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SUMMARY

The collection of proteins secreted from a cell—the secretome—is of particular interest in cancer 

pathophysiology due to its diagnostic potential and role in tumorigenesis. However, cancer 

secretome studies are often limited to one tissue or cancer type or focus on biomarker prediction 

without exploring the associated functions. We therefore conducted a pan-cancer analysis of 

secretome gene expression changes to identify candidate diagnostic biomarkers and to investigate 

the underlying biological function of these changes. Using transcriptomic data spanning 32 cancer 

types and 30 healthy tissues, we quantified the relative diagnostic potential of secretome proteins 

for each cancer. Furthermore, we offer a potential mechanism by which cancer cells relieve 

secretory pathway stress by decreasing the expression of tissue-specific genes, thereby facilitating 

the secretion of proteins promoting invasion and proliferation. These results provide a more 

systematic understanding of the cancer secretome, facilitating its use in diagnostics and its 

targeting for therapeutic development.
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Robinson et al. compare secreted protein expression changes across different cancer types and 

healthy tissues to identify candidate biomarkers likely to be detectable in biological fluids. 

Functional analyses reveal a pattern whereby cancers decrease the expression of secreted proteins 

responsible for tissue of origin function in favor of those supporting proliferation and invasion.

Graphical Abstract

INTRODUCTION

Early diagnosis is a major factor contributing to cancer treatment success (Etzioni et al., 

2003; World Health Organization, 2017). As such, there have been extensive efforts to 

identify with improved accuracy and sensitivity biomarkers that indicate the presence of 

cancerous cells in a subject (Belczacka et al., 2019; Sawyers, 2008). Recent work has 

focused on the analysis of markers in biofluids, such as urine, plasma, or cerebrospinal fluid, 

as they are non-invasive and can be tested with greater frequency than tissue biopsies 

(Crowley et al., 2013; Diaz and Bardelli, 2014; Webb, 2016). A class of proteins that are of 

particular interest in this context is the secretome, which is the set of proteins secreted to the 

extracellular space, as they are generally more abundant in biological fluids than 

intracellular proteins (Kulasingam and Diamandis, 2008; Stastna and Van Eyk, 2012).

The secretome is considered a valuable reservoir of potential biomarkers for cancer and 

other diseases (Makridakis and Vlahou, 2010; Xue et al., 2008), and a number of studies 

have aimed to explore this class of proteins in search of tumor biomarker candidates. For 

example, Welsh et al., 2003 used Gene Ontology (GO) terms associated with an extracellular 

location and protein sequence patterns to define the secretome to compare the microarray 

gene expression profiles of 150 carcinomas spanning 10 tissues of origin to those of 46 

healthy tissue samples. Biomarker candidates were validated via comparison with previous 

studies that had measured increased expression of the gene or protein in cancer tissue or in 

the serum of cancer patients. Other bioinformatics-based approaches to predict secreted 
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cancer biomarkers include those of Prassas et al. (2012) for colon, lung, pancreatic, and 

prostate cancers, and Vathipadiekal et al. (2015) for ovarian cancer. These and other, similar 

investigations demonstrate the validity of using a bioinformatics-based approach to predict 

proteomic biofluid markers and to identify many new, promising biomarker candidates. 

However, these studies were generally restricted to a limited number of samples, tissue 

types, and/or cancer types; were often based on microarray data rather than RNA sequencing 

(RNA-seq) data; provided only a single set of candidates rather than a complete ranked list; 

and conducted little or no exploration of the biological functions associated with the 

proposed biomarkers.

Proteomic approaches have often been used to profile the cancer secretome (Brandi et al., 

2018; Geyer et al., 2017; Hanash et al., 2008; Makridakis and Vlahou, 2010; Papaleo et al., 

2017; Schaaij-Visser et al., 2013; Xue et al., 2008). These studies generally involve in vitro 
analyses of cell-line conditioned media or analysis of tumor interstitial fluid (or a more 

distant fluid such as blood, plasma, urine, or saliva) (Papaleo et al., 2017). For example, Wu 

et al. (2010) used SDS-PAGE followed by liquid chromatography-tandem mass 

spectrometry (LC-MS/MS) to analyze the secretome of conditioned media for 23 human 

cancer cell lines spanning 11 cancer types, which enabled the identification of both cancer-

specific and pan-cancer serological biomarker candidates. Four of the candidates were 

validated experimentally, showing significantly elevated levels in the serum or plasma of 

liver, lung, or nasopharyngeal carcinoma patients relative to healthy controls. Despite the 

extensive information gained from these experimental investigations, there still exist a 

number of challenges that result in high variability and conflicting results among studies. 

For example, the use of cell lines is not an ideal representation of the in vivo system, 

culturing conditions can affect cell physiology and protein detection, there is a bias toward 

high-abundance proteins, protein concentrations span a large dynamic range in plasma, 

studies differ in sample collection and storage methods, and artifactual proteins are often 

identified, despite little or no relation to the disease in question (Geyer et al., 2017; Hanash 

et al., 2008; Kulasingam and Diamandis, 2008; Papaleo et al., 2017).

In the present study, we conducted a systematic analysis of cancer-associated changes in 

secretome expression to predict candidate biomarkers that could be significantly elevated in 

the biofluids of individuals with cancer and are therefore more likely to be detectable. We 

then investigated the patterns and biological functions associated with shifts in secretome 

expression among different cancer types, focusing on shared “core” secretome behaviors, as 

well as cancer-specific features. The cancer secretome was explored in the context of tissue-

specific genes, revealing a general pattern whereby tumor cells reduce their secretory 

pathway burden in an effort to relieve endoplasmic reticulum (ER) stress and the associated 

unfolded protein response (UPR). We expect the resulting ranked lists of biomarkers for 

each of the 32 different cancer types, in addition to the insight gained from the functional 

analysis of the cancer secretome and associated modulation of the secretory pathway in 

cancer cells, to expedite the development of effective diagnostic biomarkers and illuminate 

potential strategies for improved anti-cancer therapies.
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RESULTS

Evaluation of Secretome Biomarker Candidates

To focus on proteins that are intentionally and actively secreted from the cell, we defined the 

secretome as all proteins possessing an N-terminal signal peptide and annotated as having a 

subcellular location of “secreted” (UniProt; Bateman et al., 2017). This yielded a set of 

1,816 secretome genes for evaluation. In our investigation of cancer-specific secretome 

changes, we first sought to identify secretome genes whose encoded proteins were most 

likely to exhibit detectable changes in a biofluid as a result of their altered expression in a 

tumor. Our analysis pipeline therefore involved the comparison of primary tumor 

transcriptomes with those of (1) paired-normal tissue, (2) healthy tissue corresponding to the 

cancer tissue of origin, and (3) all healthy tissues in the human body (Figure 1A). Primary 

tumor and paired-normal RNA-seq profiles were retrieved for 32 cancer types from The 

Cancer Genome Atlas (TCGA), whereas healthy tissue profiles were obtained from the 

Genotype-Tissue Expression (GTEx) database (STAR Methods; Table S1).

Generation of a Consensus Score—To integrate information from the three 

comparisons performed, the results were combined to generate a consensus score for each 

gene in each cancer type. Top-ranked (high-scoring) genes for each cancer type were those 

with elevated expression in tumor samples compared to paired-normal tissue, healthy tissue 

of origin, and all healthy tissues. The complete set of consensus scores for all cancer types, 

as well as the fold changes (log2FC) and significance values (p values) used to determine the 

scores, are presented in Table S2.

Transcriptomic data of top-ranked genes were examined to confirm their distinct and 

elevated expression in tumor versus non-tumor samples. T-distributed stochastic neighbor 

embedding (t-SNE) was performed on tumor, paired-normal tissue, and healthy tissue 

transcript per million (TPM) values of the top 10 consensus-ranked genes for each cancer 

type (Figures 1B and S1). The majority of tumor samples exhibited clear clustering and 

separation from non-tumor samples, confirming distinct expression profiles between these 

groups among the highly ranked genes. The t-SNE plots also demonstrate differences 

between paired-normal tissue and healthy tissue samples, highlighting the importance of 

including both tumor versus paired-normal tissue and tumor versus healthy tissue 

comparisons in the consensus rank. Although a difference in data sources (TCGA versus 

GTEx) could contribute to the observed paired-normal tissue versus healthy tissue 

separation, a previous analysis of the same two datasets found robust differences even after 

normalizing for potential batch effects (Aran et al., 2017), thus supporting a biological 

component.

The elevated expression of top-scoring candidates in tumors compared to all normal tissues 

is illustrated in Figure 1C for two example genes, cystatin SN (CST1) and angiopoietin-like 

4 (ANGPTL4). These genes are representative of two types of biomarker candidates: those 

with elevated expression in one cancer type (ANGPTL4) and markers with elevated 

expression in multiple cancer types (CST1). Previous studies have experimentally confirmed 

significantly elevated protein levels of ANGPTL4 in the serum of patients with renal cell 
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carcinoma (Dong et al., 2017) and of CST1 in the serum and urine of colorectal cancer 

subjects (Yoneda et al., 2009) relative to non-cancer controls.

Top-Scoring Biomarker Candidates—The results for the top-ranked genes across the 

20 cancer types included in all three comparisons are illustrated in Figure 1D. There was a 

marked clustering of high ranks among many cancers for the collagen (COL) and matrix 

metalloproteinase (MMP) genes. Many members of the MMP family have been detected at 

significantly elevated levels in the plasma, serum, and/or urine of patients with cancers such 

as bladder (Eissa et al., 2007), esophageal (Mroczko et al., 2008), colorectal (Dragutinović 

et al., 2011), prostate (Roy et al., 2008), lung (Izbicka et al., 2012), breast (Patel et al., 

2011), and renal (Sarkissian et al., 2008), compared to non-cancer controls. Collagens have 

similarly been validated as tumor biomarkers. Previous studies have, for example, measured 

a significant increased abundance of type IV collagens in the plasma of pancreatic cancer 

subjects (Ohlund et al., 2009), COL10A1 in the serum of colorectal cancer subjects (Solé et 

al., 2014), COL6A3 in the urine of bladder cancer subjects (Lindén et al., 2012), or 

degradation products of types I, III, and IV collagens in the serum of ovarian and breast 

cancer patients (Bager et al., 2015) relative to controls.

Many of the top-scoring, cancer-specific markers have also been experimentally validated as 

significantly elevated in a biofluid of subjects harboring that particular type of cancer, some 

of which are currently used in the clinic for diagnosis. For example, four of the top five 

scoring candidates for liver hepatocellular carcinoma (LIHC) have been experimentally 

validated as biofluid LIHC biomarkers (ESM1, AFP, GPC3, and MDK); AFP is the most 

commonly used serological LIHC marker in the clinic (Capurro et al., 2003; Lou et al., 

2017; Spangenberg et al., 2006; Yang et al., 2017; Zhu et al., 2013). Likewise, two 

(ANGPT2 [Gayed et al., 2015] and ANGPTL4 [Dong et al., 2017]) of the top five 

candidates for kidney renal clear cell carcinoma (KIRC) and the top candidate (LAMC2 

[Kosanam et al., 2013]) for pancreatic ductal adenocarcinoma (PAAD) have been measured 

at significantly higher concentrations in the plasma, serum, or urine of subjects harboring the 

respective cancer types compared to non-cancer controls.

Extension to an Experimentally Defined Secretome—The biomarker analysis 

described here included only classically secreted proteins that contain a signal peptide, but 

many proteins are secreted through unconventional routes and possess similar diagnostic 

potential (Rabouille, 2017). However, defining a list of unconventionally secreted proteins is 

non-trivial due to the many secretion routes available (e.g., exosomes, pore-mediated 

translocation, ATP-driven transport [Rabouille, 2017]), as well as the variation in their 

protein cargo across different cell types or conditions (Vlassov et al., 2012). We therefore 

used the Human Cancer Secretome Database (HCSD) (Feizi et al., 2015) to generate a list of 

all of the proteins (regardless of signal peptide) that had been experimentally detected in the 

secretome among any of the 35 studies encompassed by the database. This yielded an 

“experimental secretome” consisting of ~6,500 proteins, ~800 of which were present in our 

signal peptide-derived secretome. The results and associated consensus ranks for the 

experimental secretome are presented in Table S3.
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Exploration of the “Core” Cancer Secretome Definition of the Core Secretome

Shifts in secretome expression associated with malignant transformation can be used to 

identify candidate cancer biomarkers; however, based on our global analysis across different 

cancer types, it is also possible to address the more fundamental question of why cancer 

cells restructure their secretome profile throughout tumorigenesis. We therefore sought to 

investigate the biological features underlying the altered secretome expression. Motivated by 

the large number of multi-cancer candidates in our biomarker analysis, we first explored the 

core cancer secretome—the subset of the secretome exhibiting strong differential expression 

across most or all of the cancer types studied. Secretome genes were ranked based on the 

magnitude and significance of their expression fold changes (tumor versus paired normal) 

across all cancer types, referred to here as the PF rank (STAR Methods).

Members of the Core Secretome—Upon inspection of the genes populating the top 1% 

(16 of 1,563 genes) of the pan-cancer PF ranks, two key features were immediately apparent 

(Figure 2A). First, each gene exhibited an expression change in the same direction across all 

(or nearly all) of the cancer types, despite ignoring the fold change direction in the rank 

calculation. This is supportive of an important and defined tumorigenic role for each of the 

associated encoded proteins, independent of the tissue or cell type from which it originates. 

Second, 15 of the 16 top-ranked genes exhibited an expression decrease across all or nearly 

all of the cancer types, suggesting that cancer type-independent shifts in secretome 

expression tend to be decreases.

Given the high number of cancer types exhibiting a coordinated expression decrease (or 

increase) of these core secretome genes, we reasoned that these genes would likely be 

responsible for important tumor-specific functions. Many of the genes exhibiting decreased 

expression are putative or established tumor suppressors (e.g., ANGPTL1, C2orf40, 

CHRDL1, OGN, C7, GREM2) (Hu et al., 2018; Kuo et al., 2013; Li et al., 2015; Pei et al., 

2017; Tsubamoto et al., 2016; Ying et al., 2016), are involved in the remodeling of the 

extracellular matrix (ECM) (e.g., DNASE1L3, CLEC3B, PI16, CCBE1) (Barton et al., 2010; 

Hawes et al., 2015; Hazell et al., 2016; Obrist et al., 2004), and/or participate in cell-matrix 

adhesion functions (e.g., MFAP4, DPT, MAMDC2) (Avilés-Vázquez et al., 2017; Pilecki et 

al., 2016; Yamatoji et al., 2012).

The only top-ranking core secretome gene exhibiting an increased expression was MMP11, 

which was also one of the MMPs that scored highly as a potential candidate biomarker for 

many cancer types. In addition to the tumor-specific functions attributed to the MMP family, 

MMP11 is somewhat unique in that it is secreted in its active form and its ECM substrates 

differ from those commonly targeted by MMPs (Pei et al., 1994). MMP11 has been reported 

to enable tumor invasion by inducing de-differentiation of surrounding adipocytes and 

supporting the accumulation of peritumoral fibroblasts (Andarawewa et al., 2005).

To investigate core secretome genes that exhibited pan-cancer expression increases, the 

gene-ranking process was repeated, except that the direction of expression fold change was 

incorporated instead of using the absolute log2FC values. The set of 16 secretome genes 

with the highest directional PF ranks (top 1%) across the different cancer types exhibited a 

lower degree of coordination compared to the non-directional set (Figure 2B). Regarding 
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function, the majority of the core increased secretome genes were involved in the structure 

and composition (e.g., COL1A1, ACAN, ZP3) (Iozzo and Schaefer, 2015; Pickup et al., 

2014; Rankin and Dean, 2000) or modification (e.g., metalloprotease MMPs and a 

disintegrin and metalloproteinase with thrombospondin motifs [ADAM(TS)]) (Egeblad and 

Werb, 2002) of the ECM. Another function shared by many of the proteins was signaling, 

either as receptors or effectors. For example, EFNA4, NXPH4, and GPC2 facilitate signaling 

associated with neuronal and developmental events, which supports essential tumor 

functions such as angiogenesis, cell adhesion, and motility (Kurosawa et al., 2001; Missler 

and Südhof, 1998; Wilkinson, 2001). Other proteins with signaling-related functions 

included CTHRC1 and C1QTNF6, which are involved in vascular remodeling (Park et al., 

2013; Takeuchi et al., 2011), and SPP1, which is known to facilitate cell-matrix interactions 

(Shevde and Samant, 2014). Overall, core secretome shifts contribute to diverse malignant 

processes, particularly those relating to ECM remodeling, or to a reduction in tumor-

suppressive activity.

Enrichment of Functions in the Core Cancer Secretome—Although analysis of the 

top-ranked core secretome genes offered insight into common functions that were 

downregulated (or upregulated) across the different cancer types, it excludes information 

about the remaining 99% of secretome members. We therefore conducted a gene set analysis 

(GSA) to account for the PF ranks of all of the secretome genes in determining coordinated 

shifts in secretome function. The GSA was performed using both non-directional and 

directional PF ranks.

The most significant gene sets associated with the core secretome were related to ECM 

turnover, cell-matrix adhesion, and signaling processes involving the ECM or immunity and 

inflammation (Figure 2C). Furthermore, the secretome expression increase associated with 

the epithelial-mesenchymal transition (EMT) underscores the importance of the cancer 

secretome in metastatic and invasive processes, regardless of cancer type. Gene sets related 

to glycosaminoglycan (GAG) binding, specifically heparin, were among the most significant 

coordinated decreases in secretome expression. As the genes within these sets encode for 

proteins associated with cell-matrix and basement membrane adhesion, their decreased 

expression further supports a contribution of the secretome to a more migratory and invasive 

phenotype.

The Effects of Tumor Purity on Core Secretome Expression Profiles—Tumors 

are infiltrated to varying degrees by non-cancerous cells, such as stromal or immune cells 

(Hanahan and Weinberg, 2011). Molecular profiles of bulk tumor samples will therefore 

contain signatures from these infiltrating cells, which can obscure or be misinterpreted as 

those originating from tumor cells. To assess whether infiltrating cells were responsible for 

any of the identified features of the core secretome, we repeated the analyses using only 

tumor samples with a consensus purity estimate (CPE) (Aran et al., 2015) of at least 80% 

(Figure S2). The major features remained largely unchanged, supporting their association 

with the cancerous cells themselves. For example, all 16 genes in the top 1% of the core 

secretome exhibited a significant expression decrease in most or all of the included cancer 

types, and 11 of those genes were also present in the top 1% for the original analysis. 
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Functions related to ECM turnover were again enriched among core secretome expression 

increases, although to a lesser extent when considering only high-purity tumor samples.

Cancer Type-Specific Secretome Expression Profiles

Following the investigation of coordinated pan-cancer secretome shifts, we were interested 

in evaluating the cancer types individually and determining which processes and functions 

exhibited strong changes within each type. We therefore conducted a directional and non-

directional GSA of the differential expression (DE) analysis results, in which the direction of 

expression fold changes were included or excluded, respectively (STAR Methods; Varemo et 

al., 2013).

In the directional GSA (Figure 3A), cancer types generally exhibited expression increases 

associated with ECM components and metalloprotease activity; however, 

cholangiocarcinoma (CHOL) and head and neck squamous cell carcinoma (HNSC) 

accounted for the most significant increases, whereas prostate adenocarcinoma (PRAD), 

bladder urothelial carcinoma (BLCA), uterine corpus endometrial carcinoma (UCEC), and 

the kidney cancers displayed no coordinated change or even a modest decrease in 

expression. For these latter cancers, the non-directional GSA results (Figure 3B) revealed 

significant expression changes associated with these processes, but it was a mix of increases 

and decreases rather than a coordinated shift in one direction. Conversely, expression 

decreases related to adhesion and GAG binding were observed across many cancer types, 

with the most significant decreases occurring in kidney chromophobe (KICH), BLCA, and 

UCEC. Again, when ignoring the direction of expression change, virtually all of the cancers 

exhibited significant shifts in the secretome related to these functions. These results suggest 

that different cancer types are shifting their secretome expression in accordance with a 

common set of molecular functions, but the extent and direction of these changes are often 

tuned specifically to the tissue of origin.

When repeating the analysis with high-purity tumor samples (Figure S2), much of the 

enrichment of secretome expression increases in ECM-related functions were reduced or 

absent, indicating a potential contribution of non-tumor cells to this behavior. However, 

significant coordinated expression decreases among genes associated with adhesion and 

GAG binding were observed to an even greater extent when using high-purity tumor 

samples, suggesting a more tumor-specific behavior.

Another feature of interest was the significant decrease in expression associated with several 

gene sets that was unique to CHOL and LIHC. Even when ignoring the directionality of 

expression change, only CHOL and LIHC exhibited significant changes in these sets (Figure 

3B). These sets included genes associated with normal liver function, including binding or 

activity related to lipids, alcohols, sterols, and lipoproteins. Thus, it appeared that CHOL and 

LIHC, which both originate from the liver, were decreasing the expression of their healthy, 

tissue-specific secretome components in favor of those related to malignant and invasive 

processes.

Robinson et al. Page 8

Cell Rep. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Decreased Expression of Genes Specific to Tumor Tissue of Origin

Given that liver-derived cancers CHOL and LIHC exhibited significant and coordinated 

decreases in the expression of the secretome components specific to liver function, we 

investigated expression changes in the context of tissue specificity across all cancer types. In 

addition, to obtain a more comprehensive picture of the secretory pathway clientele, we 

expanded the analysis to include any protein possessing a signal peptide, not only those that 

are destined for secretion (e.g., membrane proteins). This corresponded to a set of 3,491 

signal-peptide genes, referred to hereafter as SP genes.

Tissue-specificity data from the Human Protein Atlas (HPA) (Uhlen et al., 2015) was used to 

define the set of SP genes associated with each tissue (STAR Methods; Table S4). The DE 

analysis (tumor versus paired normal) results for each cancer type were then evaluated in the 

context of the tissue-specific gene sets to determine whether any of the cancer types 

exhibited significant expression changes in the subset of SP genes that are typically 

associated with a particular healthy tissue. As in the previous analyses, directionality of fold 

change was also taken into account to determine whether there were significantly 

coordinated expression increases or decreases.

In addition to the liver-derived cancers, the trend of a decrease in tissue-specific SP gene 

expression generally held true among the other cancers (Figures 4 and S3), all of which 

exhibited either a significant coordinated decrease or no significant change in the genes 

specific to their respective tissue of origin. Furthermore, the same behavior was observed 

even when including only high-purity tumor samples (Figure S4A).

Consistent with the GSA results, LIHC and CHOL exhibited a significant coordinated 

decreased expression of liver-specific genes. None of the 176 liver-specific SP genes were 

significantly (padj < 0.05) increased in either LIHC or CHOL relative to paired-normal 

tissue, whereas 156 (89%) and 174 (99%) of these genes exhibited a significant decrease in 

expression for LIHC and CHOL, respectively. These genes encoded functions such as lipid 

and cholesterol transport and metabolism (apolipoproteins), the complement system, 

coagulation, and protease inhibition (serpins). Similar strong, coordinated decreases in the 

expression of tissue-specific SP genes were observed in breast, colorectal, and lung cancers, 

in which only three or fewer genes in each set (<6%) were significantly increased in 

expression, while the majority were significantly decreased. The four cancer types that did 

not show a significant coordinated decreased expression in SP genes specific to their 

corresponding tissue of origin were BLCA, esophageal carcinoma (ESCA), PRAD, and 

UCEC. However, ESCA, PRAD, and UCEC did exhibit a significant decrease in the 

expression of genes specific to a tissue near their tissues of origin (stomach, seminal vesicle, 

and ovary, respectively) (Figure S3), suggesting a similar phenomenon. The data cannot 

distinguish between tumor cells that have actively decreased their tissue-specific gene 

expression and those that originated from more stem-like cells from the start; however, the 

end state is the same in that (most) cancer types exhibit a lower expression of tissue-specific 

SP genes in tumor cells than in the corresponding normal tissue.
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Evaluation of Secretory Pathway Stress Signatures

The common decrease in the expression of tissue-specific SP genes across many different 

cancer types suggests a general pattern in which tumor cells are relieving the burden on an 

already strained (Ma and Hendershot, 2004) secretory system. By limiting the production 

and secretion of tissue-specific components, tumor cells may be able to dedicate more 

resources to processing proteins that contribute to cell proliferation and other malignant 

processes. To investigate further, we evaluated the tumor versus paired normal DE data for 

signs of increased stress or burden on the secretory pathway.

Activation of the UPR—Disruption of the secretory pathway results in the accumulation 

of misfolded proteins, which in turn activates a series of adaptive processes collectively 

known as the UPR to restore ER homeostasis (Ron and Walter, 2007). Coordinated 

expression increases in UPR-associated genes would therefore be indicative of cells 

undergoing secretory pathway stress and UPR activation. For each cancer type, we evaluated 

the enrichment of expression changes in genes affiliated with the UPR (all affiliated genes, 

not only secreted or SP genes). The results revealed a significant coordinated increase in 

UPR-related gene expression in nearly all cancer types (Figures 5 and S5A), consistent with 

previous reports regarding the prevalence of UPR activation among many cancers (Dejeans 

et al., 2014; Ma and Hendershot, 2004). CHOL and papillary thyroid carcinoma (THCA), 

however, exhibited a negligible coordinated expression increase in UPR-associated genes. 

The same results were observed when considering only high-purity tumor samples (Figure 

S4B), although CHOL was excluded due to the absence of purity scores for this cancer type.

Given that CHOL and THCA were among the cancer types exhibiting a strong coordinated 

expression decrease in tissue-specific SP genes (Figure 4), the data are supportive of the 

observed pattern whereby tumor cells alleviate secretory pathway stress by reducing the 

expression of SP genes specific to sustaining the function of their tissue of origin. Likewise, 

cancer types with an insignificant decrease in the expression of their respective tissue-

specific SP genes (BLCA, ESCA, PRAD, and UCEC) exhibited coordinated expression 

increases associated with ER stress and the UPR (Figures 5 and S5A).

Estimation of Secretory Burden—Proteins traversing the secretory pathway undergo a 

number of maturation processes such as folding and post-translational modifications 

(PTMs). Larger proteins with a greater number of PTMs will require more cellular resources 

than shorter, less-modified proteins, and thus may impart a greater burden on the secretory 

pathway (Feizi et al., 2017; Gutierrez et al., 2018). We reasoned that a shift in expression 

toward lower-cost proteins may constitute another potential strategy to alleviate secretory 

pathway stress in tumor cells. To quantify this cost, we formulated a secretory burden (SB) 

score for each SP gene i as a function of its encoded protein length L (i.e., number of amino 

acids) and number of disulfide (NDS) and glycosylation (Ngly) sites:

SBi =
Li

med(L) +
NDS, i

med NDS
+

Ngly, i

med Ngly
(Equation 1)
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where each property is normalized by the median (med) value among all of the SP genes.

For each cancer type, the Spearman correlation between gene SB scores and expression fold 

changes was calculated (Figures 6 and S5B). Although the correlation coefficients were low, 

the trend was consistent with our observations regarding UPR activation and decreased 

expression of tissue-specific SP genes, which is best illustrated by the two extremes, BLCA 

and CHOL. BLCA yielded the strongest negative correlation between SB score and log2FC, 

suggesting that expression increases tend to be associated with low-burden SP genes, 

whereas the opposite was true for CHOL. Given that BLCA showed evidence of UPR 

activation and exhibited the least significant expression decrease in tissue-specific SP genes, 

it suggests that the inability of BLCA cells to relieve secretory pathway stress via reduction 

in tissue-specific SP gene expression may constrain their ability to process proteins with a 

high secretory burden. Conversely, CHOL exhibited the strongest expression decrease in 

tissue-specific SP genes and showed little evidence of UPR activation, which is indicative of 

lower secretory pathway stress, thus relaxing the constraint on which proteins the secretory 

pathway can accommodate. Cancer types mirroring the trend of BLCA included ESCA, 

PRAD, and UCEC, whereas THCA followed that of CHOL.

To further explore the PTM burden, we investigated the expression changes in genes 

associated with different PTMs: N- and O-linked glycosylation, and protein disulfide bond 

oxidation and reduction (Figure S5C). Nearly half of the studied cancer types exhibited a 

significant coordinated expression increase in genes associated with glycosylation and/or 

disulfide bond formation, suggesting an additional effort to reduce secretory stress. The 

opposite behavior was observed for CHOL, which exhibited significant expression decreases 

associated with disulfide redox and N-linked glycosylation. All of the cancer types that did 

not show a coordinated expression increase associated with these PTMs were those 

exhibiting a significant decrease in their tissue-specific secretome, providing additional 

support for this relief strategy.

Additional Contributors to the UPR—Although HNSC and rectum adenocarcinoma 

(READ) exhibited a coordinated expression decrease in tissue-specific SP genes, as well as a 

positive correlation between SB score and gene expression fold change, these cancer types 

still show evidence of an activated UPR, unlike CHOL and THCA. Because the UPR can be 

triggered by sources of stress other than an overburdened secretory pathway (e.g., genome 

instability, hypoxia, nutrient deprivation) (Corazzari et al., 2017), it is possible that one or 

more of these alternative sources are contributing to UPR activation in HNSC and READ 

cells, despite their modified secretory profile. We therefore compared genome instability 

among the different cancer types using mutation profiles from TCGA whole-exome 

sequencing datasets. HNSC and READ samples exhibited similar mutation burdens (median 

of 134 and 127 somatic mutations per sample, respectively), which were >2-fold greater 

than CHOL (63 median mutations per sample) and >10-fold greater than THCA (12 

mutations per sample) (all p < 10−6, one-sided Wilcoxon rank-sum test) (Figure S6). These 

results support the possibility that other sources of stress beyond those directly involving the 

ER and secretory pathway could be responsible for elevated UPR activation in HNSC and 

READ.
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DISCUSSION

The secretome is regarded as an attractive reservoir of disease biomarkers, as its 

extracellular nature offers the potential to evaluate physiological status through easily 

accessible biofluids (Kulasingam and Diamandis, 2008; Schaaij-Visser et al., 2013; Stastna 

and Van Eyk, 2012). Furthermore, there are many protein biomarkers in use for the 

diagnosis or monitoring of different cancer types based on their abundance in serum, plasma, 

or urine, such as PSA, CA-125, CA19–9, and NuMA for prostate, ovarian, pancreatic, and 

bladder cancer, respectively (Füzéry et al., 2013).

Beyond its potential as a reservoir of biomarker candidates, the cancer secretome is known 

to play a crucial role in tumor development and invasion. We sought to evaluate cancer-

associated shifts in secretome expression with regard to the function of the encoded proteins. 

The majority of shared pan-cancer changes in secretome expression were decreases and 

included proteins associated with functions such as cell-cell and cell-matrix adhesion, tumor 

suppressors with anti-proliferative or anti-migratory activities, and immune response. These 

proteins harbor potential therapeutic opportunities, either by targeting the factors driving 

their expression decrease or through direct use of the tumor suppressor as a therapeutic 

peptide (Bonin-Debs et al., 2004; Guo et al., 2014; Oricchio et al., 2011). For example, 

ANGPTL1, which was among the top 1% core decreased secretome proteins, has been 

demonstrated to suppress cell migration, invasion, angiogenesis, metastasis, and/or therapy 

resistance in hepatocellular carcinoma (Chen et al., 2016; Yan et al., 2017), colorectal cancer 

(Chen et al., 2017), and lung and breast cancers (Kuo et al., 2013).

The trend of expression decreases among the secretome was also observed in the cancer-

specific analyses, in which liver-related cancers (LIHC and CHOL) exhibited a particularly 

strong decrease in the expression of liver-specific SP genes. This reduced expression of 

tissue-specific genes in hepatocellular carcinoma has been explored previously; the extent of 

expression decrease was shown to negatively correlate with tumor grade or degree of 

dedifferentiation (Ge et al., 2005; Uhlen et al., 2017). We investigated this further, focusing 

on the subset of proteins targeted to the secretory pathway and spanning many different 

cancer types. Using tissue-specific gene classification from the HPA, this phenomenon of a 

significant decrease in expression of SP genes specific to the tissue of origin of the cancer 

was found to hold across the majority of examined cancer types.

Since UPR activation (Urra et al., 2016) and increased expression of secretory pathway 

machinery (Dejeans et al., 2014) are common in many cancers, our results suggest a 

common pattern by which tumor cells modify their secretory profile to alleviate ER stress by 

reducing the production of tissue-specific components in favor of tumorigenic factors. 

Consistent with this hypothesis, CHOL and THCA, which exhibited among the strongest 

decreases in their tissue-specific SP genes, were associated with the weakest UPR activation 

and displayed no bias toward the increased expression of low-burden (shorter and with fewer 

PTMs) SP genes. Conversely, the few cancer types with an insignificant decrease in their 

tissue-specific SP gene expression (BLCA, ESCA, PRAD, and UCEC) exhibited increased 

expression associated with the UPR and displayed an apparent bias in expression toward 

lower-burden SP genes.
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Given that different tissues exhibit fine-tuned expression of their secretory machinery to 

accommodate their unique secretome profile (Feizi et al., 2017), it is reasonable to expect 

that a malignant cell could quickly overload this system and induce ER stress upon 

increasing the production of tumorigenic components without an accompanying decrease in 

other SP genes. A number of anti-cancer therapies that activate the UPR are under 

development or approved for clinical use, demonstrating the importance of this system in 

cancer treatment (Hetz et al., 2013). Although many cancers are known to leverage an 

activated UPR for its cytoprotective and restorative effects, UPR-targeted therapies function 

by driving the response further to a pro-apoptotic regime. We reasoned that the strong 

decrease in tissue-specific SP gene expression observed in CHOL or THCA cells, coupled 

with the insignificant coordinated expression increase in UPR-associated genes, could 

indicate a heightened sensitivity of these cancers toward this form of stress. In support of 

this hypothesis, treatment of CHOL cells in vitro and in a subcutaneous transplantation 

mouse model with bortezomib, which activates the UPR via proteasome inhibition, was 

shown to inhibit proliferation and induce apoptosis (Vaeteewoottacharn et al., 2013). 

Furthermore, bortezomib has been found to induce apoptosis in THCA cell lines with half-

maximal inhibitory concentration (IC50) values lower than those of other cancer types (e.g., 

glioma, colon, renal, ovarian, prostate) (Mitsiades et al., 2006), whereas bortezomib 

treatment of BLCA cell line 253JB-V did not result in significant apoptosis and could not 

inhibit 253JB-V tumor growth in mice unless combined with another therapy (gemcitabine) 

(Kamat et al., 2004).

Overall, the functional diversity and close involvement of the secretome in a number of 

critical tumorigenic and metastatic processes highlights the importance of this group of 

proteins in cancer pathophysiology and presents a strong case for its targeting in anti-cancer 

therapeutic development. In addition, the ranked list of secretome biomarker candidates for 

each of the 32 different cancer types is expected to help facilitate the development of more 

accurate, less invasive diagnostic methods.

STAR★METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources should be directed to and will be fulfilled by 

the Lead Contact, Jens Nielsen (nielsenj@chalmers.se).

METHOD DETAILS

Definition of the secretome and SP genes—The list of proteins comprising the 

classically secreted secretome was obtained via UniProt (uniprot.org) (Bateman et al., 2017). 

Beginning with the entire human proteome (UP000005640), proteins were filtered to include 

those labeled as “UniProtKB/Swiss-Prot (reviewed),” with a subcellular location of 

“Secreted,” and PTM/Processing of “Signal peptide,” yielding 1,838 unique UniProt entries. 

The associated Entrez gene IDs and gene names were mapped to Ensembl IDs 

(GRCh38.p12), where those that did not map were excluded, and duplicated entries were 

removed, resulting in a secretome of 1,816 unique genes when analyzing TCGA data. For 
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analyses also involving GTEx samples, genes absent from the that dataset were excluded, 

yielding a secretome comprised of 1,810 genes.

SP (signal peptide) genes were defined and generated in the same way as the secretome, 

except without the requirement for a subcellular location of “Secreted.” This resulted in a set 

of 3,491 SP genes, of which 3,111 had associated differential expression data (TCGA 

primary tumor versus paired normal).

The experimentally-derived secretome—Many proteins are secreted despite not 

having a signal peptide. To account for these unconventionally secreted proteins, we defined 

an “experimentally-derived” secretome consisting of proteins that had been detected within 

the extracellular environment in any one of the 35 secretome studies included in the Human 

Cancer Secretome Database (HCSD). We first retrieved the label-free proteomic data from 

HCSD, and extracted a list of all proteins that had been detected in at least one of the 

studies. For the label-based studies, proteins were retrieved if they had been measured to 

decrease or increase in concentration among any of the studies, as both cases imply 

detection. These lists were combined and mapped to the set of genes present in TCGA RNA-

Seq data, resulting in a secretome consisting of 6,543 genes.

Retrieval of human plasma proteome data—Given the RNA-based nature of the 

analysis, we sought to enrich the results through the integration of protein-level data. We 

therefore retrieved a list of proteins that have been experimentally detected in plasma, which 

is a result of the Human Plasma Proteome Project (HPPP) (Schwenk et al., 2017). This 

protein evidence information was integrated with the consensus score results summarized in 

Figure 1D and Table S2.

The human plasma proteome was retrieved from PeptideAtlas (Farrah et al., 2013) (htpp://

www.peptideatlas.org/hupo/c-hppp/). Only entries with a neXtProt protein evidence (PE) 

level of 1 (evidence at the protein level) were considered. This yielded four sets of proteins 

with categories of “canonical,” “uncertain,” “redundant,” or “not observed” (see Tables S2 

or S3 for category definitions). Non-unique protein entries were combined, where the 

category of greater evidence was used if multiple categories were assigned to the same entry. 

Genes in the present study that did not have a corresponding entry in the plasma proteome 

dataset were categorized as “NA.”

Transcriptomic data retrieval—RNA-Seq data (FPKM and raw gene counts) were 

retrieved from TCGA on May 4, 2017 using the TCGAbiolinks (Colaprico et al., 2016) 

package in R (Gentleman et al., 2004; R Development Core Team, 2018), for all 33 cancer 

types available at that time. One cancer type, acute myeloid leukemia (LAML), did not have 

any associated primary tumor RNA-Seq data, and was thus excluded from all analyses, 

resulting in a total of 32 cancer types. GTEx RNA-Seq data (V7, TPM and raw gene counts) 

were retrieved directly from the site (http://www.gtexportal.org/home/datasets) on October 

18, 2017.

Primary tumor and paired-normal transcriptomic (RNA-Seq) data were retrieved for 32 

cancer types from TCGA, for a total of 9,760 primary tumor and 730 paired-normal 
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samples, where both sample types were available for 697 patients. Healthy tissue RNA-Seq 

data was retrieved from the GTEx database, for a total of 11,688 samples spanning 714 

donors and 30 tissue/organ types (or 53 subtissue types).

Mutation burden quantification—Mutation annotation files (MAFs) derived from 

whole-exome sequencing data were retrieved for all available cancer types from TCGA 

using the TCGAbiolinks R package. The total number of somatic mutation events (insertion, 

deletion, or single nucleotide polymorphism) for each primary tumor sample were summed 

to yield a total mutation burden for each sample.

Analysis of high-purity tumor samples—Consensus purity estimate (CPE) scores for 

TCGA primary solid tumor samples were obtained from a previous study (Aran et al., 2015), 

which calculated and combined purity scores using four different methods (ESTIMATE 

(Yoshihara et al., 2013), ABSOLUTE (Carter et al., 2012), LUMP and IHC (Aran et al., 

2015)). All tumor samples with a CPE of less than 80% (0.80), or those that did not have a 

score available, were removed from the high-purity analysis. Cancer types that did not have 

any scores available (CHOL, ESCA, PAAD, PCPG, STAD), or had 3 or fewer tumor-normal 

sample pairs after removing low-purity tumor samples (BLCA, HNSC) were also excluded.

Consensus biomarker score—The consensus biomarker score was generated by 

combining the results from three types of sample comparison: (1) tumor versus paired 

normal, (2) tumor versus healthy tissue of origin, and (3) tumor versus all healthy tissues.

Comparison 1: primary tumor versus paired-normal tissue: The first comparison 

leveraged the paired nature of TCGA samples, meaning the tumor and normal tissue sample 

originated from the same patient. This enabled an estimation of gene expression changes 

that were specific to malignant transformation, rather than those arising from variation 

among patients or tissues of origin. TCGA data were filtered to only keep patients with 

paired samples; i.e., those with both a primary tumor and normal tissue sample. 

Furthermore, only cancer types with at least three patients after filtering were included, 

resulting in a final count of 693 patients spanning 20 cancer types. For each cancer type, a 

differential expression analysis was performed, comparing primary tumor with paired 

normal tissue, using the patient ID as a blocking factor.

Comparison 2: primary tumor versus healthy matched tissue: The second comparison 

was conducted in recognition of the fact that paired-normal samples are not always 

representative of normal healthy tissue, as nearby tumor cells are known to perturb cellular 

function (Aran et al., 2017; Huang et al., 2016). Therefore, primary tumor TCGA samples 

were compared to GTEx healthy tissue samples (of the same tissue-of-origin) from non-

cancer patients. For this analysis, all 9,760 primary tumor samples were used, not just those 

with a corresponding paired-normal tissue sample. A differential expression analysis was 

performed for each cancer type, comparing primary tumor samples with those of the 

corresponding healthy tissue from GTEx.

Comparison 3: primary tumor versus all healthy tissues: The final comparison sought to 

identify genes with relatively low expression throughout all tissues in the body compared to 
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their expression in a tumor. We hypothesized that tumor-derived expression changes in such 

genes would be more detectable in a biofluid than genes expressed at similar or higher levels 

in many healthy tissues, as the latter could impart a “dilution” effect on the tumor-associated 

signal of interest. For this analysis, we were more interested in transcript abundance rather 

than fold-changes between two conditions. Therefore, normalized gene counts (FPKM) were 

retrieved from TCGA for all tumor and paired normal tissue samples and converted to 

transcripts per million (TPM). TPM gene counts were also retrieved from the GTEx 

database for all measured tissues. The complete set of healthy tissues was obtained by 

combining healthy tissue samples from GTEx with paired normal samples from TCGA 

(Table S1).

For each gene in a given cancer type, the TPM values among all TCGA primary tumor 

samples for that cancer type were compared to the TPM values for that gene across all 

normal samples for a particular tissue type, using a right-tailed Wilcoxon rank-sum test (i.e., 

the null-hypothesis being that the tumor counts are not sampled from a distribution with a 

higher median than that of the normal tissue counts). This yielded a significance (p value) 

for each gene for a tissue type, where a low p value corresponded to genes with higher TPM 

values in primary tumor tissues than in the normal tissue. The comparison was repeated for 

all of the healthy tissue types, to obtain a p value for each tissue. The test was performed 

with each healthy tissue individually rather than pooling all of the normal samples together, 

as the pooled test would be biased by variations in the number of samples for different 

tissues. Each of the p values obtained from the different tissues types were then combined 

(geometric mean) into a single p-like score (ranging from 0–1). The entire process was 

repeated for each of the different cancer types, yielding a single score for each gene and 

each cancer type.

Consensus score formulation: For the first two comparisons (DE analyses), genes were 

ranked by their combined fold-change and significance (FDR-adjusted p value). Fold-

changes were ranked directly, with higher ranks assigned to genes with greater positive 

log2FC (tumor/normal), and vice versa. Prior to ranking p values, the associated FC 

direction was incorporated to generate directional p values (pdir) for each gene i (analogous 

to the approach described in (Väremo et al., 2013)):

pdir, i =
pi − 1 • sign FCi + 1

2 (2)

where sign(FC) is the sign of the corresponding log2(fold-change). In this manner, genes 

with low p values and a positive FC receive a pdir near zero, whereas genes with low p 

values but a negative FC have a pdir close to one. Genes associated with a high p value will 

therefore have a pdir near 0.5, regardless of FC direction. These pdir values were then ranked 

such that higher ranks were assigned to genes with lower pdir values. Finally, the p-like 

scores generated from the third comparison (tumor versus all tissues) were ranked directly, 

where low p-scores (high significance) were ranked highly, and vice versa.
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The consensus rank score was calculated by combining the gene ranks from each of the 

three comparative analyses, as illustrated in Figure 1A. Specifically, the FC and pdir ranks 

from the first comparison were averaged, and this mean rank was averaged with the mean of 

the FC and pdir ranks from the second comparison. The resulting combined rank was 

averaged with the rank of p-like scores from the third comparison to yield the overall 

consensus rank score, enabling the prediction of candidate biomarkers for each cancer type. 

The effective weight ratios from the three comparisons (tumor versus paired normal, tumor 

versus healthy tissue-of-origin, and tumor versus all healthy tissues) in the consensus score 

were therefore 1:1:2, respectively. The ratios were assigned as such because the score was 

designed to place equal weight on expression differences of tumor versus tissue-of-origin, 

and of tumor versus all tissues. Since comparisons 1 and 2 both quantify tumor versus 

tissue-of-origin differences, they were each assigned half the weight of comparison 3, which 

quantified tumor versus all tissue differences. Moreover, since the information from the first 

two comparisons is likely to exhibit more redundancy (paired normal tissue and healthy 

tissue-of-origin are relatively similar in their expression profiles compared to other tissue 

types), they were weighted less than comparison 3.

Cancer types lacking paired-normal or healthy tissue data: Among the 32 TCGA cancer 

types with available primary tumor samples, 12 lacked sufficient paired-normal tissue data 

from TCGA to be included in the first comparison, and 6 types could not be appropriately 

matched to one of the tissue types defined in GTEx (e.g., SARC, “sarcoma”), and thus could 

not be included in the second comparison. However, the genes were still scored based on the 

results from the remaining comparisons that could be performed. Although there is less 

confidence associated with the scores for these particular cancer types, potential biomarkers 

could still be identified. For example, the top-scoring candidate for ovarian cancer (OV) was 

WFDC2 (also known as HE4), which is an established OV protein biomarker in both urine 

and serum (Hellström et al., 2003, 2010), and the next top 6 candidates included FOLR1, 

KLK6, KLK7, and MSLN, all of which have been experimentally confirmed as biofluid 

diagnostic markers of OV (Badgwell et al., 2007; Diamandis et al., 2003; Leung et al., 2013; 

Tamir et al., 2014).

Core secretome definition and analysis—To focus on changes in secretome 

expression associated specifically with malignant progression rather than inter-individual 

and inter-tissue variation, the analysis was conducted using paired tumor-normal samples 

from TCGA. Furthermore, cancer types with only a few sample pairs (CESC, PAAD, and 

PCPG; each had only 2 or 3 pairs) were excluded, yielding a final dataset spanning 17 

cancer types, 683 patients, and 1,563 secretome genes (very low-count or non-detected 

genes were excluded).

To identify the subset of secretome genes with substantial paired normal versus primary 

tumor expression changes across many cancer types, a rank-based metric was used. The 

rationale of implementing a relative metric rather than directly using the fold-change and 

significance values from the DE analyses was that their ranges, especially those of the p 

values, vary widely across cancer types due to differences in the number of samples for 

each. We therefore ranked the genes within each cancer type by p value, and by absolute 
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log2(fold-change) value, then averaged the two ranks to yield a combined “PF-rank.” To 

identify the genes that exhibited the greatest and most significant changes across all included 

cancer types (regardless of fold-change direction), the PF-ranks for each cancer were 

averaged to yield a pan-cancer PF-rank.

Directional PF-ranks were also generated, where the direction of expression fold-change was 

incorporated instead of using the absolute log2FC values. In addition, the associated p values 

were converted to directional p values (pdir, Equation 2, Method Details), such that the 

lowest ranks were assigned to genes exhibiting a significant decrease in expression across 

many cancers, and the highest to those with a significant increase in expression.

Definition of tissue-specific genes—Gene tissue specificity data was retrieved from 

the HPA, which has compiled a list of genes for each tissue that are classified as tissue 

enriched, group enriched, or tissue enhanced, based on their expression in that tissue 

compared to others (Uhlén et al., 2015). Given the relatively small number of tissue-enriched 

genes for many tissues, especially when removing all non-SP genes, we defined tissue-

specific gene sets for each individual tissue as the combination of all its tissue-enriched, 

group-enriched, and tissue-enhanced genes (Table S4).

Estimation of UPR activation—Activation of the UPR was estimated using a GSA. In 

this analysis, the full gene sets were used; i.e., they were not filtered to remove non-

secretome genes. The “Hallmark,” “Canonical pathways,” and “GO gene sets” libraries from 

MSigDB were queried for any set containing the phrase “endoplasmic reticulum stress” or 

“unfolded protein response,” and sets with the term “negative regulation” were excluded. 

This yielded 11 gene sets related to UPR and/or ER stress, which are shown in Figures S4 

and S5.

Glycosylation and disulfide bond redox—Expression changes related to 

glycosylation and disulfide bond oxidation/reduction processes were evaluated by 

conducting a GSA, using the “GO bioprocess: glycosylation” and “GO molecular function: 

protein disulfide oxidoreductase activity” gene sets from MSigDB, respectively. To add 

resolution to the analysis of glycosylation activity, two subsets of the glycosylation gene set, 

“protein N-linked glycosylation” and “protein O-linked glycosylation,” were also evaluated 

for coordinated changes in gene expression. These gene sets were used in their complete 

form, and were not filtered (e.g., by removing non-secretome genes).

Secretory burden (SB) score—The SB score was calculated for each gene based on its 

associated protein length (number of amino acids), number of disulfide sites, and number of 

glycosylation sites, as described in Equation 1. Data for each of these terms was retrieved 

from UniProt, where the number of glycosylation sites was the sum of all N-, C-, O-, and S-

linked glycosylation sites.

QUANTIFICATION AND STATISTICAL ANALYSIS

Differential expression (DE) analysis—All differential expression analyses reported in 

the study were conducted using the edgeR package in R (Robinson et al., 2010), with the 

raw gene count (integer) values as input. For the DE analysis comparing primary tumor 
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expression to that of paired normal tissues, the patient ID number was included as an 

additional field in the design matrix. When comparing primary tumor gene counts from 

TCGA to those of healthy tissues from GTEx, only the sample type was considered (tumor 

or normal). Counts were normalized using the EdgeR calcNormFactors function, which 

scales library sizes using the trimmed mean of M-values (TMM) between each pair of 

samples (Robinson and Oshlack, 2010). For each DE analysis, low-count genes were 

removed beforehand; i.e., only genes with at least 10 counts in at least half of the samples 

were retained. Furthermore, DE analyses were only performed if there were at least 3 

samples in each of the 2 conditions to be compared.

Gene set analysis—To quantify the extent to which different groups of genes were 

enriched in a given metric (e.g., p values from a DE analysis), a gene set analysis (GSA) was 

performed. This type of analysis was applied in a number of situations throughout the study, 

and followed the same procedure (described below), unless stated otherwise. The following 

gene set collections were retrieved from the Molecular Signatures Database (MSigBD 

(Subramanian et al., 2005)): hallmark (H) (Liberzon et al., 2015), KEGG (C2 CP:KEGG), 

Reactome (C2 CP:REACTOME), GO biological process (C5 BP), and GO molecular 

function (C5 MF).

Gene set collections were filtered to remove all non-secretome genes from each set prior to 

analysis, unless otherwise stated. We note that this filtration can cause the name of a gene set 

to become less representative if a substantial portion of genes in the set are removed. In this 

way, the significance of a gene set does not necessarily represent an enrichment in its named 

function/pathway, but instead represents an enrichment in the set of secretome genes that are 

associated with that function/pathway. In addition, gene sets containing more than 400 genes 

(before filtering) were also removed, as these sets tended to have a very low fraction of 

secretome genes, and were generally uninformative. Finally, to avoid statistical problems 

with very small gene sets, those with less than 20 genes after filtration were excluded from 

the analysis, unless otherwise noted.

A Wilcoxon rank-sum test statistic was calculated from the DE analysis p values of genes in 

a given set, and compared to those of 100,000 randomly shuffled gene sets of the same size. 

The significance (p value) of a gene set was calculated as:

p =
1 + Nrand ≥ set

1 + N perms
(3)

where Nrand ≥ set is the number of randomly shuffled gene sets with a test statistic greater 

than or equal to that of the original gene set, and Nperms is the number of random 

permutations (100,000 in this study). Gene set p values calculated in this manner correspond 

to “non-directional” p values (pnon-dir), as they do not take into account the direction 

(increase or decrease) of the fold-change from the DE analysis, only the significance.

“Distinct directional” gene set p values (pdist-dir-up and pdist-dir-down) Väremo et al., 2013) 

were obtained in the same manner, except the p values from the DE analysis were first 
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converted to directional p values (Equation 2) before calculating the associated Wilcoxon 

test statistic. The resulting gene set pdist-dir-up values quantify coordinated expression 

increases in a gene set, where a low pdist-dir-up indicates a get set that is enriched in genes 

with significant expression increases. Coordinated expression decreases are quantified 

simply as pdist-dir-down = 1 – pdist-dir-up, where low pdist-dir-down values indicate an enrichment 

of genes with expression decreases.

Adjustment of p values—All adjusted p values (padj) reported in the study were adjusted 

to control for the false discovery rate (FDR) using the Benjamini-Hochberg procedure. 

Statistical significance in this study was defined as padj < 0.05.
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Highlights

• Secreted proteins with elevated expression in tumors comprise potential 

biomarkers

• Secretome expression changes common to many cancer types tend to be 

decreases

• Common expression increases include functions such as extracellular matrix 

turnover

• Tumors appear to reduce their tissue-specific secretome to relieve secretory 

stress
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Figure 1. Overview of Cancer Secretome Biomarker Consensus Scoring Approach and Results
(A) Schematic overview of the scoring method. Primary tumor transcriptomic (RNA-seq) 

profiles were compared to those of (1) paired-normal tissue of the same patients, (2) healthy 

tissue matching the tumor tissue of origin, and (3) all healthy tissues in the body for which 

data were available. Genes were ranked according to their relative expression in tumor 

versus other samples; those with significantly elevated expression in the tumor were ranked 

highly, and these were combined into a single consensus rank score.

Robinson et al. Page 28

Cell Rep. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(B) For three representative cancer types, a t-SNE projection illustrates the separation of 

primary tumor (red), paired-normal tissue (yellow), and healthy tissue of origin (green) 

samples based on the abundance (log10TPM) of the top 10 consensus-ranked genes for that 

cancer type. t-SNE plots for the remaining 19 cancer types with at least one of each sample 

type are presented in Figure S1.

(C) Box and whisker plots showing the expression of CST1 and ANGPTL4 in all healthy 

tissue samples, as well as in tumor samples of the five cancer types with the highest median 

expression of the gene. The CST1 and ANGPTL4 genes are representative of multi-cancer 

and cancer-specific candidate markers, which ranked highly in the third comparison (tumor 

versus all healthy tissues) in multiple or only one cancer type, respectively.

(D) A heat-scatterplot presenting the results of the three comparisons for the top 10 

consensus-ranked secretome biomarker candidates from each cancer type. Only cancer types 

with sufficient tumor, paired-normal tissue, and healthy tissue of origin samples to conduct 

all three comparison types are shown. The color of the circles corresponds to the mean 

log2FC from the first two comparison methods (FC1 and FC2), while circle size is based on 

the extent to which a gene is expressed at higher levels in the tumor compared to all healthy 

tissues (quantified as p3). Stars next to gene names indicate those whose encoded proteins 

are present in the human plasma proteome (Schwenk et al., 2017), in which a filled star 

represents a canonical (confirmed) protein, an empty star indicates some evidence but the 

status is uncertain, and proteins with no star are either undetected or not included in the 

database. Rows and columns were clustered based on Euclidean distance between mean 

log2FC values.
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Figure 2. Constituents and Functions of the Core Cancer Secretome
(A) A heat-scatterplot presenting the log2FCs and corresponding significance (false 

discovery rate [FDR]-adjusted p values) for the 16 genes making up the top 1% of the non-

directional core secretome. The color and size of the points correspond to the log2FC and 

log-transformed p values, respectively, from the DE analysis between tumor and paired-

normal samples.

(B) The top 1% of the increased core secretome, obtained in the same manner as the non-

directional set in (A), except the fold change direction was incorporated to identify 

secretome genes exhibiting increased expression across many cancer types.

(C) Gene sets found to be significantly enriched in the decreased (left column), non-

directional (center column), or increased core secretome (right column), in which the top 20 

most significant sets from each directional class are shown. The intensity of the color in the 

heatmap indicates the enrichment significance of the gene set. Gene set names are colored 

according to the Molecular Signatures Database (MSigDB) collection from which they 

originate: Hallmark, Kyoto Encyclopedia of Genesand Genomes (KEGG), Reactome, GO 
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biological process, and GO molecular function. A non-stacked bar plot to the left of the 

heatmap shows the sizes (number of genes) of the original gene sets (gray bars) and of the 

filtered gene sets containing only secretome genes (black bars).

See also Figure S2.
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Figure 3. Gene Set Analysis of the Cancer Secretome
Heatmaps illustrate the (A) directional and (B) non-directional GSA results for secretome 

genes based on the tumor versus paired-normal fold changes and significance in 17 different 

cancer types. Only the GO molecular function gene set collection (MSigDB) was evaluated, 

and sets with <10 genes were excluded. In (A), the distinct directional gene set p values are 

calculated for coordinated increases (padj,dist-dir-up) and decreases (padj,dist-dir-down) in 

expression. The more significant (lower value) of the two directional p values for each gene 

set is shown in the heatmap as a log10-transformed value. The value is also “signed,” 

meaning that gene sets with a more significant decrease than increase (padj,dist-dir-down < 

padj,dist-dir-up) are made negative; otherwise, they are positive. Only gene sets with a 

padj,dist-dir ≤ 0.01 (in either direction) in at least one cancer type are shown. A non-stacked 

bar plot to the left of the heatmap shows the sizes of the original gene sets (gray bars) and of 

the filtered gene sets containing only secretome genes (black bars). *The ammonium ion 

binding gene set was identical to the quaternary ammonium group binding set after 

removing non-secretome genes; thus, the latter set is not shown. **The chemokine activity 

gene set was identical to the chemokine receptor binding gene set after removing non-

secretome genes; thus, the latter set is not shown. See also Figure S2.
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Figure 4. Tissue-Specific Expression Changes in SP Genes
The heatmap shows the significance and direction of coordinated expression changes in SP 

genes classified as specific to various tissue types. Cancer and tissue types are organized 

such that entries along the diagonal represent cancer types paired with their tissue of origin 

and are outlined in a solid box if there is a significant (padj < 0.05) coordinated expression 

decrease among the tissue-specific SP genes for that cancer type or in a dotted box 

otherwise. The log-transformed p values of cancer types sharing the same tissue of origin 

were averaged to facilitate this organization. The complete results for each individual tissue 

and cancer type are presented in Figure S3. The number of tissue-specific SP genes for each 

tissue type are indicated in the bar plot to the left of the heatmap. The distribution of tissue-

specific SP gene expression changes across different cancer types is presented for two 

representative tissue types: prostate and liver. The log2FC values for each set of genes are 

represented by boxplots, with the individual gene values shown as gray points whose sizes 

indicate the significance (p value) of their FC. See also Figure S4.
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Figure 5. Coordinated Expression Increases Associated with the UPR
Shown are the log-transformed directional p values representing the significance of 

coordinated expression changes in genes associated with the UPR, defined as those included 

in the unfolded protein response gene set in the Hallmark gene set collection from MSigDB. 

Bars are colored blue if there is a significant (padj < 0.05) expression increase among the 

genes for that cancer type; if not, they are colored yellow. See also Figures S5 and S6.
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Figure 6. Correlation between Protein Secretory Burden and Gene Expression Fold Change
Cancer types with a significantly (p < 0.05) negative correlation are colored blue, 

significantly positive cancers are colored red, and those with an insignificant correlation are 

colored gray. See also Figures S5 and S6.
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KEY RESOURCES TABLE

REAGENT or RESOURCE Software and 
Algorithms SOURCE IDENTIFIER

The R Project for Statistical Computing R Development Core Team, 2018 https://www.R-project.org/

Bioconductor Gentleman et al., 2004 https://www.bioconductor.org/

EdgeR Robinson et al., 2010 R Bioconductor

TCGAbiolinks Colaprico et al., 2016 R Bioconductor

MATLAB R2017b The MathWorks, Inc. https://ch.mathworks.com/products/matlab.html

MSigDB database Subramanian et al., 2005 http://software.broadinstitute.org/gsea/msigdb
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