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Key points

� Cholinergic projections from the pedunculopontine tegmental nucleus (PPTg) to the
retrotrapezoid nucleus (RTN) are considered to be important for sleep–wake state-dependent
control of breathing.

� The RTN also receives cholinergic input from the postinspiratory complex.
� Stimulation of the PPTg increases respiratory output under control conditions but not when

muscarinic receptors in the RTN are blocked.
� The data obtained in the present study support the possibility that arousal-dependent

modulation of breathing involves recruitment of cholinergic projections from the PPTg to
the RTN.

Abstract The pedunculopontine tegmental nucleus (PPTg) in the mesopontine region has
important physiological functions, including breathing control. The PPTg contains a variety of
cell types, including cholinergic neurons that project to the rostral aspect of the ventrolateral
medulla. In addition, cholinergic signalling in the retrotrapezoid nucleus (RTN), a region that
contains neurons that regulate breathing in response to changes in CO2/H+, has been shown to
activate chemosensitive neurons and increase inspiratory activity. The present study aimed to
identify the source of cholinergic input to the RTN and determine whether cholinergic signalling
in this region influences baseline breathing or the ventilatory response to CO2 in conscious male
Wistar rats. Retrograde tracer Fluoro-Gold injected into the RTN labelled a subset of cholinergic
PPTg neurons that presumably project directly to the chemosensitive region of the RTN. In
unrestrained awake rats, unilateral injection of the glutamate (10 mM/100 nL) in the PPTg
decreased tidal volume (VT) but otherwise increased respiratory rate (fR) and net respiratory
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output as indicated by an increase in ventilation (VE). All respiratory responses elicited by PPTg
stimulation were blunted by prior injection of methyl-atropine (5 mM/50–75 nL) into the RTN.
These results show that stimulation of the PPTg can increase respiratory activity in part by
cholinergic activation of chemosensitive elements of the RTN. Based on previous evidence that
cholinergic PPTg projections may simultaneously activate expiratory output from the pFRG, we
speculate that cholinergic signalling at the level of RTN region could also be involved in breathing
regulation.
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Introduction

The cholinergic system has been implicated in several
aspects of the neurophysiology of breathing, including
respiratory motor output control (Burton et al.
1994; Shao & Feldman, 2009; Boutin et al. 2017),
state-dependent modulation of breathing (Kubin &
Fenik, 2004) and chemosensory control of breathing
(Metz, 1966; Dev & Loeschcke, 1979; Fukuda &
Loeschcke, 1979; Nattie et al. 1989; Monteau et al.
1990; Sobrinho et al. 2016). Neuroanatomical evidence
suggests that descending cholinergic projections to
the ventrolateral medulla arise from neurons in the
pedunculopontine tegmental nucleus (PPTg) and, to a
lesser extent, from the laterodorsal tegmental nucleus
(LDTg). However, medullary cholinergic neurons and
the recently discovered post-inspiratory complex (PiCO)
may also be sources of cholinergic input the ventro-
lateral medulla (Ruggiero et al. 1990; Yasui et al. 1990;
Anderson et al. 2016).

The rostral aspect of the ventrolateral medulla
contains two neighboring regions involved in breathing
regulation; the parafacial respiratory group (pFRG) and
the retrotrapezoid nucleus (RTN) (Guyenet & Bayliss,
2015; Del Negro et al. 2018; Huckstepp et al. 2018). The
pFRG appears to be a conditional expiratory oscillator
and the RTN provides an excitatory drive for both
inspiration and expiration for which its activity depends
on CO2/H+ signals (Guyenet & Bayliss, 2015; Del Negro
et al. 2018). Recent evidence suggest that ACh is released
by cholinergic terminals on the ventral medullary surface
(Huckstepp et al. 2016). Therefore, it is possible that
endogenous release of ACh regulates activity of pFRG
neurons and/or chemosensitive RTN neurons. Consistent
with this, ACh has been shown to stimulate both
pFRG (Boutin et al. 2017) and chemosensitive RTN
neurons (Sobrinho et al. 2016) to regulate expiratory
and inspiratory drive, respectively. Evidence also suggests
cholinergic signalling via muscarinic receptors in the RTN
contributes to the CO2/H+-dependent drive to breathe in
vivo (Dev & Loeschcke, 1979; Nattie et al. 1989); however,

blockade of muscarinic receptors minimally affected
CO2/H+-sensitivity of RTN chemoreceptors in vitro
(Sobrinho et al. 2016).

These results suggest that cholinergic modulation of
the RTN contributes to basal respiratory drive; however,
the relative contribution of cholinergic signalling in
the RTN across different states of arousal has not
been characterized. Furthermore, a dense cholinergic
terminal field is present within the ventrolateral medulla
(Boutin et al. 2017), although the source of this
cholinergic input remains poorly defined. In the pre-
sent study, we use standard physiology and anatomical
approaches to address the following questions: (i)
does ACh signalling in the RTN differentially regulate
breathing in anesthetized and awake unrestrained rats;
(ii) what is the main source of cholinergic drive to
RTN; and (iii) does the PPTg send excitatory cholinergic
projections to RTN to modulate breathing by a muscarinic
receptor dependent mechanism? By answering these
questions, we consider that our data identify key
components of the PPTg–RTN pathway, and suggest
an important role of this pathway in the control of
breathing.

Methods

Ethical approval

All experiments were conducted using male Wistar rats
(weighing 250–350 g at the time of experimentation)
in accordance with NIH Guide for the Care and Use
of Laboratory Animals and approved by the Animal
Experimentation Ethics Committee of the Institute of
Biomedical Sciences at the University of São Paulo
(ICB/USP; approval ref. no. 81/2015 ICB/USP). The
study complied with the ethical principles of The
Journal of Physiology and the experiments complied
with The Journal’s animal ethics principles and
regulation checklist (Grundy, 2015). Male Wistar rats
were obtained from the Rats Resource Center of the
ICB/USP.
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Surgical procedures

Anatomical experiments. Tracer injections were made
while the rats were anaesthetized with a mixture of
ketamine (100 mg kg–1) and xylazine (7 mg kg–1)
administered I.P. Surgery used standard methods as
described previously in our laboratory (Barna et al. 2014;
Silva et al. 2016a). After surgery, the rats were treated
with the antibiotic ampicillin (30,000 IU) given I.M. and
the analgesic Ketoflex (ketoprofen 1%, 0.03 mL per rat,
S.C.; BioFarm, Jaboticalbal, SP, Brazil).

A group of four rats received unilateral injections of
the anterograde tracer Phaseolus vulgaris-leucoagglutinin
(PHA-L) (2.5% in 0.1 M phosphate buffer; Vector
Laboratories, Burlingame, CA, USA) into the PPTg region.
The tracer was delivered by iontophoresis through a glass
micropipette with an internal tip diameter of 10–15 μm,
by passing a positive-pulsed current of 5 μA and 7 s in
duration every 7 s for 20 min. These injections were placed
stereotaxically using the co-ordinates: 6.6 mm below the
dorsal surface of the brain, 1.7 mm lateral to the midline
and 7.9 mm caudal to bregma. These rats were allowed
to survive 15 days following the tracer injection and then
were anaesthetized with pentobarbital (60 mg kg–1 I.P.) and
perfused transcardially with fixative as described below.

Another group of four rats received an iontophoretic
injection (7 μA positive current pulses of 7 s in duration
every 7 s for 15 min) of the retrograde Fluoro-Gold
(FG 2%) (Fluorochrome Inc., Denver, CO, USA) into
the RTN using a glass micropipette with an internal tip
diameter of 18–20 μm. These injections were made using
the co-ordinates: 2.5 mm caudal to lambda, 1.8 mm lateral
to the midline and 8.3 mm below the dura mater. Seven to
10 days after the FG injection, rats were anaesthetized with
pentobarbital (60 mg kg–1 I.P.), perfused transcardially and
immediately perfusion-fixed.

Physiological experiments. Rats were anaesthetized with
intraperitoneal injection of ketamine (100 mg kg–1)
combined with xylazine (7 mg kg–1) and placed in a
stereotaxic frame (model 900; David Kopf Instruments,
Tujunga, CA, USA). Stainless steel cannulas were placed
uni- or bilaterally into the RTN using the co-ordinates
2.5 mm caudal to lambda, 1.8 mm lateral to the midline
and 7.5 mm below dura mater. As a control experiment,
cannulas were placed into the C1/Bötzinger region using
the co-ordinates 2.8 mm caudal to lambda, 1.8 mm lateral
to midline and 7.2 mm below the dura mater. To evaluate
the effect of glutamatergic stimulation of PPTg in awake
rats, stainless steel cannulas were placed unilaterally into
the PPTg using the co-ordinates: 7.9 mm caudal to bregma,
1.7 mm lateral to the midline and 5.2 mm below the
dura mater. In animals where there was simultaneous
implantation of cannula towards the RTN and PPTg, an
angle of 30° was used to implant the cannula toward the

RTN. In these animals, cannulas were placed into the RTN
using the co-ordinates: 7.4 caudal to lambda, 1.8 mm
lateral to the midline and 5.4 mm below from bone surface.
The cannulas were fixed to the cranium using dental acrylic
resin and jeweler screws. Rats received a prophylactic dose
of penicillin (30,000 IU) given I.M. and a S.C. injection of
the analgesic Ketoflex (1%; 0.03 mL per rat) postsurgically.
After the surgery, the rats were maintained in individual
boxes with free access of tap water and food pellets.

At the RTN group, 1 day before the experiment, under
I.P. injection of ketamine (100 mg kg–1) combined with
xylazine (7 mg kg–1) anaesthesia, a polyethylene tubing
(PE-10 connected to PE-50; Scientific Commodities,
Lake Havasu City, AZ, USA) was inserted into the
abdominal aorta through the femoral artery. The cannula
was tunnelled S.C. to the back of the rats to allow
access in unrestrained, freely moving rats. This cannula
was used later to measure pulsatile arterial pressure,
mean arterial pressure (MAP) and heart rate (HR) in
the unanaesthetized awake state, as described previously
(Takakura et al. 2014; Barna et al. 2016).

Electrophysiology preparatory surgery. Surgical
procedures were similar to those reported previously by
our laboratory (Wenker et al. 2012; Sobrinho et al. 2014).
Briefly, general anaesthesia was induced by the addition
of 5% of halothane in 100% oxygen. The rats were
tracheostomized and connected to artificial ventilator
pump, and then the halothane level was reduced to
1.5–2% and maintained until the end of surgery. The
femoral artery and vein were cannulated by polythylene
tubes (polyethylene tubing: outer diameter 0.6 mm, inner
diameter 0.3 mm; Scientific Commodities, Lake Havasu
City, AZ, USA) for measurement of pulsatile arterial
pressure, MAP and for administration of fluids and drugs,
respectively. Rats were adapted to stereotaxic apparatus
and a capillary containing glutamate was placed into the
PPTg through the trepanning of parietal bone.

The diaphragm muscle was accessed by an abdominal
incision and the genioglossus muscle by the lingual
retraction. Bipolar electrodes were inserted on the
muscles and connected to the apparatus. At the end
of the surgical procedures, halothane was replaced by
urethane (1.2 g kg–1) administered slowly I.V. Rectal
temperature was maintained at 37°C. End-tidal CO2

(etCO2) was monitored throughout each experiment with
a capnometer (CWE, Inc., Ardmore, PA, USA).

In vivo recordings of physiological variables

One week after the stereotaxic surgery or 24 h after
arterial cannulation, when the rats were recovered from
the surgeries and adapted to the environment of the
recording room, the arterial catheter was connected to
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a pressure transducer (MLT844; ADInstruments, Sydney,
NSW, Australia) coupled to a preamplifier (Bridge Amp,
ML221; ADInstruments) that was connected to a Powerlab
computer data acquisition system (PowerLab 16/30,
ML880; ADInstruments).

Whole-body plethysmography was used to measure
respiratory activity in awake and, 24 h later, in
urethane-anaesthetized rats. Adult rats were placed
individually into a plexiglass recording chamber (5 L)
that was flushed continuously with a mixture of 79%
nitrogen and 21% oxygen (unless otherwise required
by the protocol) at a rate of 1.3 L min–1. A volume
calibration was performed during each experiment by
injecting a known air volume (1 mL) inside the chamber.
All experiments were performed at room temperature
(24–26 °C).

Tidal volume (VT, measured in mL, normalized to body
weight and corrected to account for chamber and animal
temperature, humidity, and atmospheric pressure) and
respiratory frequency (fR, breaths min–1) were recorded on
a breath-to-breath basis and analysed during the last two
minutes of each experimental condition when breathing
was stabilized; the product of tidal volume and frequency
is minute ventilation (VE, mL min–1 g–1). Measurements
of breathing activity were performed using a whole-body
plethysmography-closed system as described previously
by Drorbaugh and Fenn (1955).

Concentrations of O2 and CO2 in the chamber were
monitored online using a fast-response O2/CO2 monitor
(ADInstruments). The pressure signal was amplified,
filtered, recorded and analysed offline using Powerlab
software (Powerlab 16/30, ML880/P; ADInstruments).

Electrophysiology recording

MAP, diaphragm (DIAEMG), genioglossal (GGEMG) and
etCO2 were recorded. They were digitalized with a
micro1401 (Cambridge Electronic Design, Cambridge,
UK), stored on a computer, and processed offline
with Spike 2, version 6 (Cambridge Electronic Design)
(Takakura & Moreira, 2011). Integrated DIAEMG and
GGEMG were obtained after rectification and smoothing
(τ = 0.015 s) of the original signal, which were acquired
with a 30–300 Hz bandpass filter.

Chemoreflex analysis

Conscious rats were allowed at least 30–45 min
to acclimatize to the chamber environment at
normoxia/normocapnia (21% O2, 79% N2 and <0.5%
CO2) before measurements of baseline MAP and
ventilation were taken. Hypercapnia was induced by
titrating CO2 into the respiratory mixture up to a level
of 8–10% for 10 min.

Drugs

All drugs were purchased from Sigma-Aldrich (St
Louis, MO, USA), unless otherwise stated. For in vivo
experiments, ACh (Ach: 10 mM in sterile saline, pH 7.4;
50 nL), methyl-atropine (M-Atr: 5 mM in sterile saline,
pH 7.4; 50–75 nL), glutamate (10 mM in sterile saline, pH
7.4; 100 nL) or kynurenic acid (kyn: 100 mM in sterile
saline, pH 7.4; 50–75 nL) was injected uni- or bilaterally
using a 1 or 5 μL Hamilton syringe connected to an
injection needle positioned in the guide cannula (the tip
of the needle extended 1.5–3.5 mM beyond the end of the
cannula).

Experimental protocols

Respiratory and cardiovascular effects produced by
injection of M-Atr and ACh into the RTN in conscious rats.
VT ( mL kg–1), fR (breaths min–1), VE (mL kg–1 min–1)
and MAP (mmHg) were continuously recorded during
2 min, starting 30–45 min after the rats were placed
individually into a plexiglass recording chamber. Control
(baseline) values were recorded for 2 min and were
analysed immediately before the first treatment (saline or
M-Atr into the RTN). These values were used as reference
to calculate the changes produced by the treatments.
ACh (10 mM/50 nL) or saline was injected unilaterally
into the RTN 10 min after the unilateral injection of
M-Atr (5 mM/50–75 nL) or saline in the same place. Four
groups of rats were used to investigate the respiratory
and cardiovascular effects produced by the combination
of RTN injections of M-Atr or saline and Ach or
saline:

(1) Saline into the RTN followed by saline into the RTN
(control group – resting condition);

(2) Saline into the RTN followed by Ach into the RTN;
(3) M-Atr into the RTN followed by saline into the RTN;
(4) M-Atr into the RTN followed by Ach into the RTN.

Respiratory responses to hypercapnia in conscious or
anaesthetized rats treated with M-Atr into the RTN. VT

(mL kg–1), fR (breaths min–1) and VE (mL kg–1 min–1)
were continuously recorded during 2 min, starting
30–45 min after the rats were placed individually
into a plexiglass recording chamber. Control (base-
line – normoxia condition) values were recorded for
2 min and were analysed immediately before the
exposure to high levels of CO2 (hypercapnia: 7% CO2,
21% O2 and balance N2). These values were used as
reference to calculate the changes produced by the hyper-
capnia challenge. M-Atr (5 mM/50–75 nL) or saline
was injected bilaterally into the RTN and 10 min later,
respiratory parameters were evaluated under normoxia

C© 2019 The Authors. The Journal of Physiology C© 2019 The Physiological Society
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and hypercapnia conditions. Two groups of rats were
used:

(1) Saline into the RTN (control group);
(2) M-Atr into the RTN.

Twenty-four hours later, we used the same groups of
animals to evaluate the hypercapnic ventilatory response
in urethane-anaesthetized rats with bilateral injection of
saline or M-Atr into the RTN.

Respiratory and cardiovascular effects produced by
injection of glutamate into PPTg in anaesthetized rats.
MAP, DIAEMG, GGEMG and etCO2 were continuously
recorded through the entire experimental protocol. Before
starting the experiments, the ventilation was adjusted
to have the etCO2 at 3–4% at steady-state (60-80
cycles s–1; tidal volume 1–1.2 mL/100 g). Control (base-
line) values were recorded for 2 min and were analysed
immediately before the first treatment [saline or glutamate
(10 mM/100 nL) into the PPTg]. These values were used
as reference to calculate the changes produced by the
treatments. Two groups of rats were used to investigate
the respiratory and cardiovascular effects produced by the
unilateral injection of glutamate or saline into the PPTg:

(1) Saline into the PPTg (control group);
(2) Glutamate into the PPTg.

Respiratory effects produced by injection of M-Atr or kyn
into the RTN and glutamate into the PPTg in conscious
rats. VT ( mL kg–1), fR (breaths min–1) and VE (mL–1

kg min–1) were continuously recorded during 2 min,
starting 30–45 min after the rats were placed individually
into a plexiglass recording chamber. Control (baseline)
values were recorded for 2 min and were analysed
immediately before the first treatment (saline or M-Atr
into the RTN) or (vehicle or kyn into the RTN). These
values were used as reference to calculate the changes
produced by the treatments. Glutamate (10 mM/100 nL)
or saline was injected unilaterally into the PPTg 10 min
after the unilateral injection of M-Atr (5 mM/50–75 nL)
(Furuya et al. 2014) or saline or kyn (100 mM/50–75 nL) or
vehicle in RTN. Six groups of rats were used to investigate
the respiratory effects produced by the combination of
PPTg and RTN injections:

(1) Saline into the RTN followed by saline into the PPTg
(control group);

(2) Saline into the RTN followed by glutamate into the
PPTg;

(3) M-Atr into the RTN followed by saline into the PPTg;
(4) M-Atr into the RTN followed by glutamate into the

PPTg;
(5) Kyn into the RTN followed by saline into the PPTg;

(6) Kyn into the RTN followed by glutamate into the
PPTg;

Histology

At the end of the experiments, rats were deeply
anaesthetized with pentobarbital and a 2% solution of
Evans blue was injected into the RTN (50–75 nL). Saline
followed by 4% buffered formalin (pH 7.4) was perfused
through the heart. The brains were removed and processed
as described previously (Wenker et al. 2013; Sobrinho et al.
2014). Injections sites in the RTN were confirmed by visual
inspection using an Axioskop 2 microscope (Carl Zeiss,
Oberkochen, Germany). Sections from different brains
were aligned with respect to a reference section, which was
the most caudal section containing an identifiable cluster
of facial motor neurons. A value of 11.6 mm caudal to
bregma (bregma -11.6 mm) (Paxinos & Watson, 1998) was
assigned to this reference section. Levels rostral or caudal
to this reference section were determined by adding or
subtracting the number of intervening sections ×40 μm.

PHA-L was detected using a polyclonal anti-PHA-L
raised in goat (AS2224; dilution 1:5000; Vector
Laboratories). Choline acetyltransferase (ChAT) was
detected with a goat anti-ChAT antibody (AB 144P;
dilution 1:500; Merck Millipore, Darmstadt, Germany;).

All the primary antibodies were diluted in phosphate
buffer (PB) containing 10% normal donkey serum
(017-000-121; Jackson ImmunoResearch, West Grove, PA,
USA) and 0.3% Triton X-100 and incubated for 24 h.
Sections were subsequently rinsed in PB containing 1%
normal donkey serum and incubated for 2 h in Alexa 594
donkey anti-goat (705-586-147; dilution 1:200; Jackson
ImmunoResearch Laboratories) for PHA-L immuno-
staining, ChAT was revealed with Alexa 488 donkey
anti-goat (705-546-147; dilution 1:200; Jackson Immuno-
Research Laboratories). The sections were mounted
on gelatin-coated slides, coverslipped with Vectashield
(Vector Laboratories) or DPX (Aldrich, Milwaukee, WI,
USA) and sealed with nail polish.

Using the immunoperoxidase technique, PHA-L was
detected with a polyclonal anti-PHA-L raised in goat
(AS2224; dilution 1:5000; Vector Laboratories). Sections
were incubated for 24 h at room temperature and
diluted in PB containing 10% normal horse serum
(008-000-001; Jackson ImmunoResearch Laboratories)
and 0.3% Triton X-100. After several rinses, they were
transferred to the appropriate affinity purified biotinylated
secondary antibodies goat anti-rabbit (BA-1000; dilution
1:200; Vector Laboratories) for PHA-L; all diluted in
TPB containing 1–10% normal horse serum and 0.3%
Triton X-100 incubated for 24 h at room temperature,
rinsed again and exposed to Extravidin (E2886; dilution
1:1000; Sigma-Aldrich) for 2 h 30 min at room
temperature. Peroxidase reactions were visualized using

C© 2019 The Authors. The Journal of Physiology C© 2019 The Physiological Society
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Table 1. PHA-L-labelled varicosities within the brainstem

Brainstem regions
PHA-L-labelled

varicosities

Kölliker-Fuse +++
Lateral parabrachial nucleus +++
Parafacial respiratory group ++
Raphe pallidus +++
Retrotrapezoid nucleus ++
+++; high expression, ++; moderate expression, +; low
expression

the glucose oxidase procedure and 3,3’-diamenobenzidine
tetrahydrochloride as chromogen for PHA-L. Sections
were rinsed again in TPBS, mounted in sequential
rostrocaudal order onto slides on gelatin-coated slides,
dehydrated through a series of ascending concentrations
of ethanol, transferred into xylene and coverslipped with
DPX (06522; Sigma-Aldrich) for histology.

Cell counting, imaging and data analysis

A multifunction microscope Axio Imager A1 micro-
scope (Carl Zeiss) was used to image sections and
perform the subsequent analysis. Immunofluorescence
was examined under epifluorescence illumination and
immunoperoxidase stained sections were examined under
bright illumination.

The relative PHA-L in the RTN region was classified
based on the relative density of the structure region
containing PHA-L-immunoreactivity varicosities. Thus,
the regions were classified as exhibiting high expression
(+++), moderate expression (++), low expression (+)
and very low or virtually absent (−) (Table 1).

The locations of FG and ChAT immunoreactivity into
the PPTg region were plotted in sections from 6.84 to
8.28 mm caudal to bregma (seven sections per animal).
The locations of FG and ChAT immunoreactivity into
the PiCO, nucleus ambigus or dorsal motor nucleus of
the vagus regions were plotted in sections from 11.86 to
13.3 mm caudal to bregma (seven sections per animal).
To align sections around the Kölliker-Fuse region, the
most rostral section featuring a cluster of facial motor
neurons was identified in each brain, and assigned a level
of 10.3 mm caudal to bregma, in accordance with the
atlas of Paxinos and Watson (1998). Levels rostral or
caudal to that reference section were defined by adding
a distance corresponding to the interval between sections,
multiplied by the number of intervening sections. The
ventral quadrant of the side that received the tracer micro-
injection was plotted, and profile counts reflect an average
of the ipsilateral side of the brain.

Digital colour photomicrographs were acquired using
a Axiocam HRc camera (Carl Zeiss). Images of double

immunoperoxidase and immunofluorescence stained
sections were acquired and analysed with the Axiovision
software (Carl Zeiss), which permits the acquisition of
images from several separate fluorescence channels.

An LSM 780-NLO confocal microscope (Carl Zeiss)
with a High Content Imaging In Cell Analyser 2200 (GE
Healthcare Ltd, Little Chalfont, UK) was used to analyse
PHA-L immunoreactivity in axonal varicosities located
in the RTN region. PHA-L-labelled axonal varicosities
were counted at five levels of the RTN. Image J, version
1.41 (NIMH, Bethesda, MD, USA) was used for cell
counting and Canvas software, version 9.0 (ACD Systems,
Victoria, BC, Canada) was used for line drawings.
The neuroanatomical nomenclature employed during
experimentation and in this manuscript was defined by
Paxinos & Watson (1998).

Statistical analysis

Excel 2010 (Microsoft Corp., Redmond, WA, USA)
and Prism, version 6 (GraphPad Software, Inc., La
Jolla, CA, USA) were used to collect and analyse data.
The distribution of the data was tested for normality
(Shapiro–Wilk normality test), and significant differences
between samples were determined with one-way ANOVA
(Kruskal–Wallis for non-Gaussian data) and Two-Way
ANOVA and unpaired two-tailed t tests (Mann–Whitney
test for non-Gaussian data). P < 0.05 was considered
statistically significant. The results are presented as the
mean ± SEM, unless noted otherwise.

Results

Cholinergic innervation of the RTN: physiological and
anatomical evidence

The RTN receives cholinergic innervation as denoted
by the presence of terminals that contained anti-ChAT
immunoreactivity (Fig. 1A). To determine whether
cholinergic transmission at the level of the RTN
contributes to control of breathing, we injected ACh
and/or the muscarinic receptor antagonist (M-Atr) into
the RTN when measuring respiratory activity under
control conditions and during exposure to 7% CO2 (Figs 1
and 2). All RTN injections (uni- or bilateral) were placed
250 μm below the facial motor nucleus and 200 μm rostral
to the caudal end of this nucleus to target the region
containing the highest density of CO2-sensitive RTN
neurons (Mulkey et al. 2004; Takakura & Moreira, 2011)
(Figs 1C and 2B). Control injections were made more
caudally to target presympathetic catecholaminergic (C1)
neurons and expiratory Bötzinger neurons (C1/BötC).

In the awake rats, injection of ACh into the RTN
increased baseline breathing. For example, unilateral

C© 2019 The Authors. The Journal of Physiology C© 2019 The Physiological Society
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RTN injection of ACh (10 mM in 50 nL, n = 5)
increased VT [10.4 ± 0.91 vs. resting: 7.8 ± 0.9 mL kg–1;
one-way repeated measures (RM) ANOVA: F2,17 = 55.81,
P = 0.001], fR (154 ± 8 vs. resting: 89 ± 3 breaths min–1;
one-way RM ANOVA: F2,17 = 105.65, P = 0.001) and VE

(1528 ± 114 vs. resting: 703 ± 56 mL kg–1 min–1; one-way
RM ANOVA: F2,17 = 94.32, P = 0.001) (Fig. 1B and
D–F). Injections of ACh into the RTN also increased MAP
(138 ± 5 vs. resting: 104 ± 4 mmHg; one-way RM ANOVA:
F2,17 = 73.46, P = 0.012), although with negligible effects
on HR (328 ± 10 vs. resting: 333 ± 13 mmHg; one-way
RM ANOVA: F2,17 = 1.81, P = 0.2) (Fig. 1B and G).

Application of ACh into the nearby C1/BötC also
increased cardiorespiratory output. In this case, ACh
increased fR (132 ± 11 vs. resting: 88 ± 6 breaths min–1;
one-way RM ANOVA: F2,32 = 52.11, P = 0.0023) but
decreased VT (one-way RM ANOVA: F2,32 = 63.15,
P = 0.015). ACh also increased both MAP (156 ± 11
vs. saline: 112 ± 6 mmHg; one-way RM ANOVA:
F2,32 =94.13, P=0.001) and HR (378±18 vs. saline: 322±
9 breaths min–1; one-way RM ANOVA: F2,32 = 79.07,
P = 0.04) (data not shown). As expected, ACh injections
into the facial motor nucleus had no measureable effect
on cardiorespiratory output (data not shown).

Injection of the muscarinic receptor antagonist M-Atr
(5 mM/50–75 nL) into the RTN or C1/BötC eliminated
breathing and blood pressure responses to exogenous ACh
(Fig. 1B and D–G). Also, consistent with our previous
work showing that CO2/H+-sensitivity of RTN neurons is
not dependent on cholinergic signalling (Sobrinho et al.
2016), we found that RTN injections of M-Atr mini-
mally affected baseline breathing or the CO2 ventilatory
response of awake rats (Fig. 2C–E). These results show
that cholinergic transmission at the level of the RTN can
stimulate cardiorespiratory activity in awake rats; however,
cholinergic control of RTN chemoreception is not an
essential component of the drive to breathe in the awake
state.

We also found that, in the same group of animals,
bilateral injections of M-Atr (5 mM/50–75 nL) into the
RTN of urethane-anaesthetized animals caused a decrease
in basal VT (5.9 ± 0.5 vs. saline: 7.6 ± 0.6 mL kg–1;
two-way RM ANOVA: F1,34 = 145.74; P = 0.022), fR

(92 ± 4 vs. saline: 101 ± 6 breaths min–1; two-way RM
ANOVA: F1,34 = 44.28; P = 0.03) and VE (553 ± 47 vs.
saline: 771 ± 57 mL kg–1 min–1; two-way RM ANOVA:
F1,34 = 126.18; P = 0.035) (Fig. 2F–H). This treatment
also reduced the ventilatory response to CO2; M-Atr
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(10 mM/50 nL) and ACh plus M-Atr (5 mM/50–75 nL) on VT (D); fR (E); VE (F); and MAP (G) in awake unrestrained
rats. VII, facial motor nucleus; VMS, ventral medullary surface. Scale bar = 100 μm in (A) and (C) and 50 μm
in (A’). ∗Statistically different from both resting and M-Atr (one-way RM ANOVA with Bonferroni´s correction for
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C© 2019 The Authors. The Journal of Physiology C© 2019 The Physiological Society



1926 J. D. Lima and others J Physiol 597.7

decreased the CO2-evoked increase in VT (8.4 ± 0.9
vs. saline: 11.2 ± 1 mL kg–1; two-way RM ANOVA:
F1,28 = 87.62; P = 0.028) and VE (1067 ± 52 vs. saline:
1436 ± 144 mL kg–1 min–1; two-way RM ANOVA:
F1,34 = 115.22; P = 0.01) (Fig. 2F and H). These results
support the possibility that cholinergic transmission at the
level of the RTN helps maintain breathing during states of
reduced consciousness.

To identify the source of cholinergic input, the
retrograde tracer FG 2% was injected by iontophoresis
unilaterally under the caudal end of the facial motor
nucleus in the dorsal cap region of the RTN (n = 4)
(Fig. 3A and B). Consistent with previous work from
our laboratory (Silva et al. 2016a, 2016b), FG-labelled
neurons were present in several brainstem respiratory

centres known to project to the RTN (e.g. nucleus of
the solitary tract and Kölliker-Fuse region (Fig. 3I, K, L
and N), thus giving us confidence that injections targeted
RTN and were properly transported. Interestingly, we also
identified a high number of FG-labelled neurons in the
recently identified PiCO (Anderson et al. 2016) that were
also immunoreactive for ChAT (95 ± 5%), suggesting
cholinergic input from the PiCO may also regulate RTN
function (Fig. 3F–H). We also found a significant number
of FG-labelled neurons in PPTg that were immunoreactive
for ChAT (33 ± 8%) (Fig. 4A–G). We did not find
double-labelled neurons within the dorsal motor nucleus
of the vagus or within the nucleus ambiguus (Fig. 3C–E
and I–K). Taken together, these results identify the PPTg
and PiCO as potential sources of cholinergic input to
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the RTN. Because connections between cholinergic PPTg
neurons and the RTN may provide an anatomical basis for
state-dependent control of breathing, for the remainder of
the present study, we focused on the PPTg to determine
whether cholinergic input from the PPTg to the RTN
regulates breathing in awake animals.

To further explore this possibility, we performed a series
of anterograde axonal tracing experiments by injecting

PHA-L into the PPTg. Four of seven injections were
correctly placed in the PPTg (Fig. 5A and B). In each
of these four cases, the PHA-L injection was centred at
the level of the compact aspect of the PPTg (Bregma
level = –7.8 mm). Non-branching fibres without evidence
of terminal specializations are probably fibres of passage
and were not documented in the present study. We
focused on axonal varicosities that have a distinct globular
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appearance and represent potential synapses (Fig. 5E
and F). Light and electron microscopic analysis has
already demonstrated that axonal varicosities observed
by light microscopy are indeed terminal specializations
forming synapses (Kincaid et al. 1998). Two weeks after
injection, numerous PHA-L-labelled axonal terminals
(putative synapses) were present in the RTN where
chemosensitive neurons are localized (Mulkey et al. 2004;
Takakura et al. 2006; Kumar et al. 2015). Figure 5C and
D shows a photomicrograph and a computer-assisted plot
of the PHA-L-labelled terminals that were detected in a
representative coronal section located close to Bregma
–11.4 mm (200 μm rostral to the caudal end of the
facial motor nucleus). The plotting was limited to the
ventral third of the brain. PHA-L-labelled varicosities were
found throughout the ventral medulla, albeit at variable
densities. As shown in Fig. 5C–D, these putative synapses
were especially numerous under the medial half of the
facial motor nucleus in very close proximity to the ventral
medullary surface. The numbers of PHA-L-labelled axonal

varicosities present within RTN (for details, see Methods)
were counted in five equidistant sections per rat and the
results are shown in Table 1. The area with the maximum
density of varicosities corresponds to the region where
we find the greatest concentration of CO2-responsive
neurons and the place where the retrograde tracer was
injected. We also found a high number of PHA-L-labelled
terminals within the Kölliker-Fuse/parabrachial complex
and medullary raphe region (Fig. 5E–F and Table 1).

Stimulation of the PPTg increases breathing
activity through a cholinergic drive to the RTN
in conscious rats

The PPTg is an important source of cholinergic drive to
brainstem respiratory centres, including the RTN (Figs 4
and 5), and, because ACh strongly activates chemo-
sensitive RTN neurons (Fig. 1) (Sobrinho et al. 2016), we
next aimed to determine the effects of PPTg stimulation
on respiratory output and whether cholinergic-dependent
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signalling at the level of the RTN contributes to this
response. By contrast to previous work showing that
PPTg stimulation inhibits respiratory activity (Saponjic
et al. 2005), we found that PPTg stimulation enhanced
respiratory output in anaesthetized and awake rats.
For example, under urethane anaesthesia, unilateral
PPTg injection of glutamate (10 mM/100 nL) increased
diaphragm frequency (DiaEMG freq) by 12.2 ± 2% (t
test: t = 4.630; P = 0.0012), diaphragm amplitude
(DiaEMG amp) by 12.8 ± 3.5% (t test: t = 0.2634;
P = 0.0272) and genioglossus frequency (GGEMG freq)
by 12.6 ± 1.3%, (t test: t = 5.943; P = 0.0003) (Fig. 6A–B,
D and E). Stimulation of PPTg elicited a decrease in
genioglossus amplitude (GGEMG amp) by 20.1 ± 13.7%,
(t test: t = 1.7486; P = 0,0357) (Fig. 6A and C). We
paralleled these experiments in unrestrained awake rats
when monitoring respiratory activity by whole body
plethysmography and found that glutamate injection
into the PPTg also increased fR (127 ± 4.5 vs. saline:
86 ± 3 breaths min–1; t test: t = 7.56; P < 0.0001) and
VE (904 ± 47 vs. saline: 745 ± 44 mL kg–1 min–1; t
test: t = 2.207; P = 0.02) (Fig. 7A, D–E), although in
conjunction with a decrease in VT (7.1 ± 0.4 vs. saline:
8.6 ± 0.3 mL kg–1; t test: t = 2.887; P = 0.0081)
(Fig. 7C).

To determine whether cholinergic signalling in the RTN
contributes to the ventilatory response elicited by PPTg
stimulation, we retested the effects of PPTg stimulation
on breathing in awake rats after unilateral RTN injections
of M-Atr. As noted above, RTN injection of M-Atr
(5 mM/50–75 nL) had no effect on baseline respiratory
activity in awake rats (Fig. 2). However, the increase in fR

(93 ± 11 vs. saline + glutamate: 127 ± 4.5 breaths min–1;
one-way RM ANOVA: F3,37 = 11.59; P = 0.0001) and VE

(774 ± 122 vs. saline + glutamate: 945 ± 44 mL kg–1 min–1;
one-way RM ANOVA: F3,37 = 3.147; P = 0.03) elicited
by glutamate injection into the PPTg in unrestrained
awake rats was blunted by prior injection of M-Atr
(5 mM/50–75 nL) into the medial RTN (Fig. 7B, D–E).
The decrease in VT (8.18 ± 0.6 vs. saline + glutamate:
7.6 ± 0.3 mL kg–1 min–1; one-way RM ANOVA:
F3,37 = 3.066; P = 0.03) produced by glutamate into the
PPTg was also blocked after M-Atr (5 mM/50–75 nL) into
the RTN (Fig. 7C).

A subset of cholinergic neurons in the PPTg co-express
the glutamatergic marker VGLUT2 (Luquin et al. 2018).
We also tested the effects of PPTg stimulation on
breathing in awake rats after unilateral RTN injections
of the broad spectrum ionotropic glutamatergic receptors
antagonist kyn (Fig. 7B). The injections were located in
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A, photomicrography showing the typical site
anterograde neuronal tracer injection PHA-L in the
PPTg. B, schematic drawing showing the location
PHA-L injections (n = 4) in the region of the PPTg.
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in the region of the RTN (C); raphe pallidus (E) and
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a region close to ventral medullary surface (Fig. 7B).
We found that unilateral injection of kyn into the
RTN (100 mM/50–75 nL) had no effect on baseline
respiratory activity (data not shown) (Moreira et al.
2006; Takakura et al. 2011) or the ventilatory response to
PPTg stimulation (one-way RM ANOVA: F3,37 = 0.094;
P = 0.065) (Fig. 7C–E). The dose of kyn used in the
present study was based on previous work from our
laboratory (Takakura and Moreira, 2011; Takakura et al.
2011) and the fact that kyn into the PPTg blocked the VE

(745 ± 44 vs. saline + glutamate 945 ± 28 mL kg–1 min–1;
P > 0.05) to glutamate injection into the PPTg
(data not shown).

Discussion

The present study provides a comprehensive description of
the role of cholinergic signalling at the RTN region in the
control of breathing output. We identify cholinergic PPTg
neurons as an important source of ACh to the RTN, and we
show that (i) RTN injections of ACh increased respiratory
activity in anaesthetized and awake rats by a muscarinic
receptor-dependent mechanism; (ii) muscarinic receptor
blockade at the level of the RTN decreased basal breathing
and CO2-sensitivity in urethane-anaesthetized but not
awake rats; and (iii) cholinergic muscarinic receptors,
but not ionotropic glutamatergic receptors, within the
RTN mediate most of the ventilatory response to PPTg
stimulation. Based on previous evidence that cholinergic
PPTg projections may simultaneously activate expiratory

output from the pFRG, we speculate that cholinergic
signalling at the level of RTN region could also be involved
in breathing regulation.

Cholinergic signalling in the RTN in the regulation
of breathing

PPTg has around 3000 cholinergic neurons
(Mena-Segovia and Bolam, 2017; Luquin et al. 2018)
that exhibit extensive dendritic arborization, where the
major branch splits until six collaterals that are directed
to forebrain and rhombencephalon (Mena-Segovia et al.
2008). In the present study, we confirmed previous
evidence indicating that one of the major source of
cholinergic drive to the ventral lateral medulla, including
the RTN region, comes from cholinergic PPTg neurons
(Yasui et al. 1990). These neurons exhibit wake- and
REM-dependent firing behaviour (Kubin & Fenik,
2004) and are known to participate in a wide range
of state-regulating functions, including the control of
breathing (Lydic & Baghdoyan, 1993; Saponjic et al.
2003; Boutin et al. 2017). Consistent with previous work
(Saponjic et al. 2003, 2005; Topchiy et al. 2010), we found
that that stimulation of PPTg region with glutamate
elicited an increase in ventilation. This ventilatory
response could be blocked by prior RTN injection of
M-Atr but not kyn. Therefore, we demonstrated for the
first time using standard neuroanatomical and physio-
logical approaches that the increase in breathing elicited by
PPTg stimulation is dependent on a cholinergic signalling
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via the medial aspect of the RTN. Connections between
cholinergic PPTg neurons and RTN chemoreceptors may
serve as the anatomical basis for state-dependent control
of chemoreceptor activity.

According to the present study, stimulation of PPTg
also produced a reduction in genioglossus muscle
activity, suggesting that the PPTg differentially regulates
respiratory drive across the respiratory circuit. Although
this response is consistent with previous work showing
that ACh can inhibit activity of hypoglossal motor neurons
that maintain genioglossus muscle activity (Bellingham
and Berger, 1996; Ireland et al. 2012), this response
would also favour airway collapse during inspiration
and so may contribute to the inhibitory effects of PPTg
stimulation of tidal volume. At levels of the respiratory
system upstream of motor neurons, ACh is generally
excitatory and, because PPTg neurons innervate many
brainstem structures including pontine respiratory centres

associated with expiration (e.g. parabrachial complex
and Kölliker-Fuse), PPTg cholinergic neurons mediating
respiratory depression and variability probably results
from cholinergic activation of expiratory drive (Saponjic
et al. 2006; Boutin et al. 2017). Consistent with this
possibility, we show that ACh injections into another
expiratory region, the C1/Bötzinger region, decreased
respiratory activity and increased blood pressure in
awake rats, presumably by activation of expiratory
and pre-sympathetic neurons, respectively. To fully
understand the contribution of cholinergic drive to
state-dependent control of breathing, it will be important
for future work to identify and selectively manipulate sub-
sets of cholinergic PPTg neurons with discrete projections
to various levels of the respiratory system across natural
sleep-wake states.

The RTN is located in close proximity to C1 and
non-C1 neurons that regulate blood pressure (Padley et al.
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2007; Wenker et al. 2013, 2017) and there is evidence
to suggest that cholinergic drive to these cells increases
blood pressure and contributes to the pathogenesis of
hypertension (Kubo, 1998; Padley et al. 2007). Consistent
with this evidence, we show that RTN injection of ACh
increased respiratory activity in awake unrestrained rats.
We also found that ACh increased blood pressure and heart
rate and M-Atr blocked these cardiorespiratory responses.
Interestingly, application of M-Atr into the RTN decreased
basal breathing and the CO2 ventilatory response of
urethane-anaesthetized but not awake rats. Consistent
with our data from awake rats, we show that, at the
cellular level, muscarinic receptor blockade had negligible
effect on CO2/H+-sensitivity of RTN chemoreceptors.
Taken together, these results indicate that cholinergic
signalling can modulate activity of RTN neurons and
serve to maintain breathing during states of reduced
consciousness, although it is not a requisite component
of the mechanism by which these cells sense changes in
CO2/H+.

Cholinergic pathway from postinspiratory complex to
RTN region

The PiCO was recently identified as a key region for
the generation of postinspiratory activity (Anderson
et al. 2016). This region is located dorsomedial to the
nucleus ambiguous and contains neurons that co-express
glutamate and ACh. PiCo neurons display autonomous
postinspiratory bursts always, although not inspiratory
related activity (Anderson et al. 2016; Ramirez et al.
2016). In addition, selective stimulation of the RTN region
increased breathing by shortening postinspiratory activity
(Burke et al. 2015). Both regions have a role in post-
inspiratory activity; a considerable number of cholinergic
neurons within the PiCO have projections to the RTN
(present study; Fig. 3F–H); and cholinergic mechanisms
could also play an important role for the generation of
active expiration during sleep (Boutin et al. 2017). An
excitatory cholinergic input from PiCO to RTN cells
should also theoretically be able to control postinspiratory
activity. Taken together, the evidence indicates that the
three respiratory oscillators are interconnected (Anderson
et al. 2016; Anderson & Ramirez, 2017; Boutin et al. 2017;
present study) and RTN have an involvement in the three
phases of the respiratory cycle. Further studies will be
necessary to investigate the physiological role of direct
cholinergic projections from PiCO to RTN neurons in
breathing control.

Conclusions

In summary, we show that ACh modulates respiratory
output at RTN level and provide anatomical and physio-

logical evidences that this modulation is mediated by
the mesopontine region PPTg. Additionally, we also
provide the first anatomical evidence that RTN receive
cholinergic inputs from PiCO, for which the functional
role remains to be clarified. These results corroborate
with a previous study from our group (Sobrinho et al.
2016) showing that ACh modulates RTN chemoreceptors
by mechanisms involving M1 and M3 receptors and Gq
mediated inhibition of KCNQ channels, and that these
mechanisms could provide potential avenues for the
therapeutic treatment of respiratory control problems
associated with sleep disordered breathing.
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