.95) between proposed method and manual measurements, whereas bush volume
showed relatively lower correlations (R> = 0.78-0.85). These correlations suggested that the present approach was
accurate in measuring one-dimensional size traits and acceptable in estimating three-dimensional bush volume.
Statistical results demonstrated that the five genotype groups were statistically different in crown size and bush shape.
The differences matched with human evaluation regarding optimal bush architecture for mechanical harvesting. In
particular, a visualization tool could be generated using crown size and path curve A, which showed great potential of
determining bush architecture suitable for mechanical harvesting quickly. Therefore, the processing pipeline of 3D

mechanical harvesting) and farm management.

point cloud data presented in this study is an effective tool for blueberry breeding programs (in particular for

Introduction

Blueberries are nutritious fruit, containing ample
amounts of phytochemicals (e.g., antioxidants) beneficial
to human health'. The United States (US) is the largest
blueberry producer and consumer in the world, and the
recognition of blueberry economic and nutritional values
have prompted cultivation of blueberries in other coun-
tries (e.g., Chile, China, Mexico, Peru, Australia, and
European countries)®. Thus, an increasing demand for
blueberries has been foreseen, requiring improvements in
blueberry production technology and fruit quality in the

Correspondence: Changying Li (cyli@uga.edu)

'School of Electrical and Computer Engineering, College of Engineering, The
University of Georgia, Athens, GA 30602, USA

2Appalachian Fruit Research Station, United States Department of Agriculture-
Agricultural Research Service, Kearneysville, WV 25430, USA

Full list of author information is available at the end of the article.

The author contributed to this study when he was a summer intern with the
Bio-sensing and Instrumentation Laboratory in School of Electrical and
Computer Engineering.

© The Author(s) 2019

future. These improvements require breeding programs
to develop superior genotypes that are better adapted to
different climates and modern agriculture production
practices, including fruit harvesting with over-the-row
(OTR) mechanical harvesters. Phenotyping technologies
provide various traits for genotype evaluation in breeding
programs®~°, These traits can also be used for manage-
ment decision-making in commercial production fields
such as the ability to use mechanical harvesting methods
with limited (or even no) impacts on fruit quality.

Bush architecture is important for tree/shrub crops,
because it usually can be used for growth evaluation,
biomass estimation, yield prediction, harvest efficiency
improvement, and utilization of plant protection products
such as pesticides®. Size and shape are two important
aspects of bush architecture. Size-related traits indicate
the overall growth status of bushes, which are related to
yield potential. Studies were conducted to use size-related
traits to evaluate blueberry vegetative growth under
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various environments, showing a reasonable correlation
between those traits (e.g., bush height) and berry yield”®.
Bush shape describes the geometry of bushes, which is an
important factor affecting the performance of OTR
mechanical harvesters. Some blueberry growers are
already using OTR mechanical harvesters. More growers
expect to rely on OTR mechanical harvesters to pick
blueberries for fresh market, addressing the challenges of
increasing harvest labor cost and anticipated insufficient
labor force. To maximize the performance of OTR
mechanical harvesters, blueberry plants ideally should
have a narrow and small crown (e.g., small cross-section
area near the ground) and a vase-shaped canopy’™''. A
narrow and small crown is easy to tighten with catch
plates of OTR harvesters, leaving small gaps between the
bush and the catch plates to prevent berries from falling
to the ground'>'®. This reduces yield losses due to
mechanical harvesting. A vase-shaped canopy positions
fruit away from the central crown of a blueberry plant,
providing a relatively open area for berries to drop onto
harvester catch plates. This reduces external impacts (and
thus potential bruises) on machine-harvested berries for
better fruit quality and longer shelf-life. To date, the
determinations of bush dimension, crown size, and bush
shape have largely relied on manual assessments, which
are subjective and laborious.

Crop size-related traits have been widely studied using
two-dimensional (2D) and three-dimensional (3D) imaging
modalities. 2D imaging approaches were primarily used to
extract unitless ratios or traits in the unit of image pixel'*.
When a reference object is provided or the imaging system
is pre-calibrated, extracted traits can be converted to real
world units. Conversion models are usually established for
greenhouse- or chamber-based phenotyping systems due
to the easy deployment of reference objects and precise
configuration of a pre-calibrated imaging system'>™*%,
When the distance between the canopy and camera is
relatively consistent, unitless ratios (e.g., canopy coverage
ratio) are comparable over different data collection periods
and thus they have been extracted in many 2D imaging-
based studies'*. With the increased availability of 3D sen-
sing approaches, researchers are starting to frequently use
3D imaging techniques for measuring size-related
traits'®'?, Previous studies intensively investigated size-
related traits at the plant and canopy levels for tree and
shrub crops such as apples®, pears®’, grapes®®>*, hick-
ories®®, olives®!, almonds®®, peaches®®, and blueberries®.
These studies showed a general trend that the accuracy of
crop size measurement mostly depended on point cloud
quality, which is determined by sensing range and imaging
approaches. Photogrammetry-based 3D imaging approa-
ches (e.g., the structure from motion (SfM)) are inexpen-
sive and can provide detailed point cloud data, but they
require considerable computational resources for 3D
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reconstruction. The quality of reconstructed point clouds is
significantly affected by ambient conditions such as illu-
mination changes and wind. In addition, the SfM technique
requires the use of reference objects to scale reconstructed
point clouds, if no metric data (e.g., accurate metric posi-
tions of image acquisition) are provided. In such cases,
reference targets need to be included in the imaging scene,
introducing potential challenges for large field experiments
(e.g., over several hundreds of plots)**~3°, Active 3D ima-
ging instruments (e.g., LiDARs) are costly but usually
provide fast 3D measurements. Some active instruments
have particular outdoor configurations (e.g., special emit-
ting illumination sources) to dramatically improve the
accuracy and repeatability of 3D reconstruction in the field.
However, occlusions can lead to incomplete scanning of
objects, presenting difficulties in trait measurement. For
instance, it would be difficult to measure plant organs and
branches under the canopy because they cannot be imaged
by instruments using a single sensing angle. Recently, a
handheld mobile laser scanner was developed so that full-
view point clouds can be obtained®*. Two studies demon-
strated that the handheld laser scanner could obtain point
clouds with much less missing points due to occlusion for
forest structure characterization and inventory®>*, Thus, it
is worthwhile to explore the use of this laser scanner to
obtain point cloud data for measuring size-related traits of
shrub crops, especially the traits of plant parts under the
canopy such as crown size of blueberry plants.

Shape analysis methods can be grouped into two cate-
gories: descriptive methods and outline-based methods®*.
Both methods have been commonly used to analyze
shapes of fruits, vegetables, and plant leaves. Descriptive
methods usually define landmark points that can be used
to derive ratios, angles, and their combinations for
quantifying object shapes. Descriptive methods have been
used to study the shape of tomatoes®>®, eggplants®,
vineyard grape leaves®, and peppers®. Outline-based
methods rely on advanced mathematical tools (e.g., curve
functions and elliptical Fourier analysis (EFA)) to quan-
titatively describe object shapes using transformed fea-
tures. Studies reported the use of EFA for analyzing the
shape of mistletoe berries®®, cotton leaves*', oranges®,
ash tree fruit*, and persimmons**. Shape descriptors
defined in descriptive methods have clear physical
meanings, which can be easily interpreted and compared.
However, defining descriptors requires a good under-
standing of domain needs and knowledge, involving extra
efforts from domain experts. In contrast, features
extracted using outline-based methods usually have no
direct physical meaning, which requires visualization tools
for feature interpretation and understanding. Outline-
based methods use general mathematical models/frame-
work to calculate shape features, which require almost no
domain knowledge for conducting data analyses. It is also
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possible to use both methods for a comprehensive ana-
lysis because shape descriptors from the two methods
could be complementary to each other®. In fact, both
methods would be suitable for bush shape analysis for two
reasons: (1) there is a clear physical definition of optimal
bush shape for mechanical harvesting, and thus it would
be straightforward to define landmark points to extract
shape features; (2) previous studies?®*® demonstrated that
a curve function (path curve) can effectively depict dif-
ferences between vase shape, cone shape, and round
shape, which would be worthwhile to explore.

To the best of our knowledge, only one study from our
group has reported on the potential of using 3D imaging
to extract size-related traits and shape descriptors of bush
crops such as blueberries*’. The study used an unmanned
aerial system to acquire oblique images of blueberry
bushes from approximately 3 m above the ground for
reconstructing point clouds using the SfM technique. It
achieved a strong correlation (R* = 0.92) between imaging
and manual measurements of bush dimensions (e.g.,
height and width) with an root mean square error (RMSE)
of 0.1m, indicating a high system measurement
accuracy. However, correlations were less desirable (R* =
0.38-0.55) between imaging and manual measurements
for crown size, which is one of the most important
parameters of machine harvest efficiency. The undesirable
correlations occurred primarily due to the limitation of
data collection system. When images were acquired on
top of bushes regardless of using nadir or oblique per-
spectives, bush canopy occluded plant architecture close
to the ground, leading to an incomplete 3D reconstruc-
tion of bush crown and thus inaccurate measurement of
crown size. In addition, some shape descriptors defined in
the study may not have been effective in identifying
desired bush shapes. For instance, “blockiness” was
defined as the ratio of widths at 85% and 65% canopy
heights, but it had no relation to the position of the widest
canopy cross section, which is the determinant among
round (the widest cross section in the middle), conical
(the widest cross section in lower canopy), and vase
shapes (the widest cross section in upper canopy). In fact,
bush canopy can be round, conical, and vase-shaped for
the same “blockiness” value. Therefore, it is necessary to
address aforementioned issues and provide improved
approaches in both data collection and analysis for
measuring size-related traits and bush shape. These
approaches would be particularly useful for breeding
programs to select blueberry genotypes suited to machine
harvesting.

The overall goal of this study was to develop a 3D
imaging approach to measure blueberry bush dimensions
and shape in the field. Specific objectives were to: (1)
evaluate the accuracy of sensor measurements for objects
with standard shapes in field conditions; (2) develop data

Page 3 of 17 43

processing algorithms to extract size-related traits
(bush dimensions and crown size) and shape descriptors
of blueberry bushes; (3) evaluate the accuracy of
proposed method; and (4) explore the usefulness of bush
shape descriptors for machine harvesting and farm
management.

Results
Reconstructed point cloud data

Reconstructed results contained a scanning trajectory
and raw point clouds for scanned areas (Fig. 1). In tra-
jectories, the lowest position indicated the starting and
ending points of each data collection session, and starting
and ending points could be further differentiated based on
the relative movement direction. The starting point was
the origin in each scanned point cloud. The waveform of
trajectories reflected the oscillation of the LiDAR node.

Raw point clouds were rendered by color using point
height information, with blue to red representing low to
high values. The blueberry field at the Horticulture Farm
of the University of Georgia showed an obvious sloped
terrain: the southern side (top part in the figure) was at a
lower elevation than the northern side (bottom part in the
figure), resulting in different height values (colors) of
ground points (Fig. 1a). In contrast, the terrain elevation
was relatively level (ground points looked in similar blue
colors) in the field at the Horticulture Research Station in
North Carolina, but clear color contrasts were observed
between furrows (dark blue) and plant beds (turquoise).
These differences increased data variability and could be
particularly challenging for point cloud preprocessing, but
algorithms developed in this study successfully removed
ground and noise points, suggesting its generalizability to
various field conditions (see the section of ground
removal and bush point denoising in Supplementary
Materials).

Accuracy of size measurements

The scanner achieved the nominal measurement accu-
racy (2-3cm) when measuring objects with standard
shapes (see the section of validation of measurement
accuracy in Supplementary Materials), providing a per-
formance baseline to evaluate accuracies of measuring
size-related traits. Generally, correlation was high (R* =
0.92-0.95) between sensor and manual measurements of
bush height and width (Fig. 2a to Fig. 2c). The RMSE and
mean absolute error (MAE) of bush height were com-
parable with those of objects with standard shapes,
whereas the RMSE and MAE of width were two times
larger. This occurred primarily because blueberry bushes
were non-rigid objects that could be swayed by wind
during data collection. Bush movements had relatively
small effects on z-direction, resulting in little or no change
in height measurements. However, the movements would
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Fig. 1 Point cloud data collected using a handheld mobile laser scanner in two fields. The point cloud of blueberry field a Horticulture Farm of
the University of Georgia and b Horticulture Research Station in North Carolina. The displayed point clouds were cropped to remove irrelevant
objects. White lines indicate the walking path and sensor node oscillations of data collection sessions, and star and triangle markers show the starting

have substantial effects on the x- and y-directions, leading
to large errors in width measurements. Nonetheless, mean
relative errors (MREs) (around 5%) indicated that those
errors of width measurements were acceptable.

For bush volume, manual measurements were less than
convex hull volumes but greater than concave hull
volumes (see Figure S4 (a) and (b) in Supplementary
Materials). Compared with concave hull volumes, convex
hull volumes were better correlated (R?=0.85) with
manual measurements, because both convex hull and
manual measurements included space that was not
occupied by branches. It was noteworthy that convex hull
method included considerably more of unoccupied space
between branches than the manual estimation method,
resulting in high MAE (0.21 m®) and MRE (104%) of
volume measurements. In particular, the convex hull
method tended to substantially overestimate (around
120%) the volume of bushes with irregular architecture
and tall crown (compare (c) and (d) in Figure S4 in Sup-
plementary Materials). This occurred because irregular
architecture and tall crown led to large hollow (or empty)
areas among (or below) bush canopies that would be

included by the convex hull method. However, the man-
ual method used a short height interval (0.05m in the
present study) and significantly reduced the amount of
hollow/void areas in volume estimation. Compared with
convex hull volumes, concave hull volumes showed a
lower correlation with manual measurements, but they
were closer to the actual reference values (much smaller
MAE (0.05 m®) and MRE (19%)). A potential reason was
that the amount of space included by the convex hull
method was more related to plant size changes than that
excluded by the concave hull method. When the plant size
increases, the convex hull consistently includes extra
space due to the expansion of plant points, but the con-
cave hull method may or may not exclude space
depending on the local surface. The concave hull method
could match with manual measurements for a flat surface,
while it could exclude a large space for a curved surface
such as the transition section between canopy and non-
canopy parts. The bushes had a large variation of the
surface curvature, leading to inconsistent changes of space
exclusion by the concave hull method and thus a lower
correlation with the plant size changes. For bushes with a
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relatively regular shape, if point clouds were dense
enough, the concave hull volume should be the most
accurate measurements; otherwise, it represented the
lower limit of bush volume. For instance, if a bush grew in
a more regular shape, the concave hull volume was closer
to the manual measurement (compare (c) and (d) in
Figure S4 in Supplementary Materials).

A high correlation (R>=0.88) was also achieved
between sensor and manual measurements of crown size
(Fig. 2d). Both RMSE (0.03 m) and MAE (0.04 m) were
close to the nominal instrument accuracy, indicating a
high measurement accuracy of the present algorithm.
Compared with a previous study”’, the correlation (R?)
increased from 0.56 to 0.88 and the RMSE decreased from
0.06 to 0.03 m, both of which were substantially improved.
These improvements were achieved due to the appro-
priate exclusion of non-crown points (Fig. 2e). For upright
bushes, the cross section usually contained one core point
cluster with several points that were somewhat away from
the cluster (see first row in Fig. 2e). Direct use of the
cross-section points would result in a large error of crown
size measurements, regardless of using either a fitted
diameter or width across-row of the cross section as the
crown size. On the contrary, the present algorithm filtered
out distant points using the 95th percentile (an empirical
value) of distances to the cross-section center, reducing
the measurement error. In addition, main bush branches
would not naturally distribute as a circle, so an ellipse
shape was better for crown fitting and thus crown size
measurement. For inclined bushes, the cross section
mostly contained several point clusters (see bottom charts
in Fig. 2e). The cluster closest to the cross-section center
represented the actual crown, whereas the clusters away
from the cross-section center were points of branches.
Thus, the measurement accuracy was improved by using
only the closest cluster.

Efficacy of crown size and shape descriptors for bush
identification

Crown size and shape descriptors showed statistical
differences among five genotype groups including four
cultivars and one research population bred in North
Carolina for mechanical harvesting (NCSU_MH group
hereafter) (Fig. 3). The crown size of O’Neal cultivar was
statistically more significant than that of the remaining
groups, whereas crown sizes of the remaining groups were
in a similar range although Meadowlark cultivar had the
smallest crown size. This occurred primarily due to two
reasons. First, bushes in the five groups were treated with
different agronomic practices such as pruning of low-
angled branches originating near the ground and large
upright canes away from the core cluster. O’Neal bushes
were planted in a research farm and not pruned for 2
years before the data collection, resulting in a larger
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crown size. On the contrary, other group bushes were
routinely pruned (based on commercial production
guideline) and regulated (only for Star, Meadowlark, and
Farthing), leading to a smaller crown size with less var-
iations. Second, the five groups were being evaluated for
different breeding targets. The four cultivars were bred
primarily for features such as high fruit quality and size,
whereas the NCSU_MH group have been selected for
mechanical harvesting that requires a small crown. Catch
plates on OTR harvesters are pivot mounted on a rail on
both sides of the harvester frame and overlap with
neighboring plates (see Figure S5 (a) and (b) in Supple-
mentary Materials). When the harvester moves to contact
blueberry plants, catch plates are pushed to sides, allowing
bush canes to go into the harvester, and then the plates
retract to cover empty areas. When catch plates (e.g.,
fishscales) do not fully retract and return to a crown size
area at the base of the plant, it would create an opening
area where detached blueberries can potentially fall
through to ground (e.g., ground loss). Smaller crown
means less ground loss. Thus, the NCSU_MH group
should present desired crown size even without crown
regulation.

All shape descriptors showed significant differences
between at least two genotype groups, suggesting that the
shape descriptors could be used for identifying blueberry
genotypes with different bush architecture. The
NCSU_MH group had the least A values (0.8 + 0.26), fol-
lowed by Meadowlark (0.89 +0.17), Farthing (1.1 + 0.24),
and Star (1.42 £ 0.42). By definition, these A value ranges
indicated in general a vase-shaped canopy for NCSU_MH
and Meadowlark groups, a round canopy for Farthing,
and a conical canopy for Star (Fig. 3b). Thus, NCSU_MH
and Meadowlark bushes would have an optimal shape
(vase shape) for mechanical harvesting, which agreed with
human subjective evaluation. Meadowlark also can be
grafted on sparkleberry (Vaccinium arboreum) rootstock
with monopodial growth habit, which creates even smal-
ler crown diameter®’. It should be noted that canopy
vertical ratio (VR) showed the same trend and statistical
results as A. This was because VR essentially quantified
the location of the widest canopy cross section where
branches expanded horizontally. An ideal vase shape
would have the horizontal expansion at a higher position
of the canopy, leading to VR values < 1, whereas a conical
shape would have the opposite pattern. A round shape
would result in VR values = 1. Although VR showed the
same efficacy as A in overall shape quantification, VR
values had larger variations than A, which presented a
concern of using it for differentiating blueberry genotypes
with a small number of replications. The capability of
using extracted traits for genotype differentiation needs to
be further tested when a smaller number of replications is
used.
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In contrast to crown size, A, and VR, other shape
descriptors (non-canopy-bush height ratio (NBR), canopy
aspect ratio (AR), canopy curvedness (CN), and canopy
irregularity (IRR)) could not be used for bush shape eva-
luation based on simple rules (e.g., small crown is pre-
ferred), requiring more domain knowledge for proper
interpretation and use. Star had the highest NBR value

indicating the tallest non-canopy part, which is good for
mechanical harvesting due to more positions for config-
uration of harvester catch plates. However, an excessively
tall crown is not desired because it may result in a yield
reduction more substantially than the ground loss due to
mechanical harvesting. In commercial field setup for
mechanical harvesting, low hanging branches are pruned
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Fig. 3 Crown size and shape analysis results of the five blueberry groups. a Statistical analysis results of the extracted crown size and shape
descriptors and b fitted path curves of representative bushes. Groups with different letters are statistically significant with each other, and group
mean values of each index are sorted alphabetically. In b, green and brown colors are used to render canopy and non-canopy parts of individual
blueberry plants, and red curves are the fitted path curves. No representative bush was selected for the O'Neal group due to the large variation of
crown size and bush shape in the group

to eliminate their interference with the catch plates and
minimize bush crown size to prevent excessive ground
loss, but the pruning cannot be aggressive to impact yield.
Thus, the NBR index needs to be used as a balance factor
for breeding blueberry genotypes suited to mechanical
harvesting. AR values of four cultivars were significantly
lower than the NCSU_MH group. A low AR value indi-
cates an oblate canopy, which is desired owing to a short
dropping height (and thus reduced external impacts) for
berries, but if the canopy is excessively oblate, mechanical
harvesters may damage branches as well as berries on
those branches, decreasing harvest yield and berry quality.
It was also noteworthy that the AR index might reflect
breeding preferences due to different growing environ-
ments. The four cultivars are widely grown in southern
Georgia, whereas the NCSU_MH group has been bred in
a research station along the coastal area where wind
would be generally strong during blueberry vegetative and
reproductive growth stages (March—May). Thus, the use
of AR index also requires considerations of other factors
to evaluate the fitness of bush shape for mechanical har-
vesting. CN evaluated the curvedness of bush canopy
contour and IRR indicated the likelihood of having
abnormally extended portions, both of which provided
useful information for agronomic management such as

pruning. In particular, the IRR values indicated the
management practices conducted on bushes. The O’Neal
and NCSU_MH groups showed statistically lower CN
values and higher IRR values, suggesting a suboptimal
bush architecture regarding agronomic management, but
they had different reasons: the O’Neal group was due to
insufficient management (no pruning for 2 years),
whereas the NCSU_MH group was due to different
growth periods. Data collection of the NCSU_MH group
was conducted in March when bushes had little or no leaf,
and consequently bushes were expected to be more irre-
gular. Nonetheless, NBR, AR, CN, and IRR require addi-
tional considerations from various aspects for proper
interpretation and cannot be used as simple criteria for
bush selection and management.

Visualization tool for identification of optimal bush
architecture for mechanical harvesting

As the crown size and A could be used for bush eva-
luation based on simple criteria, a visualization tool
(scatter plot) was generated to identify an optimal bush
architecture for mechanical harvesting (Fig. 4). Two
standard axes were made based on requirements of crown
size and bush shape for mechanical harvesting. For an
ideal bush architecture, the crown size needs to be less
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Fig. 4 Scatter plot of crown size and the natural logarithm of A
for 145 bushes. Green (or yellow) axes indicate the value limits of
crown size and path curve A for bushes well suited to (or acceptable
for) mechanical harvesting. Solid circles represent the center of
individual clusters. For each representative bush, green and brown
colors are used to render the canopy and non-canopy parts, and the
red line in each bush silhouette indicates the height where the crown
size was measured

than 20.32 cm® and the bush needs to be vase-shaped
(A < 1), whereas for an acceptable bush shape, the crown
size can be increased to 30.48 cm™® and the bush can be
slightly conical (A <1.1). The two standard axes split the
space into four quadrants: (1) the upper left is for bushes
with desired crown size but undesired bush shape; (2) the
upper right is for bushes with undesired crown size and
shape; (3) the lower left is for bushes with desired crown
size and bush shape; and (4) the lower right is for bushes
with desired shape but undesired crown size. When using
the ideal criterion, Meadowlark was the only group having
most bushes with ideal crown size and bush shape. When
using the acceptable criterion, most Farthing and
NCSU_MH bushes met the requirements of crown size
and bush shape for mechanical harvesting, whereas the
O’Neal group primarily laid in the first quadrant where
both crown size and bush shape were not ideal for
mechanical harvesting. Star bushes were mostly identified
in the second quadrant where the bush shape was not
acceptable for mechanical harvesting.

Discussion
The data processing pipeline has demonstrated the
feasibility of using a handheld mobile laser scanner to
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measure size-related traits and shape descriptors of
blueberry bushes in the field. For data collection, the
scanner has a dynamic and expansive sensing perspective,
which is a major advantage over aerial imaging systems
and terrestrial LiDAR systems in which cameras or
LiDARs acquire data from an individual angle. The
scanner node keeps moving along and across the opera-
tor’s movement direction, so a wide range of sensing
angles are used to dramatically reduce the possibility of
missing points due to object occlusions. However, the
scanning throughput of the handheld scanner is relatively
low. If the operator keeps oscillating the scanner node and
walks at 1.4m/s (a regular walking pace), the scanning
throughput is 0.42 ha/h. Considering the weight of the
scanner with necessary accessories (2.5 kg in total weight),
operators may become fatigued after collecting data for a
period. In practice, it is also difficult for operators to
continuously oscillate the sensor node, so oscillating
sensor node can be problematic in a long-time data col-
lection session, which reduces the diversity of sensing
angles and thus the data quality. To increase the scanning
throughput and avoid human fatigue issues, it is necessary
to integrate the scanner with motorized vehicles for
autonomous data collection. In fact, the scanner was
originally developed for both handheld and vehicle-based
applications®, so it can be mounted on a motorized
platform (e.g., a gator utility vehicle) with modifications to
improve the data collection throughput.

The present data processing pipeline can accurately
extract size-related traits, especially the crown size.
Compared with a previous study”’, the measurement
accuracy of crown size has been significantly increased
due to not only the improved measurement algorithm but
also a different way of collecting point cloud data. As for
the aforementioned advantage, the scanner can have
various sensing angles, and some angles (e.g., parallel with
bush crown) can be particularly useful for acquiring
points of the bush crown that is usually occluded by bush
canopies from the nadir and top-to-bottom oblique views.
If raw point clouds miss many points of the bush crown
(or other bush parts), it is not possible to improve the
measurement accuracy of algorithms. Although the pro-
cessing pipeline is independent of data collection systems,
the processing performance highly depends on the quality
of acquired data that are affected by data collection sys-
tems to a certain extent. Due to practical reasons (e.g.,
easy to measure ground truth data), small to mid-size
bushes were used to evaluate the accuracy of the pre-
sented approach, which avoided a potential issue of
branch entanglement between neighboring plants. The
entanglement usually introduces difficulties in accurate
segregation of individual plants (especially the upper
canopy), which could dramatically affect the measure-
ment of width in-row (WIR) and bush volume.
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The extracted crown size and shape descriptors (pri-
marily 1) provide objective evaluation and measurements
for identifying bushes suitable for mechanical harvesting.
In particular, the visualization tool (scatter plot of crown
size and 1) is particularly useful for rapid determination
of optimal bush architecture. NBR and AR indices can be
used as balance factors to select bushes suited to a par-
ticular harvesting machine or growing environment and
maintain other desired features such as yield. CN and
IRR can be incorporated into agronomic management
decision process such as pruning. However, the use of
the four parameters (NBR, AR, CN, and IRR) highly
depends on breeding and management purposes. Thus,
thresholds or value ranges of the parameters for optimal
bush architecture need to be determined with specific
domain purposes and may vary dramatically among
applications. In addition, all the extracted traits could be
used by harvester manufacturers to improve the design
of fruit catching system. The five genotype groups were
selected because they had distinctive bush architecture.
With a large number of replications (at least 20 reps per
group), it would be relatively easy to differentiate the
groups from each other using the crown size and shape
descriptors. We acknowledge that it is necessary to
conduct successive studies involving a wide variety of
genotypes with fewer replications, so the statistical power
of extracted traits can be further tested for genotype
differentiation.

Conclusions

The data processing pipeline presented in this study
accurately measured size-related traits and bush shape
from point cloud data collected by the handheld mobile
laser scanner in the field. Shape descriptors were used to
identify bushes with desired features for machine har-
vesting, and bushes with non-ideal shapes that required
pruning actions. Thus, the present processing pipeline
with the data collection instrument is particularly useful
for blueberry breeding programs and farm management.
Future studies will focus on the development of autono-
mous data collection system and experiments of using
shape descriptors for genotype differentiation in a large-
scale field.

Materials and methods
Blueberry field and data collection

The study was conducted in two blueberry fields. The
first field (33°53’10.7”N and 83°25’15.1"W) was located at
the Horticultural Farm of the University of Georgia in
Watkinsville, Georgia, USA and consisted of 7-year-old
southern highbush blueberry (Vaccinium darrowii)
bushes. The bushes had been un-pruned for 2 years at the
time of this study. Point cloud data were collected in a sub
area (23 m x 15 m) containing 47 bushes (O’Neal cultivar)
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on 4 October 2016 with a clear sky view and an average
wind speed of 2.7 m/s. A closed-loop walking path was
predetermined, with at least one pass for each side of
individual bushes. This walking strategy ensured that
bushes would be scanned from multiple angles to improve
point cloud coverage. While moving along the predefined
path, a person carried the ZEB1 scanner (GeoSLAM,
Ruddington, Nottinghamshire, United Kingdom) and
swung the scanner node across the movement direction.
The walking speed was about 1.4 m/s, and it took
approximately 5 min to complete the scanning. A total of
20 bushes were selected for further analyses, because they
were relatively small plants, which in practice could be
measured manually.

The second field (34°21'42”N and 77°50'11.9"W, 68
m x 12.5m) named Ideal Tract Farm was in the Horti-
culture Research Station in North Carolina. The study
characterized 222 8-year-old bushes that have been bred
for mechanical harvesting. The 222 bushes were pruned
prior to data collection. Data collection was conducted on
15 March 2018 with an overcast sky and an average wind
speed of 3.5m/s. A closed-loop walking path was used
with one pass on each side of individual bushes, ensuring
that bushes would be scanned from multiple angles to
improve point cloud coverage. While moving along the
predefined path, a person carried the ZEB1 scanner and
swung the scanner node across the movement direction.
The walking speed was about 1.0-1.2m/s due to the
muddy ground condition, and it took approximately 10
min to complete the scanning. All 222 bushes were used
for further data analyses, but no manual measurements
were conducted.

Data processing pipeline of extracting size and shape traits
Point cloud preprocessing

A data processing pipeline was developed to extract
size-related traits and bush shape, including data acqui-
sition, preprocessing, and trait extraction (Figs. 5 and 6).
Raw data were manually transferred from the scanner
to a workstation computer and uploaded to the manu-
facturer’s web service (GeoSLAM Cloud, Bingham Not-
tingham, Notts, UK) for 3D reconstruction. The
reconstructed point cloud data contained 4.7 million
points (152 MB in LAS format) and 17 million points
(547 MB in LAS format) for the two experimental fields.

In the preprocessing stage, clean point clouds of indi-
vidual blueberry bushes were obtained (Preprocessing in
Fig. 5). The first step was to rotate the point cloud of the
entire scanning area to a coordinate system in which the
ground plane was paralleled to the x-y plane and the bush
row direction was aligned with x-positive direction.
Ground normal was calculated through plane fitting using
maximum likelihood estimation sample consensus*’, and
rotation transform matrices (7), and T,) were accordingly
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derived for the x-z and y-z planes. Rotation matrix for the
x-y plane (T,) was derived based on the row direction
identified using Hough transform. The point cloud of the
scanning area was rasterized to a depth image, with each
image pixel representing the maximum depth (z value) in
a grid of 0.5 x 0.5 m? in the point cloud. The depth image
was thresholded (the threshold was 0.3 because bushes
were at least 0.3 m above the surrounding ground) to

segment bush pixels. The Hough transform was per-
formed on all bush pixels to detect lines (bush rows) in a
feature space ([a, p]) where a was the complementary
angle to the line orientation and p was the distance from
the line to the origin. If a line represented a bush row, the
line should go through bush pixels as many as possible,
and thus the high occurrence of [, p] values (the « line
with the least intersection points with curves in the
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(see figure on previous page)

lower triangles

Fig. 6 Flowchart of data processing to extract size and shape traits for blueberry bushes. a Overall diagram of trait extraction; b measurement
of size-related traits; ¢ measurement of bush crown size; and d calculation of bush shape indices. In ¢, WAR15 and WIR15 were the width across-row
and width in-row of the cross section at 0.15 m above the ground, and WAR15 was used as crown size in the present study. In d, green and brown
colors indicated the canopy and crown part of bush. Blue and red curves were the contours and the best fitted path curves of the bush canopy. P1 to
P11 denoted 11 landmark points including the bush top-center point (P1), left (P2) and right (P3) end points of the broadest cross section, bush
leftmost (P4) and rightmost (P5) end points, left (P6) and right (P7) canopy-crown separation points, left (P8), center (P9), and right (P10) end points of
the bush bottom, and the center point of the canopy bottom (P11). It should be noted that in this case, P6 did not exist and P3 and P5 overlapped.
LM was the center line of the bush, and LL and LR were the left and right border lines between bush upper and lower portions. L1 and L2 were the
left and right outer boundary lines of the bush bottom portion. Ay, hygper, and hiower denoted the height of the bush crown and canopy upper and

Hough space graph) denoted bush rows. The best a value
was accordingly selected to calculate the bush row
direction. Subsequently, a rotated point cloud of the
scanning area was calculated using Eq. 1.

PtCloudorated = PtCloud oign Ty T, T, (1)
[1 0 0
T,= 10 cosf, sin6f,
|0 —sinf, cosb,
[ cosf, 0 sinb, ]
T,=| 0 1 0
| —sinf, 0 cosd, |
[ cos@, sinh, O]
T,= | —sinf, cosf, O
o 0 1)

Where PtCloud denoted a point cloud matrix, T
represented rotation matrices, and 6,, 6,, and 6, were
rotation angles around the x-, y-, and z-axes, respectively.
The rotated point cloud was re-oriented to ensure that
the bush row vector was toward the x-positive direction,
and then the experimental area was cropped based on its
dimension (23 and 15 m along x-positive and y-positive
directions). Bounding boxes were manually drawn for the
selected 20 bushes, and raw point clouds of individual
bushes (PtCloudgr,wgush) Were segregated accordingly.
The second step was to remove ground and noise points
in raw bush point clouds, obtaining clean bush point
clouds for trait extraction. The ground surface was not flat
due to agronomic practices (e.g., additional woody layer),
and as a result plane-fitting-based methods such as ran-
dom sample consensus could not remove ground points
correctly. An adaptive thresholding approach was pro-
posed for ground point removal. In each raw bush point
cloud, a height histogram was generated using a bin width
of 0.01 m, and bin gradients were calculated accordingly.
The threshold of ground points was determined by three
criteria: its bin gradient was close to zero; it was greater

than the lower limit of the bin with the least gradient
value; and it should be as small as possible. The threshold
was calculated using Eq. 2.

Ngrouna = min({h|0<|G(h)|<t} N {h|h>argmin,(G(h))})
(2)

where /15,0una Was the determined height threshold for
ground points, G(-) was the gradient of a bin, /# was the
lower limit of bins in a height histogram, and ¢ (set to 5 in
the present study) was a noise factor for selecting bins
with the gradient close to zero.

If point heights were lower than the threshold, the
points in raw bush point clouds (PtCloudgra.pusn) were
classified as ground (PtCloudgouna) or otherwise bush
(PtCloudypygp)- After removing ground points, noise points
in bush point clouds (PtCloudy,s,) were detected and
excluded using statistical outlier removal (SOR) filter. For
each point, Euclidean distances to its k nearest-
neighboring points were calculated. A point was cate-
gorized as noise, if the mean distance between that point
to its k neighboring points was larger than # times of the
standard deviation (Egs. 3 and 4).

S /(e =2 + 0y — P + (02— P

D(p.k) = .
(3)
N(p) = { L(noise),  pp(,x)>n* Op(pk) ()
0, otherwise

where D(p, k) denoted a range of Euclidean distances
between a point p in bush point clouds to each of its k
nearest neighbors. ,; indicated the ith neighboring point
of p. pw py and p, (p;, p,, and p;) were the x, y, and z
coordinates of the point p (or its neighboring point #*) in
point clouds. N denoted noise flag, and yp and ép were
the mean and standard deviation of D(p, k), and n was the
scalar of standard deviation.

Based on some preliminary tests, k and n were set as 10
and 1 in this study, respectively. The SOR filter could
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eliminate scattered noise points but not point clusters of
relatively large objects such as weeds. Density-based
spatial clustering of applications with noise (DBSCAN)
algorithm was used to further filter out point clusters of
non-bush objects. After SOR filtering, the points were
clustered using the DBSCAN algorithm, and the largest
point cluster was selected as the clean bush point cloud
(PtCIOUdCIeanBush) (Eq' 5)'

PtCloud cieanpusn = argmax-(|Cj|),i =1,2, ... ,n

(5)

where PtCloudcieanpush denoted the clean point cloud of a
blueberry bush, C denoted a point cluster that was iden-
tified using the DBSCAN algorithm, i was the index of
identified point clusters, ranging from 1 to n, and ||
operator calculated the number of points in a point
cluster.

Size-related trait measurement

Size-related traits were measured from the clean bush
point clouds of individual bushes (Fig. 6a). The mea-
surement was to calculate bush dimensions and crown
size, and the shape analysis was to find the best boundary
curve of canopy and derive shape indices.

Bush dimension Bush dimension parameters included
bush height, WIR, and width across-row (WAR), which
were the maximum length of a bush along the z-, -, and
y-directions, respectively (Fig. 6b). Bush volume was
estimated using concave and convex hulls.

Crown size Crown size is an essential dimensional
parameter, affecting the configuration of catch plate
(also known as fish scale) and ultimately the perfor-
mance (e.g., ground loss) of machine harvesters. In the
horticultural community, the term “crown” refers to a
cross section at a certain height®’. In this study, crown
size was defined as the bush diameter across-row at 15
cm from the bottom of main stems where the catch
plates of OTR harvesters contact with plants. Cross-
section points at such height were separated using
height information, and subsequently distances from
individual cross-section points to the cross-section
median center were calculated (Fig. 6¢). A distance
histogram was generated with a bin width of 0.05 m, and
local minimal bin values (the bin value is less than that
of two neighboring bins) were identified to group bins
into different bin clusters. The first bin cluster
contained points representing the bush crown, and the
95th percentile distance of the first bin cluster (between
the first and second local minimal bin values) was used

Page 13 of 17 43

as the threshold to exclude cross-section points that
were far away from the cross-section center. The
retained points (Ppetaineq) Were fitted to a 2D Gaussian
distribution. The distribution mean and variances were
used as the center and initial values of the semi-axes for
an ellipse curve. Constrained optimization was used to
find the minimum values of the two axes, so that the
ellipse curve could reach a predefined point coverage
(Eq. 6). The ellipse’s vertical diameter was the crown
size of a bush.

min f(dx, dy) =d,+d,

|Peovered|

2 2
— Pi P
> Tcuvemgey Pcm/ered - {P' ‘T% + Lsz < 1717 S Prezained}

subject to T—
(6)

where d, and d, were the horizontal and vertical
diameters of the ellipse curve. Tioverage Was the
predefined coverage (set as 0.9 in the present study).
Pyered is @ set of points covered by the fitted elliptical
curve and p indicated a point in the two sets (Pcovered
and Pretained)- || operator calculated the number of
points in a point set.

Bush shape analysis

Due to the importance of machine harvester config-
uration and performance, the across-row bush shape
was analyzed in the present study (Fig. 6d). For each
bush, clean bush point cloud was projected onto the y-z
plane, and rasterized to a grayscale image using a grid
size of 0.01 x 0.01 m>. As the shape analysis was con-
ducted on images, the coordinate system used the top-
left corner as the origin (0, 0) and x- and y-coordinates
increased along the right and downward directions. In
the grayscale image, pixel intensity represented the
distance from a pixel to the starting point of a
bush along the x-direction. The grayscale image
was thresholded to a raw bush mask, and morphological
operations were used to remove noise pixels and
fill holes, generating the final bush mask for successive
processing.

Landmark point detection A total of 11 landmark
points were defined in the present study, including the
center point of the bush topmost row (P1), left (P2), and
right (P3) end points of the broadest horizontal cross
section, bush leftmost (P4) and rightmost (P5) end
points, left (P6) and right (P7) canopy-crown separation
points, left (P8), center (P9), and right (P10) end points
of the bush bottom, and the center point of the canopy
bottom (P11). P1 to P5 and P8 to P10 were detected
based on their definitions, and five lines (LM, LL, LR, L1,
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and L2) were identified accordingly. LM was the center
line of bush, which is a vertical line passing through P11.
LL was the left border lines, which is a horizontal line
that passes through the point close to the bush bottom
in P2 and P4 and intersects with LM. L1 was the left
outer boundary passing through P8 and the point close
to bush bottom in P2 and P4. Similarly, LR and L2 were
identified on the right side of the bush. LM, LL, and LR
split the skeleton end points into four quadrants.
Distances from individual end points in the left-lower
quadrant to L1 were calculated. P6 was an end point in
the left-lower quadrant that satisfied four criteria: (1) it
had the most considerable distance to L1; (2) its distance
to L1 was larger than a threshold (the median of all left-
lower end points’ distances plus the median absolute
deviation (MAD)); (3) it was close to the bush bottom as
much as possible; and (4) it located above L1 (Egs. 7
and 8).

P6 = paxy, k = argmax(px;,) and px; € Ppecandidate

(7)
Ppgcandidate = {ij|D11 (Px/‘) = max(Dy) N Dy (ij)
>Med(Dy) + MAD(Dy) N ps; >fi (9%)) }

(8)

Where px indicated an end-point pixel in the lower-left
quadrant, and k, i, and j were the indices of P6 pixel, P6
candidate pixels (Ppgcandidate), and end-point pixels in the
lower-left quadrant, respectively. px; ,, and px; , were the
horizontal and vertical coordinates of a pixel px; in
images. Dy denoted the set of distances from individual
left-lower end points to L1. Med and MAD were operators
to calculate the median and MAD values of a set. fi; was
the function of L1.

P7 could be identified using the same criteria in the
lower-right quadrant. The vertical coordinate of the one
close to the bush bottom in P6 and P7 was used to
separate bush crown and canopy. P11 was the center
point of the separation cross section. It should be noted
that P6 and P7 are not guaranteed to be present, because
bush main stems may spread at a position very close to
the ground or form branches at higher positions,
resulting in an unclear separation between canopy and
crown. If both P6 and P7 were missing, the canopy-
crown separation line would merge with the bush
bottom line, and consequently P11 became the same
with P9.

Canopy contour fitting Canopy shape is another
important factor affecting the performance of machine
harvesting. Vase-shaped canopy is likely to reduce the
total harvesting loss and bruising damage, leading to an
improved harvest yield and quality. For a blueberry
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bush, canopy pixels were segmented in the bush mask
image using the landmarks, and canopy contour was
extracted from the segmented part. Path curve was used
to quantify the canopy contour shape. A path curve is
defined by a single parameter A: the path curve is a circle
when A = 1, and becomes conical (or vase-shaped) when
A is larger than 1 (or <1). As the curve position was
considered, the function for drawing a 2D path curve
was defined using Eq. 9.

¢
fwl;z,hpu,l tE€ER— Sy € RxR 9)
e (t)=a w,, + offset e | offset,
Wpte Hpte A = Aprc-\ T ptc mr 2 n
pte = e**’Jrhp%e’

h,
, Wipte X (e*/llmax +th5>< etmax )
w. =

ptc 2
(i)
lmax = 31
t = [—20,20]

where f*° denoted the function for drawing a 2D path
curve, and Wy, Mp, and A were the width, height, and
shape factor of a path curve. w;m was the base value of
horizontal coordinates of a path curve given the width of
Wpte- dpte reached its maximum value when ¢ was fmax.
Based on previous study40, the domain of definition from
—20 to 20 provided adequate range for covering typical
object contours.

Detailed mathematical explanations of a typical function
of path curve can be found in refs. “>*, To evaluate the
fitness of a path curve to a bush canopy contour, an
energy function was defined as Eq. 10.

\ SOy dist(pal)

n

(10)

Eptc =

where e, was the energy function of a path curve, pa?™
denoted the ith pixel in a path curve, and # was the total
number of pixels in a path curve. dist(pal) was a
function to calculate the distance from pa?  to the nearest
pixel of the canopy contour.

Gradient descent approach was used to find the optimal
path curve parameters (Wpec, /pic, and 1) that minimized
the energy function. In the present study, the gradient
descent optimization would stop, if the path curve energy
reached to a minimum value with no change in the
following 5 iterations or the total iteration reached 500.
The path curve with the minimum energy value was
selected as the best-fitting curve using certain initial
values. To avoid fitting to local optima, wp. and /. were
initiated with various values. wEm ranged from % to
Weanopy and /Jipe. ranged from =57 to Kcanopy, With an
increment of 5 pixels for both. Weanopy and /canepy Were
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the width and height of the bounding box of canopy. The
path curve with the lowest energy value among the best
path curves using various initial values was selected as the
final fitting path curve of canopy for a bush.

Shape index calculation: The detected landmark points
and fitted path curve were used to derive five shape
indices: (1) NBR, (2) VR, (3) AR, (4) CN, and (5) IRR
(Fig. 6d). The five indices quantified bush shape aspects
for machine harvesting and agronomic management. NBR
was to evaluate the potential of catch plate configuration,
with high values for a wide range of placing catch plates of
machine harvesters. VR and AR represented the canopy
overall shape. Low VR and AR values (<1) would
represent a vase-shaped canopy with short fruit dropping
height, which is preferred for machine harvesting;
whereas, high VR and AR values (>1) would represent a
conical canopy with greater fruit dropping height, which
is not ideal for machine harvesting. CN and IRR were
more related to agronomic management. In particular,
high IRR values indicated an irregular canopy shape that
requires agronomic actions such as pruning. Mathema-
tical definitions of the five indices were provided in Eq. 11.

By By
NBR = = (11)
hbush hn + hlawer + hupper
VR — hupper
Hiower
hﬁtted
i
AR = M;i:zed
ptc
d d
CN — |t | | Suiangtes| | S | = | Supper | ~1Stower
- | Sﬁtted - | Sﬁtted
ptc 'ptc
Sitted Sfitted
IRR — |C5p,zce ‘ — SC“"“P}' 7|Spttce
Seanopy Seanopy

where /1y, Myppers and Hjower Were heights of non-canopy
part, and canopy upper (with vertices of P1, P2, and P3)
and lower (with vertices of P11, P2, and P3) triangles.
hgﬁm and uﬁiﬁ“i were the height and width of the fitted
canopy path curve. Syppers Siower Sf,fﬁed, and  Scanopy
denoted sets of pixels within the canopy upper and lower
triangles, fitted path curve, and the canopy contour. ||

operator calculated the number of pixels in a given set.

Performance evaluation

It is important and necessary to evaluate the accuracy of
measured size-related traits by the proposed method. Five
size-related traits were manually measured for reference,
including bush height, WIR, WAR, volume, and crown
size. Bush height, WIR, WAR, and crown size were
measured using a measuring tape based on their defini-
tions, whereas bush volume was estimated using a
cylindrical model (see Figure S6 in Supplementary
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Materials). A bush was visually and vertically segregated
into layers with an interval of 5 cm, with each layer being
assumed as a cylinder. Circumference of each layer was
manually measured, and thus diameter could be estimated
to calculate the layer volume. The summation of all layer
volumes was used as a reference value of bush volume.
Simple linear regression analyses were performed between
sensor and manual measurements for size traits. R* and
RMSE were used as indicators to evaluate the accuracy
of sensor measurements. In addition, MAEs and MREs
were calculated as additional parameters for accuracy
evaluation. All analyses were conducted in MATLAB
(Statistics Toolbox 2017b, The MathWorks Inc. Natick,
Massachusetts, USA).

Statistical analyses were conducted on the extracted
crown size and shape descriptors to evaluate their use-
fulness of identifying optimal bush architecture suitable
for mechanical harvesting. Although there were 16 gen-
otypes in the North Carolina field, they have been selected
for mechanical harvesting and are extremely similar in
terms of bush architecture. Thus, it was reasonable to
treat all genotypes in the North Carolina field as one
genotype group (hereafter, NCSU_MH group). An addi-
tional point cloud dataset was used to increase the
diversity of bush architecture, containing three highbush
blueberry cultivars (Star, Meadowlark, and Farthing) with
distinctive bush shape527, In summary, crown size and
shape descriptors were extracted using 367 bushes from
five genotype groups (20 bushes in the O’Neal group, 222
in NCSU_MH, 42 in Star, 43 in Meadowlark, and 40 in
Farthing). As sample sizes were dramatically different
among groups, Kruskal-Wallis tests (nonparametric
equivalent to analysis of variance test) were performed on
extracted crown size and shape descriptors to identify
statistical differences among the five groups. Kruskal-
Wallis tests were conducted in R 3.4.2 (package asbio)
using a significance level of 0.05.

Code availability

Computer program codes and raw data used in this
study can be accessed through https://figshare.com/s/
2abb4eeadfdad103545b.
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