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Abstract
BACKGROUND
Anti-tumor necrosis factor α (TNFα) represents the best therapeutic option to
induce mucosal healing and clinical remission in patients with moderate-severe
ulcerative colitis. On the other side gut microbiota plays a crucial role in
pathogenesis of ulcerative colitis but few information exists on how microbiota
changes following anti-TNFα therapy and on microbiota role in mucosal healing.

AIM
To elucidate whether gut microbiota and immune system changes appear
following anti TNFα therapy during dextran sulfate sodium (DSS) colitis.

METHODS
Eighty C57BL/6 mice were divided into four groups: “No DSS”, “No DSS + anti-
TNFα”, “DSS” and “DSS + anti-TNFα”. “DSS” and “DSS + anti-TNFα” were
treated for 5 d with 3% DSS. At day 3, mice whithin “No DSS+anti-TNFα” and
“DSS+anti-TNFα” group received 5 mg/kg of an anti-TNFα agent. Forty mice
were sacrificed at day 5, forty at day 12, after one week of recovery post DSS. The
severity of colitis was assessed by a clinical score (Disease Activity Index), colon
length and histology. Bacteria such as Bacteroides, Clostridiaceae, Enterococcaceae
and Fecalibacterium prausnitzii (F. prausnitzii) were evaluated by quantitative PCR.
Type 1 helper T lymphocytes (Th1), type 17 helper T lymphocytes (Th17) and
CD4+ regulatory T lymphocytes (Treg) distributions in the mesenteric lymph
node (MLN) were studied by flow cytometry.

RESULTS
Bacteria associated with a healthy state (i.e., such as Bacteroides, Clostridiaceae and
F. prausnitzii) decreased during colitis and increased in course of anti-TNFα
treatment. Conversely, microorganisms belonging to Enterococcaceae genera,
which are linked to inflammatory processes, showed an opposite trend.
Furthermore, in colitic mice treated with anti-TNFα microbial changes were
associated with an initial increase (day 5 of the colitis) in Treg cells and a
consequent decrease (day 12 post DSS) in Th1 and Th17 frequency cells. Healthy
mice treated with anti-TNFα showed the same histological, microbial and
immune features of untreated colitic mice. “No DSS + anti-TNFα” group showed
a lymphomononuclear infiltrate both at 5th and 12th d at hematoxylin and eosin
staining, an increase of in Th1 and Th17 frequency at day 12, an increase of
Enterococcaceae at day 5, a decrease of Bacteroides and Clostridiaceae at day 12.

CONCLUSION
Anti-TNFα treatment in experimental model of colitis improves disease activity
but it is associated to an increase in Th17 pathway together with gut microbiota
alteration.

Key words: Gut microbiota; Dextran sodium sulphate colitis; Immune system; T cells;
Mesenchymal lymphnode; Tumor necrosis factor α

©The Author(s) 2019. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: The effect of the gut microbiota on the immune responses is not limited to the
gut. On the other hand, autoimmune diseases, such as inflammatory bowel disease, are
associated to different degree of dysbiosis involving different bacterial genera. Using a
colitic mouse model, we aimed to evaluate the impact of anti-tumor necrosis factor α
(TNFα) therapy on the intestinal immune system and gut microbiota concurrently.
Healthy mice treated with anti-TNFα showed similar histological, microbial and immune
features of untreated colitic mice, a lymphomononuclear infiltrate both at day 5 and 12 at
hematoxylin and eosin staining, an increase of type 1 helper T lymphocytes and type 17
helper T lymphocytes at day 12, and finally increase of Enterococcaceae at day 5, a
decrease of Bacteroides and Clostridiaceae at day 12.
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INTRODUCTION
Inflammatory bowel disease (IBD) is a chronic, relapsing, inflammatory disorder of
the  gastrointestinal  tract  due  to  a  dysregulated  immune  response  towards  the
microbiota[1]. Although many factors underlying IBD have been identified, the exact
etiology is unknown, reflecting its complexity and the broad spectrum of its mani-
festations. IBD includes ulcerative colitis (UC) and Crohn’s disease (CD), which show
differences in the pathology and clinical  characteristics[2]  and with an increasing
incidence , especially in adolescence[3-6], becoming a global disease[7].

IBD is a multifactor disease where environment, genetics, hygiene and microbiota
interact with host immune system in a dynamic equilibrium[8,9].  This equilibrium
between gut microbiota and immune system is stable throughout adulthood and in
health condition, while it is perturbed in diseases like IBD and in predisposing risk
conditions[10-12].  Recent studies indicate that a healthy commensal gut microbiota
stimulates CD4+ regulatory T lymphocytes (Tregs) that, in turn, are responsible for
maintaining  gut  homeostasis[12].  Under  homeostatic  conditions,  a  balance  exists
between the production of pro-inflammatory cytokines by CD4+ T lymphocytes and
anti-inflammatory  cytokines  [e.g.,  interleukin  (IL)-10]  by  Tregs[13].  The  phyla
Bacteroidetes and Firmicutes dominate the gut microbiota of healthy humans[14].

In course of IBD a decrease of Firmicutes  [and, among these, the species Fecali-
bacterium prausnitzii  (F. prausnitzii)][15]  and Bacteroidetes  occurs with an increase in
Actinobacteria and Proteobacteria[16,17]. Among genera a decrease of Bacteroidaceae and an
increase of Enterobacteriaceae (specifically Escherichia coli) and Clostridiaceae[18-20] has
been described,  together with a  reduced phylogenetic  diversity associated to an
increase of T lymphocyte differentiation toward type 1 helper T lymphocytes (Th1),
type 17 helper T lymphocytes (Th17) subsets and a decrease of Treg[21-24].

How these conditions are modified in course of medical treatment aimed to control
active and chronic gastrointestinal inflammation, and whether this could have a role
in non-response rates to biologic agents[24],  is not known. In a previous study we
showed the importance of local immunity in course of anti-tumor necrosis factor α
(TNFα) therapy using animal model of IBD[25]. In this study. we aim to understand
whether anti-TNFα therapy could affect the gut microbiota and intestinal mucosa
immune activation in experimental model of this disease.

MATERIAL AND METHODS

Experimental acute colitis
The animal protocol was designed to minimize pain or discomfort to the animals. The
animals were acclimatized to laboratory conditions (23 °C, 12 h/12 h light/dark, 50%
humidity, ad libitum  access to food and water) for 2 wk prior to experimentation.
C57BL/6 mice, 8 wk old, were fed for 5 d with 3% dextran sulfate sodium (DSS)
polymers in drinking water (MP Biomedicals, Aurora, OH, United States) provided
ad libitum. Mice were divided into four groups (Figure 1). Following three days from
DSS treatment (day 3), two groups received an anti-TNFα drug iv [infliximab (IFX) 5
mg/kg]. Every day weight, fecal consistency, body weight of mice and the presence of
occult  fecal  blood was monitored in  mice as  described[25,26],  in  order  to  calculate
disease activity index (DAI). Mice were sacrificed at 12th d after starting DSS, it means
7 d after DSS stop to evaluate the recovery post colitis. Some animals were sacrificed
following 5 d from DSS (day 5), for intermediate measures in the moment of acute
colitis. Parallel experiments were undertaken during same period also on healthy
mice receiving drinking water instead of DSS.

Biological samples collection and analysis
At the sacrifice from each animal was collected the colon, the mesenchymal lymph
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Figure 1

Figure 1  Experimental design of the dextran sulfate sodium colitis model. Acute colitis was induced by
administration of 3% dextran sulfate sodium (DSS) to drinking water (DSS) for 5 d. At 3rd d, one singular injections of
an anti-tumor necrosis factor α was administrated. Each group counts 20 mice: 10 mice were sacrificed at day 5, 10
mice at day 12 after 1 wk of recovery post-DSS. DSS: Dextran sulfate sodium; TNFα: Tumor necrosis factor α.

nodes (MLN) and stool and stored at -80 °C. The colonic length was evaluated. The
last part of the small intestine was divided in three parts: two were stored at -80 °C for
RNA and protein expression studies, one was fixed in 4% formalin and embedded in
paraffin. The stools of animals were harvested at day 5 and 12, subsequently weighed,
and stored at -80 °C for further analysis.

General assessment of colitis
Colon length was measured as an indication of colonic inflammation. Briefly, the
animals  were anaesthetized and sacrified by cervical  dislocation.  The colon was
resected between the ileo-caecal junction and the proximal rectum, close to its passage
under the pelvis. The colon was placed onto a non-absorbent surface and measured
with a ruler, taking care not to stretch the tissue.

Histological observation and scoring
Colon tissue was fixed in 4% formalin, embedded in paraffin and sliced into 3-mm-
thick sections. Hematoxylin and eosin (HE)-stained sections were scored blindly on
the basis of severity and extent of inflammation, as well as presence and extent of
ulceration[27].  Scores  ranged  from 0  to  4  for  each  parameter;  single  values  were
summed up to obtain the overall histological score (maximum possible value equals
16). Photomicrographs were taken with 40 × magnification on a Nikon E400 Eclipse
microscope.

RNA extraction and real time PCR
RNA was extracted from freeze colon using RNAqueous™ Total RNA Isolation Kit
(Thermo-Fisher).  cDNA  was  synthesized  by  High-Capacity  cDNA  Reverse
Transcription kit (Applied Biosystems), following the manufacturer’s instructions.
Quantitative real-time PCR (qPCR) was performed in duplicates using iQ SYBR Green
Supermix (BioRad) on an iCycler iQ5 (BioRad) with the following scheme: an initial
denaturation at 95 °C for 3 min, 40 cycles of PCR amplification, each consisting of a
denaturing step of 95 °C for 10 s, annealing at 55 °C for 30 s, and a final step at 72 °C
for  1  min.  The  primer  pairs  used  were  for  CD3:  forward  5’-ATGCGGTGGAAC
ACTTTCTG-3’  and  reverse  5’-GCACGTCAACTCTACACTGGT-3’;  for  β-actin:
forward  5’-TGTTACCAACGTGGACGACA-3’  and  reverse  5’-CTGGGTCATC
TTTTCA-3’.  β-actin was used as an endogenous reference gene to normalize the
expression of CD3.

Western blot
Colon tissues were lysed in RIPA buffer [50 mmol/L Tris, pH 8, 150 mmol/L NaCl, 1
mmol/L EDTA, 1% NP-40, 0.05% sodium deoxycholate, 0.1% sodium dodecyl sulfate
(SDS)]  supplemented  with  protease  inhibitors  (10  μg/mL leupeptin,  20  μg/mL
aprotinin,  1  mmol/L  phenylmethanesulfonyl  fluoride,  1  mmol/L  NaVO4,  100
mmol/L NaF). Protein concentrations were determined using the Bradford protein
assay (Bio-Rad). Protein extracts (50 μg) were resolved by 8% SDS-PAGE, transferred
to PVDF membranes, and probed with rabbit polyclonal anti-ZO1 (1:500, Thermo
Fisher Scientific) anti -Occludin (1:500, Thermo Fisher Scientific) anti-actin (1:1000,
Sigma-Aldrich) primary antibodies. Horseradish peroxidase-conjugated secondary
antibodies (GE Healthcare) were detected by use of the ECL Prime Western Blotting
Detection  Reagent  (GE  Healthcare)  and  the  ChemiDoc  XRS  system  (Bio-Rad).
Densitometric  analysis  was  performed  by  using  the  ImageJ  software
(http://imagej.nih.gov/ij/).
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T lymphocyte activation and characterization
T lymphocytes were obtained from MLN of C57BL/6 mice, treated or not with DSS,
using sterile strainers. MLN-derived T lymphocytes were then activated by plate-
bound anti-CD3/anti-CD28 (10 and 4 μg/mL, respectively) in fully supplemented
RPMI 1640 medium containing 10% fetal calf serum, 2 mmol/L glutamine, 100 IU/mL
penicillin, 0.1 mg/mL streptomycin for 48 h. At the end of incubation, T lymphocytes
were stimulated with phorbol myristate acetate (PMA) and ionomycin in the presence
of brefeldin A for 4 h, fixed in 4% formyl saline and permeabilized with 0.1% saponin
buffer prior to intracellular cytokine staining. Flow cytometry analysis was performed
on an Epics XL Coulter instrument (Beckman Coulter). The following monoclonal
antibodies (Mab) were used: PeCy5-labelled anti-CD4 Mab, PE-labelled anti-TNFα
Mab, PE-labelled anti-IL6 Mab, PE-labelled anti-IL17A Mab, PE-labelled anti-FOXP3
Mab, PE CF594-labelled anti-interferon (IFN)γ Mab, PE CF594-labelled anti-IL4 Mab,
PE CF594-labelled anti-CD25 Mab (all  from eBioscience,  San Diego,  CA,  United
States). Cell viability was assessed by Fixable Viability Dye eFluor 450 (eBioscience),
according to the manufacturer’s protocol.

Fecal DNA extractions and qPCR
DNA from stool  samples  was  extracted using the  QIAamp DNA Stool  Mini  Kit
(Qiagen, Inc., Valencia, CA, United States) according to manufacturer’s instructions
and as described previously[28]. qPCR was performed in duplicates by using iQ SYBR
Green Supermix (BioRad) on an CFX96 cycler (BioRad) with the following scheme: an
initial denaturation at 95 °C for 3 min, 40 cycles of PCR amplification, each consisting
of a denaturing step of 95 °C for 10 s, annealing at 55 °C for 15 s, and a final step at 60
°C for 1 min. The primer pairs used were: Fecalibacterium prausnitzii Forward 5'-AGA
TGG  CCT  CGC  GTC  CGA-3',  Reverse  5'-  CCG  AAG  ACC  TTC  TTC  CTC  -3',
Clostridiaceae  Forward 5'-CGG TAC CTG ACT AAG AAG-3', Reverse 5'-AGT TTY
ATT CTT GCG AAC-3', Enterococcaceae Forward 5'-CAT TGA CGT TAC CCG CAG
AAG  AAG  C-3',  Reverse  5'-CTC  TAC  GAG  ACT  CAA  GCT  TGC-3',  Bacteroides
Forward 5'- GAA GGT CCC CCA CAT TG -3', Reverse 5'-CAA TCG GAG TTC TTC
GTG-3.

As standards for qPCR was used DNA extracted from Escherichia coli ATCC 25922
(LGC STANDARD) suspension. DNA was extracted starting from a suspension of 0,5
MacFarland (approximately  1.5  ×  108  CFU/mL)  using  High  pure  PCR template
preparation kit (Roche). Subsequently extracted DNA (approximately 108 copy/mL)
was diluted two fold 1:100 to obtain 106 and 104 standards. The number of CT was
normalized in number of genome copy using a standard curve. The results were
divided  between  T0  and  T2,  where  T0  represented  the  conditions  before  any
treatment,  and  T2  represented  the  changes  that  appeared  after  5  or  12  d  of
administration of DSS and anti-TNFα, alone or in association. The exact number of
days was specified in the figures.

Bioinformatics analysis
Statistical analysis of bacterial genera and species were performed using R packages
FactorMineR and factorextra[29],  while  ggplot2  for  graphical  rappresentations[30].
Principal component analysis (PCA) was computed in order to highlights differences
in species relative abundances among samples. Finally, Mann-Whitney-Wilcoxon was
performed for each bacterial species between T0 and T2 in every group considered in
this study.

Statistical analysis
ANOVA and adjusted Bonferroni post-hoc analysis were performed in order to assess
differences in DAI, protein and RNA expression and T lymphocyte subsets among
treatment groups. A P value < 0.05 was considered statistically significant. Statistical
analysis was performed using IC STATA 12 for Mac.

RESULTS

Anti-TNFα ameliorates DAI and histological scores in a murine model of colitis
In the last 4 years, our group use a well-established model of colitis in mice, largely
recognized in literature: the DSS model[26,31,32]. As shown in Figure 2A and B, during
DSS treatment, particulary at the day 4 and 5, there was a significant increase of the
DAI and a loss of body weight, that equates in an escalation of severity of the DSS-
induced colitis. During the week of recovery, the values of body weight and DAI
came back close to the controls, except in “No DSS + anti-TNFα group”, that showed
gain of DAI score and an unexpected loss of body weight. Colon length was measured
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as an indication of colonic inflammation[33,34]. Bowels were resected from the 4 groups
of  mice  and  subjected  to  macroscopic  and  histopathological  examination.  The
appearance of the organs from the DSS-treated mice showed obvious reddening and
shortening of  the colon,  which are typical  signs of  acute intestinal  inflammation
(Figure 2C).  Histological  analysis,  performed by HE staining,  showed important
modification on colonic mucosa, especially at day 5 not only in “DSS” group, but also
in “No DSS + anti-TNFα” (Figure 3A). After 5 d of DSS treatment, intestinal villi were
flatted,  the  glandular  epithelium  disappeared,  the  globet  cells  were  no  longer
recognizable and there was an evident mononuclear cell infiltrate. In “DSS + anti-
TNFα” group, few glands were preserved, lymphomononuclear cell infiltrate was
present. Mononuclear inflammatory cells were present also in colon of mice treated
only with anti-TNFα (“No DSS + anti-TNFα” group) at day 5 and 12. Following 7 d of
recovery post-DSS, the “DSS” and “DSS + anti-TNFα” groups still displayed atrophic
globet cells , but more preserved than day 5.

Anti-TNFα has effects on tight junction expression and lymphocyte infiltration
We analyzed the mononuclear cells infiltration in each condition (other than control
group or “No DSS”) and the tight junction integrity of the colonic epithelium, and in
particular occludin and ZO-1 (Figure 3B).  Occludin expression decline was more
evident at day 12 in “DSS”group (Figure 3B, right panel, P = 0.05); ZO-1 decreased at
day 5 (also in “No DSS + anti-TNFα”group, P < 0.001) and its levels remained lower
than control mice also at day 12 (Figure 3B, P < 0.001). CD3 expression was studied by
qPCR in the last part of small intestine of mice from different groups. CD3 mRNA
increased in “DSS group” during acute colitis at day 5 (Figure 3C, left panel). At day
12, after 7 d of recovery, CD3 mRNA level remained higher in samples from “No DSS
+ anti-TNFα” group while decreased in other mice (Figure 3C, right panel, P < 0.001):
this  finding  correlates  with  the  presence  of  lymphomononuclear  cell  infiltrate
observed at day 5 and 12. The data in mucosa were confirmed by the data from MLN.
In the presence of inflammatory processes, due in this case to DSS administration,
Treg lymphocytes decreased early at  day 5,  except  in “DSS + anti-TNFα” group
(Figure 4A and B); Th1 and Th17 lymphocytes increased especially later at day 12
(Figure 4A, C and D); these modifications are less prominent in “DSS + anti-TNFα”. In
“No DSS + anti-TNFα” group, several  MLN-derived T lymphocyte subsets were
found modified at day 12. In particular, Th1 and Th17 lymphocytes were found to be
more frequent than in the “DSS + anti-TNFα” treatment group whereas they were
found diminished as compared to the “DSS” treatment group.

The role of TNFα to maintain a healthy gut microbiota
Increased epithelial tight junction permeability, with commensal bacteria, promotes
intestinal CD4+ T cell expansion[31]. The distribution of specific genera and species of
bacteria in the different groups of mice was initially evaluated, by PCA (Figure 5A).
As we expect, the biplot at T0 shows the samples clustered together, and reflects the
homogeneity in the abundance of genera and species in the microbiota of inbred mice.

At T2, after 5th or 12th d of treatment, the samples from groups “DSS” or “DSS +
anti-TNFα” diverged from other T2’s samples and from their respective T0. Moreover,
it  is  possible  to  observe  a  gradient  of  distance  starting  with  “DSS”  group.
Enterococcaceae  weighted on this gradient:  they were main factor that causes this
distance of  T2 from T0 in “DSS” and “DSS + TNFα” groups.  We also compared,
trough Mann-Whitney-Wilcoxon, the distribution of genera Bacteroides, Clostridaceae,
Enterococcaceae, and of species F. prausnitzii in each group of mice. As we expected, in
“No DSS” group no main changes occurred between T0 and T2, i.e.,  between the
beginning of the experiment and the sacrifice (Figure 5B, right panel). As described
eldewhere[35],  animals  with  DSS  induced  acute  colitis  showed  an  increase  of
Enterococcaceae, and a decrease of Bacteroides and Clostridaceae, that is also statistically
significant (P < 0.05, Figure 5B, left panel). The level of F. prasunitzii is not affected.
After 7 d of recovery in “DSS” group all bacteria modifications reached the T0 level
again.

In “DSS + anti-TNFα” group, the changes after 5 d were opposed to those seen in
“DSS group”.  In  the  “DSS +  anti-TNFα” group there  is  no  evident  effect  of  the
inflammation  on  Bacteroides,  Clostridaceae  and  F.  prausnitzii  as  their  abundance
increased while Enterococcaceae behaved as per “DSS” group. After 7 d of recovery the
effects of anti-TNFα were maintained only by F. prausnitzii (Figure 5B, left panel). The
increase of F. prausnitzii seems due the TNFα inhibition as in “No DSS + anti-TNFα”:
after  2  d  from  one  singular  administration  of  anti-TNFα,  the  abundance  of  F.
prausnitzii increased and remained stable 10 d after drug administration. In “No DSS
+ anti-TNFα”, the Clostridiaceae decreased at day 5 (P < 0.05), and Bacteroides fell down
at day 12 too (P < 0.05). Enterococacceae show a moderate increase, but in this case the
data were not significant (Figure 5B, left panel).
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Figure 2

Figure 2  Estimation of clinical and morphological changes of dextran sulfate sodium-induced colitis. A: The four-point disease activity index (DAI) was
evaluated scoring daily body weight of mice, the percentage of body weight loss, the trait of the stool and the presence of occult blood in feces. B: Body weight, one of
the DAI parameter, is also represented separately by percentage, where the mice weight at 1st d of experiment is equal to 100%. C: Colon length is another parameter
to evaluate the healthy or disease state of the mice: the mean values in the 4 groups at day 5 are shown. aP < 0.05; bP < 0.01; cP < 0.0001. DSS: Dextran sulfate
sodium; TNFα: Tumor necrosis factor α; DAI: Disease activity index.

DISCUSSION
An unfavorable alteration of the commensal structure of gut microbiota is referred to
as “dysbiosis”; this includes a reduction in the number of tolerogenic bacteria and an
overgrowth of potentially pathogenic bacteria (“pathobionts”) that can penetrate the
intestinal  epithelium  and  induce  disease  in  certain  genetic  or  environmental
contexts[32,33].

In the last decade a growing body of evidence suggests the crucial role of the gut
microbiota  in  human health  and studies  are  looking  to  define  the  link  between
“dysbiosis” and several pathologies[19,34,36].

In this paper, we use an animal model of experimental colitis to study the behavior
of few bacterial genera and species during inflammation and anti-TNFα therapy. A
model of severe murine colitis, which most closely resembles human UC, results from
administration of 40-50 kDa DSS in drinking water[37]. The mechanism by which DSS
induces intestinal inflammation is due to the damage to the epithelial monolayer
lining in the large intestine allowing the dissemination of pro inflammatory intestinal
contents (e.g.,  bacteria and their products) into underlying tissue. The DSS colitis
model is very popular in IBD research due to its rapidity, simplicity, reproducibility
and controllability[38,39].

DSS treatment induces changes in the abundance of few bacteria, whose dynamics
shift toward an unhealthy state, confirmed by clinical data in mice (DAI, changes in
body weight and histological score) (Figure 2). We have previously described the
efficacy of IFX in neutralizing also murine TNFα[25,40]. The aim of this study was to
evaluate  the  effects  of  a  selective  immunosuppression on the  gut  microbiota,  in
particular  on  few genera  and species  involved in  T  lymphocytes  expansion.  To
differentiate between the effects of DSS and of IFX, we used two control groups of
mice: “No DSS” and “NO DSS + anti-TNFα”. During the first evaluations, we noticed
that the mice from “No DSS + anti-TNFα” group were characterized by a raise of DAI
(Figure 2A), due to the loss of body weight (Figure 2B). “No DSS + anti-TNFα” group
showed an increased mononuclear cell infiltrate compared to the control mice (Figure
3A), epithelial tight junction permeability (Figure 3B) and an increased expression of
CD3 at qPCR (Figure 3C).  In the first  lymphoid station that drains the microbial
products from intestine (MLN) Th1 and Th17 level increased at day 12 both in colitic
mice and in control mice treated only with IFX (Figure 4A-D). Next, we looked at
changes in Bacteroides, Clostridiaceae, Enterococcaceae and F. prausnitzii abundance. We
have previously shown[15,16,18] that this mouse model mimics the changes that happens
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Figure 3

Figure 3  Histological analysis confirms the strength of the dextran sulfate sodium model. A: Hematoxylin and eosin staining of colon sections of mice from 4
groups of treatment at day 5 and 12. Forty-fold magnification was used. B: Protein expression of tight junctions occludin and ZO-1 in colon tissue. Antibody anti-β-actin
was used as endogenous control. On the right, the histograms represent the mean of densitometry values from 3 different experiments. C: CD3 infiltration in colon
mucosa was assessed by quantitative PCR of CD3 mRNA. One-way ANOVA (and non-parametric) was calculated; aP < 0.05; bP < 0.01; cP < 0.0001. DSS: Dextran
sulfate sodium; TNFα: Tumor necrosis factor α.

in the intestine of IBD patients . While in “No DSS” mice no main changes occurred
between T0 and T2 (both at day 5 and at day 12, Figure 5B, right panel), in “No DSS +
anti-TNFα”  “DSS  +  anti-TNFα”  and  “DSS”  groups  there  was  an  increase  of
Enterococcaceae abundance at day 5, a decrease of Bacteroides and Clostridiaceae at day 5
and day 12.  This  suggests  that  either DSS or anti-TNFα may cause a shift  in the
abundance of Enterococcaceae,  Bacteroides  and Clostridiaceae  in the gut. The level of
Enterococcaceae, Bacteroides and Clostridiaceae might have a role in the increase of CD3+

cells in colon mucosa, in the loss of tight junction expression and the raise of Th1 and
Th17 in MLN observed in mice treated only with IFX.

On the other hand, a positive effect due to IFX was the augmented abundance of F.
prausntizii at day 5 (after only 2 d from the i.v.) that remained also at day 12. The use
of an anti-TNFα in healthy conditions resulted in dramatic  changes in intestinal
mucosa inflammation, modulation of tight junction permeability, and to an interesting
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Figure 4

Figure 4  T cells subsets characterization in presence of an anti-tumor necrosis factor α agent. T cells were isolated from mesenteric lymphnode of mice and
CD4+ cells were studied by flow cytometry. In particular, CD4+ regulatory T lymphocytes characterization was possible through the use of anti-CD25 and anti–FoxP3
antibodies (B); type 1 helper T lymphocytes expressed interferon (IFN)γ and tumor necrosis factor α (C); IFNγ+ and interleukin 17+ cells identified the type 17 helper T
lymphocytes cluster (D). In each panel (B), (C) and (D) the cells in the upper right quadrant were the double staining cells. Treg: CD4+ regulatory T lymphocytes; Th1:
Type 1 helper T lymphocytes; Th17: Type 17 helper T lymphocytes; DSS: Dextran sulfate sodium; TNFα: Tumor necrosis factor α; IFNγ: Interferon γ; IL: Interleukin.

shift in the overall intestinal mucosa T cell immune response at cytometry analysis, in
parallel to variation of Enterococcaceae, Bacteroides and Clostridiaceae abundance. This
observation, if confirmed in humans, has several potential implications. First, the
dysbiotic effect of anti-TNFα must be considered in patients not responding to this
drug.  New and emerging data  show potential  positive  effect  of  modulating gut
microbiota composition in UC, including fecal microbiota transplantation[41,42].

Furthermore, the shift toward Th17 pathway could be considered when deciding to
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Figure 5

Figure 5  Bacterial genera and species characterization in presence of an anti- tumor necrosis factor α agent. A: Principal component analysis was
represented by a biplot, where the variability among samples and bacterial weight in the variability were expressed. B: Dot plot represents the distribution of bacteria
at the beginning of the experiment and at the moment of sacrifice; in the case of “No DSS” mice, the samples from day 5 and 12 are collected together, since no
significant changes occurred between day 5 and 12. In left panel, the results were distinguished based on the day of the end of experiment. DSS: Dextran sulfate
sodium; TNFα: Tumor necrosis factor α.

swap therapy in non-responder colitis patients: indeed emerging data suggest the
positive effect of blocking the Th17/IL23 pathway also in UC, as shown by phase 3
induction trial of ustekinumab in UC patients[43].

A direct  translation to human disease cannot be done.  Furthermore,  no direct
correlation  has  been  shown  between  anti-TNFα  use  and  change  in  microbiota
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composition. It can be argued that microbial change could arise indirectly following
the immunological changes due to IFX treatment. Finally, other factors, like the mucus
layer, are also implied into the pathogenesis of DSS colitis, could exert an important
role in these findings.

Overall  our  data  suggest  a  deep  knowledge  of  the  interaction  between  drug
treatment, immune system and microbiota is key to better understand IBD and its
response to therapy.

ARTICLE HIGHLIGHTS
Research background
Anti-tumor necrosis factor α (TNFα) represents the best therapeutic option to induce mucosal
healing and clinical remission in patients with moderate-severe ulcerative colitis. On the other
side gut microbiota plays a crucial role in pathogenesis of ulcerative colitis but few information
exists  on how microbiota  changes following anti-TNFα therapy and on microbiota  role  in
mucosal healing.

Research motivation
The hypothesis  behind this  study is  that  anti-TNFα could induce a dysbiosis  sustained by
immunological changes: dysbiosis could represent one of the reasons for loss of response to anti-
TNFα therapy or primary failure.

Research objectives
With this manuscript we aimed to evaluate, in colitic mice as well as healthy mice, intestinal
immune system status and gut microbiota modulation induced by anti-TNFα therapy. A more
comprehensive approach including gut microbiota modulation, if clarified, could be assessed by
dedicated studies on active gut microbiota modulation during biologic therapy in inflammatory
bowel disease (IBD).

Research methods
Healthy mice  treated with  anti-TNFα showed similar  histological,  microbial  and immune
features of untreated colitic mice, in particular a lymphomononuclear infiltrate both at 5th and
12th d at hematoxylin and eosin staining, an increase of type 1 helper T lymphocytes (Th1) and
type 17 helper T lymphocytes (Th17) at day 12, and finally increase of Enterococcaceae at day 5, a
decrease of Bacteroides and Clostridiaceae at day 12.

These findings are particularly relevant to understand the role that anti-TNFα modulation
plays on gut microbiota (and vice-versa) also in humans: this finding could be of major interest
in order to give more lights on mechanisms of loss of response to anti-TNFα, mechanisms of
immunological  shift  with  towards  other  pathways,  like  Th17  pathways,  as  well  as  novel
potential therapeutic targets in IBD.

Research results
Gut microbiota contributes to immune system priming, development and activation. In course of
IBD a decrease of Firmicutes (and, among these, the species Faecalibacterium prausnitzii) together
with  an  increase  in  Proteobacteria  has  been  demonstrated,  associated  to  an  increase  of  T
lymphocyte differentiation toward Th1,  Th17 subsets and a decrease of  CD4+  regulatory T
lymphocytes (Tregs). How these conditions are modified in course of medical treatment is not
well clarified, particularly when a powerful modulator of the immune system, like anti-TNFα, is
utilized.

Research conclusions
Our  study  confirmed  data  from  the  literature.  The  same  features  were  confirmed  in  the
experimental model of colitis presented in this paper. Furthermore, it was shown that higher
representation  of  Bacteroides,  Clostridiaceae  and  Faecalibacterium  prausnitzii  and  lower
representation of Enterococcaceae are associated to a healthy state while the opposite happens
during colitis. Anti-TNFα is able to induce changing in gut microbiota toward a health state in
course of active colitis, but a more dysbiotic effect when utilized in healthy controls. Healthy
related-microbial assessment is associated to higher Treg cells count and lower Th1 and Th17
frequency, condition modified in course of active colitis or use of anti-TNFα in course of healthy
condition.

The study conclusion demonstrates  a  clear  relationship between microbial  changes and
immunological changes in healthy as well  as in controls.  However,  whether these findings
correlate  to  human disease  needs  to  be  assessed in  a  dedicated study as  well  the  need of
checking and correction of dysbiosis in patients exposed to anti-TNFα.

Research perspectives
This study strongly suggests a complete assessment of immune system and microbiota in course
of  powerful  immunomodulatory  therapy  like  anti-TNFα  and  opens  new  and  important
considerations.  In order to personalize the therapeutic approach to an IBD patient,  clinical
studies assessing gut microbiota composition before starting an immunomodulatory therapy and
in course of therapy are needed. Once an alteration has been demonstrated, the potential role of
concomitant microbiota modulation could also be considered for newer and more personalized
therapeutic approaches.
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