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Abstract
The increasing prevalence of obesity is alarming because it is a risk factor for
cardiovascular and metabolic diseases (such as type 2 diabetes). The occurrence
of these comorbidities in obese patients can arise from white adipose tissue
(WAT) dysfunctions, which affect metabolism, insulin sensitivity and promote
local and systemic inflammation. In mammals, WAT depots at different
anatomical locations (subcutaneous, preperitoneal and visceral) are highly
heterogeneous in their morpho-phenotypic profiles and contribute differently to
homeostasis and obesity development, depending on their ability to trigger and
modulate WAT inflammation. This heterogeneity is likely due to the differential
behavior of cells from each depot. Numerous studies suggest that adipose-
derived stem/stromal cells (ASC; referred to as adipose progenitor cells, in vivo)
with depot-specific gene expression profiles and adipogenic and
immunomodulatory potentials are keys for the establishment of the morpho-
functional heterogeneity between WAT depots, as well as for the development of
depot-specific responses to metabolic challenges. In this review, we discuss
depot-specific ASC properties and how they can contribute to the
pathophysiology of obesity and metabolic disorders, to provide guidance for
researchers and clinicians in the development of ASC-based therapeutic
approaches.
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Core tip: White adipose tissue (WAT) depots at different anatomical locations are highly
heterogeneous in morphology and phenotype, and contribute differently to the
development of obesity and metabolic disorders. Here, we discuss the role of adipose-
derived stem/stromal cells (ASC) in the development of obesity and metabolic disorders,
by reviewing the data suggesting that depot-specific ASC/adipose progenitor cells help
to develop the specific responses of each WAT depot to metabolic challenges. In
particular, we address the importance of ASC-dependent immunomodulation in the
inflammatory response associated with obesity, providing guidance for future research
on the use ASC-based therapeutic approaches.
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INTRODUCTION
The  World  Health  Organization  defines  obesity  as  abnormal  or  excessive  fat
accumulation  that  represents  a  risk  to  health.  Obesity  can  develop  due  to  an
imbalance between energy intake and expenditure by the organism, and it is strongly
related to environmental  factors,  such as high caloric  food consumption and se-
dentary lifestyle. In addition, the intestinal microbiota, stress levels, endocrine and
genetic  profiles  can  also  contribute  to  increase  an  individual’s  susceptibility  to
obesity[1,2]. The increasing prevalence of obesity is alarming because it is a risk factor
for  several  diseases,  including  hypertension,  ischemic  cardiovascular  disease,
dyslipidemia, insulin-resistance, diabetes, metabolic syndrome[3-7] and also cancer[8-11].

The primary site for energy storage in humans is white adipose tissue (WAT)[12].
The discovery that metabolic diseases such as obesity and type-2 diabetes arise from
WAT dysfunctions has revealed immune and endocrine non-classical functions of
WAT, which strongly impact on metabolism, insulin sensitivity and promote local
and systemic inflammation[13-15]. Mammalian WAT depots found in distinct anatomical
locations are highly heterogeneous in their  morpho-phenotypic profiles[16,17].  The
differential accumulation of fat in specific anatomical depots (rather than the total
body fat mass) is the crucial factor that determines the clinical outcomes of obesity
and other metabolic diseases.  Depot-specific  adipose-derived stem/stromal cells
(ASC) could be pivotal to determine the different pathophysiological roles of each
depot, by modulating the depot’s gene expression profile and its adipogenic and
immunomodulatory potentials. Therefore, a deep understanding of the contribution
of depot-specific ASC to the differential properties and pathogenicity of WAT depots
can  be  crucial  for  developing  new  therapeutic  approaches  against  metabolic
disorders.

In  this  review,  we  discuss  the  current  knowledge  on  depot-dependent  ASC
properties  and  how  they  can  contribute  to  the  pathophysiology  of  obesity  and
metabolic disorders. The discussion here aims to provide guidance for researchers
and clinicians in the future use ASC in therapeutic strategies against obesity and
related pathologies.

WHITE ADIPOSE TISSUE DEPOTS: A MATTER OF
ANATOMICAL LOCATION OR INHERENT PROPERTIES?
In most mammals species, fat storage occurs mainly in WAT, inside specialized cells
called adipocytes[18], which accumulate triglyceride molecules (consisting of glycerol
and fatty  acid chains).  Adipocytes  can dramatically  alter  their  size  according to
changes in metabolic demand. After a meal, insulin stimulates WAT to store energy in
the form of neutral lipids, mainly triacylglycerol, in a process known as lipogenesis.
Conversely, adipocytes provide free fat acids to be metabolized by the organism
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through lipolysis, in periods of fasting[19].
In humans, WAT is distributed in two main depots – the subcutaneous and the

visceral WAT - with distinct structure, cell content, gene expression and secretion
profiles,  as well as responsiveness to neuro-endocrine stimuli.  The subcutaneous
WAT is distributed along the body surface, forming the hypodermis, with distinct
depots in the abdominal, femoral, gluteal, facial and cranial regions. On the other
hand, visceral WAT surrounds the organs of the abdominal cavity, and is also found
in smaller amounts around the heart (epicardial visceral WAT), stomach (epigastric
visceral WAT) and blood vessels (perivascular visceral WAT)[16,17,20].

Evidence  links  obesity  and  metabolic  dysfunction  to  the  total  body  fat  mass,
particularly in the abdominal region[5]. In the abdominal WAT, subcutaneous WAT is
subdivided by the Scarpa’s fascia into superficial and deep depots[21,22], while visceral
WAT  is  subdivided  into  omental  (surrounding  the  surface  of  the  intestines),
mesenteric (deeply within the intestines) and retroperitoneal (near the kidneys, at the
back) fat depots[16,23]. In the 1950s, Vague[24] showed that the anatomical fat distribution
could have important metabolic implications,  with certain distributions favoring
diabetes and atherosclerosis. Krotkiewsk et al[25] showed that subjects with a higher
waist-to-hip ratio had increased blood pressure, low carbohydrate tolerance and high
insulin  plasma levels.  By connecting clinical,  epidemiological  and physiological
evidence with WAT measurements, different research groups concluded that visceral
fat accumulation (central obesity) is more strongly associated with higher metabolic
and cardiovascular risk, while subcutaneous fat accumulation in the thighs and hips
(peripheral obesity) is associated with a lower risk of these diseases [26-30].

However,  it  remained  unclear  whether  the  differential  impact  on  systemic
metabolism  was  due  to  the  anatomical  location  of  the  WAT  depot,  to  intrinsic
properties of the cells in each depot, or both. WAT depot transplantation in mice shed
light on the influence of depot anatomical location on systemic metabolism. Both lean
and obese mice had increased glucose tolerance, insulin sensitivity and reduced body
weight after receiving a transplant of subcutaneous WAT from lean mice into the
visceral  cavity[31-34].  The  metabolic  improvement  exerted  by  subcutaneous  WAT
transplanted into a different anatomical location suggested that subcutaneous and
visceral WAT depots are intrinsically different.

The  studies  mentioned  above  triggered  the  search  for  intrinsic  biological
differences between depots that could explain the link between depot heterogeneity
and metabolic complications, both in lean and obese rodents and humans. Indeed,
gene  expression  analysis  revealed  significant  differences  in  hundreds  of  genes
between distinct adipose tissue depots[35-37].  Moreover, visceral WAT has a higher
triglyceride turnover compared to subcutaneous WAT, probably due to a higher
sensitivity to the lipolytic function of catecholamines and a lower sensitivity to the
antilipolytic effects of insulin[38-40].

Thus far,  the vast majority of studies on the heterogeneity of abdominal WAT
depots  focused  on  the  comparison  between  subcutaneous  and  visceral  WAT.
However, abdominal WAT comprises not only these two types of depots but also the
preperitoneal  (also  known as  endoabdominal  or  extraperitoneal)  WAT,  located
between  the  transverse  fascia  and  the  parietal  peritoneum[41].  Interestingly,  the
preperitoneal  WAT has the highest  size variation during weight loss  by dieting,
compared with subcutaneous and visceral WAT[42]. Like subcutaneous and visceral
WAT, preperitoneal WAT can also be identified in non-obese and obese subjects by
computer-tomography and ultrasonography[43-46].

Suzuki et al[43] suggested that the abdominal wall fat index (AFI) determined by
ultrasonography could be a novel indicator of visceral fat deposition. This study
showed that the AFI - which represents the ratio between the preperitoneal WAT
maximum thickness (Pmax) and the subcutaneous WAT minimum thickness (Smin) -
positively correlates with the visceral to subcutaneous WAT ratio (V/S). These data
indicate that the thickness of the preperitoneal WAT depot is positively associated
with the visceral depot mass. Moreover, the AFI correlated positively with the plasma
levels of triglycerides and with the basal insulin levels in obese individuals, but was
inversely correlated with high density lipoprotein levels[43]. Whether preperitoneal
and visceral WAT depots have similar properties or even similar impact on metabolic
dysfunctions  remains  controversial.  While  some  studies  showed  that  the
preperitoneal WAT maximum thickness or the AFI are associated with cardiovascular
risk  factors[47,48],  others  indicated  that  visceral  WAT  thickness  showed  a  better
association  with  cardiovascular  risk  factors  compared  with  subcutaneous  and
preperitoneal WAT thickness[49,50]. Similarly to visceral WAT, the preperitoneal WAT
is covered by the peritoneum; however, visceral (but not preperitoneal) WAT contains
portal vein circulation[51,52]. A functional comparison of the preperitoneal WAT depot
with subcutaneous and visceral WAT, both in lean and in metabolically disrupted
patients,  is  necessary to clarify the impact of  each WAT depot on metabolic  and
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cardiovascular disease risks.
Therefore, the relationship between different WAT depots and systemic homeo-

stasis and the development of metabolic diseases is mainly dependent on the intrinsic
properties  rather than the anatomical  location of  each depot.  The metabolic  and
genetic differences observed between abdominal whole WAT depots could be related
to the behavior of the cells that dwell in each depot.

STROMAL-VASCULAR FRACTION AND THE INHERENT
PROPERTIES OF WAT DEPOTS
WAT is  composed of  two main cell  fractions:  mature  unilocular  adipocytes  and
stromal-vascular cells, known as the stromal-vascular fraction (SVF). After enzymatic
digestion of the adipose tissue and centrifugation, the adipocytes float to the surface,
while SVF cells sediment to the pellet[53].

Adipocytes have the fundamental role of accumulating triacylglycerols during
periods of caloric excess, and then breaking this reservoir into free fatty acids when
energy consumption is required. Mature adipocytes are equipped with enzymes and
regulatory proteins to perform lipolysis and lipogenesis, which are orchestrated by
hormones, cytokines and other factors involved in energy metabolism[16].

The adipose SVF is highly heterogeneous, and can be sub-divided into hemato-
poietic and stromal compartments[53]. The hematopoietic compartment comprises cells
that express CD45, including lymphocytes (Natural Killer, helper and regulatory T
cells, and B cells)[54], eosinophils[55], neutrophils[56], hematopoietic progenitors[57], mast
cells[58] and macrophages. Notably, the presence of macrophages has been repeatedly
reported in human and murine adipose tissue[59-61]. The percentage of macrophages
varies according to the presence of pathophysiological conditions, such as obesity,
which is characterized by monocytic/macrophagic infiltration into adipose tissue[62,63].

The stromal compartment of the adipose SVF is composed of mesenchymal and
endothelial cells associated with blood vessels. Zimmerlin et al[64] distinguished the
following  four  cell  subpopulations  in  the  stromal  SVF  compartment,  using  a
combination of in situ immunolabeling and cell sorting: (1) Pericytes/mesenchymal
stem cells (MSC; CD146+/CD34-/CD31-); (2) Adipocyte progenitors/Pre-adipocytes
(CD146-/CD34+/CD31-);  (3)  Endothelial  progenitor  cells  (CD31+/CD34+);  and (4)
Mature endothelial cells (CD31+/CD34-). All cells in the stromal compartment are
negative for the pan-hematopoietic marker CD45. In the adipose tissue, MSC give rise
to endothelial progenitors and pre-adipocytes, which differentiate into endothelial
cells and adipocytes, respectively. Therefore, adipose MSC can maintain or increase
adipocyte numbers, thereby modulating the adipose tissue lipid store capacity, as
well as its ability for homeostasis or regeneration through adipogenesis[65].

SVF  culture  generates  a  population  of  adherent  cells  characterized  by  the
expression of mesenchymal markers including CD44, CD73, CD90 and CD105, but
negative for CD45 and CD31[66,67]. These cells can differentiate in vitro into mature cells
of mesodermal lineages, such as adipocytes, osteoblasts and chondrocytes[66-69]. These
combined phenotypic features and differentiation properties are diagnostic of ASC[70].
These cells can also lead to angiogenesis, by differentiating directly into endothelial
cells[71], by interacting with endothelial cells to induce vascular formation[72], or by
secreting angiogenic factors such as VEGF, HGF, FGF and PDGF[73-75]. The angiogenic
potential of ASC has important therapeutic implications. ASC secrete different types
of chemical mediators, including cytokines and growth factors, which have paracrine
activities that stimulate local cell survival and proliferation, angiogenesis, differenti-
ation of local  stem cells,  and reduce apoptosis[75-77].  Moreover,  ASC can suppress
mixed lymphocyte reaction[78] and their low immunogenicity could enable their safe
use in allogeneic transplants, as part of cell-based regenerative therapies[79]. Therefore,
the differentiation capacity of ASC and their trophic effects directly contribute to
adipose  tissue  homeostasis,  cell  renewal,  tissue  repair  and tissue  immunogenic
balance[80].

Lafontan  et  al[81]  postulated  that  metabolic  and  genetic  differences  observed
between abdominal whole WAT depots could be related to the unique properties of
the cells that dwell in each of these depots. Besides, these unique cell properties could
also account for the different responses of each depot to metabolic challenges[81,82].
Proteomic  analysis  of  adipocytes  and SVF cells  isolated from subcutaneous and
visceral WAT from lean subjects showed that the SVF could have a higher contri-
bution to the functional differences observed between these depots[83].

The in vivo counterparts of the cultured ASC still remain to be defined and studies
sometimes refer to these cells as mesenchymal stem/stromal cells. Throughout this
review the term “ASC” only will be used for the adherent cells derived from the SVF
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with the diagnostic features mentioned previously, which we use as criteria for ASC
identification[70]. In contrast, when describing resident adipose cells with progenitor
potential  in vivo,  the term “adipose progenitors” will  be used instead. Given the
ability  of  ASC/adipose  progenitors  to  govern  adipose  tissue  development  and
homeostasis, some studies have suggested that depot-specific ASC with unique cell-
autonomous properties could be responsible for the morpho-functional heterogeneity
of WAT depots[84-86].

RELATIONSHIP BETWEEN OBESITY-INDUCED
INFLAMMATION AND ADIPOGENESIS

WAT inflammation in obesity
The  ability  of  adipocytes  to  increase  in  size  (adipocyte  hypertrophy)  during
lipogenesis was believed to be the only mechanism by which adult WAT expands
upon insulin stimulation. However, it is now widely accepted that an increase in
adipocytes number - or adipose tissue hyperplasia - also contributes to WAT mass
gain through the recruitment and differentiation of adipose progenitors, in a process
known as adipogenesis[2].  Therefore,  the ability of  WAT to expand during life in
response  to  metabolic  needs  depends  not  only  on  adipocytes,  but  also  on  the
adipogenic potential of adipose progenitors. Other factors such as vasculature and
extracellular matrix remodeling also contribute to the plasticity of adipose tissue and
influence adipocyte hypertrophy and adipogenesis from stem cells[87].

During the development of obesity, WAT expands to an extent that leads to chronic
tissue inflammation[62], which is associated with an increased risk of type-2 diabetes
and cardiovascular disease[88]. The first functional connection between obesity and
inflammation was the observation that obese WAT secretes large amounts of the
proinflammatory cytokine tumor necrosis factor (TNF)-α, and that this cytokine had a
direct role in obesity-induced insulin resistance[89,90]. As well as increased levels of
proinflammatory cytokines, obese WAT also exhibits low level of anti-inflammatory
mediators[89,91]. The discovery that obesity is characterized by macrophage accumu-
lation in adipose tissue added a new dimension to our understanding of how obesity
propagates  inflammation,  as  macrophage  recruitment  is  an  important  factor  in
promoting insulin resistance[62,63]. A clue to the origin of these recruited macrophages
came from the observation that, in CD45.2 mice transplanted with bone marrow cells
from CD45.1 mice, 85% of the adipose tissue macrophage (F4/80+) cell population had
the CD45.1 marker.  Therefore,  during obesity development,  the expanding WAT
secretes chemoattractants (such as the mouse chemoattractant protein-1, MCP-1, and
the macrophage inflammatory protein-1α, MIP-1α) that recruit monocytes from the
bone marrow to adipose tissue[62,63].

In  obesity,  the  infiltrating  macrophages  adopt  a  proinflammatory  (“M1”)
phenotype, becoming a source of proinflammatory cytokines such as IL-1β and TNF-
α[63],  which  trigger  local  and  systemic  insulin  resistance[62].  These  infiltrating
macrophages differ from adipose tissue resident (“M2”) macrophages, which exhibit
anti-inflammatory characteristics[92,93]. In mice, high-fat diets turn the secretion pattern
of M2 macrophages into M1, by the reduction of IL-10 and arginase levels, and the
increase in TNF-α and iNOS levels[94]. Diet-induced obesity increases the expression of
the M1 marker CD11c in WAT, while decreasing CD206 expression, which is typical
of M2 macrophages[95].

The  poorly-defined  mechanisms  that  initiate  inflammation  and  connect  the
inflammatory scenario of  obese WAT to other diseases are the subject  of  intense
investigation, in a research area known as “metabolic inflammation”[96]. Metabolically
altered adipose  tissue  cells  may interact  with  immune cells  to  initiate  the  infla-
mmatory process. Interactions between immune and metabolic cells occurs in other
metabolic  tissues  and organs  (liver,  muscle  and pancreas)  in  obese  individuals,
suggesting that metabolic inflammation could be a systemic feature of obesity[97].

Immune-metabolic interactions occur in obesity between adipocytes or SVF cells
and macrophages. Indeed, adipocyte hypertrophy is a potential trigger for macro-
phage accumulation in WAT[98].  In  association with the large increase in protein
synthesis,  hypertrophied  adipocytes  display  mitochondrial  and  endoplasmic
reticulum  stress,  which  could  lead  to  the  activation  of  inflammatory  signaling
pathways[99-101].  In  line  with  this  hypothesis,  hypertrophied  adipocytes  in  obese
individuals  change  their  intrinsic  secretion  profile  towards  a  proinflammatory
phenotype (characterized by high TNF-α and low adiponectin levels)[19,102,103]. TNF-α
could stimulate pre-adipocytes and endothelial cells to secrete MCP-1, attracting
monocytes from the bone marrow[62,63]. In addition, pro-inflammatory cytokines and
fatty acids secreted by hypertrophic  adipocytes  can lead recruited macrophages
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towards an M1 proinflammatory phenotype[104]. Moreover, groups of hypoxic and
hypertrophic  adipocytes  undergo  necrosis,  and  are  cleared  by  macrophage
phagocytosis.  Indeed,  macrophages  form crown-like  structures  around necrotic
adipocytes in obese WAT, in a typical chronic inflammatory response[95,105].

While the M1 profile is pro-inflammatory, the potentiation of M2 pathways in
macrophages appears to reduce metabolic inflammation (or “metainflammation”),
improving  insulin  sensitivity[103].  The  M2  phenotype  of  resident  adipose-tissue
macrophages is maintained by the paracrine action of lymphocytes and eosinophils;
however,  in  obesity,  the  recruitment  of  these  cells  to  WAT  is  suppressed[106,107].
Tolerogenic CD4+ T-regulatory cells (Tregs) are also downregulated in WAT during
obesity,  which  could  lead  to  metainflammation[108,109].  Aside  from  Tregs,  other
leukocytes,  including NK, NKT and mast cells,  have a yet poorly-defined role in
metainflammation[110-112].  Further  studies  on  the  temporal  and  spatial  immune-
metabolic interactions between leukocytes and WAT cells should shed light on the
mechanisms underlying inflammation in obesity,  to identify potential targets for
clinical intervention.

Complex  molecular  signaling  pathways  may  link  metabolic  challenges  (e.g.,
excessive fat storage) with inflammation in obesity[113], including pathways involving
the  NLRP3  inflammasome,  a  cytoplasmic  protein  complex  that  promotes  the
conversion of pro-cytokines into active cytokines, which are then secreted[114]. NLRP3
inflammasome activity can be modulated by several  metabolites,  including fatty
acids, and the activation of this complex can interfere with insulin signaling[115,116].
Inflammasome activity can be triggered by endogenous or exogenous stress signals
(e.g., cytokines, free fatty acids, glucose, reactive oxygen species, ATP), which function
as “pathogen-associated molecular patterns” that interact with pattern recognition
receptors, especially toll-like receptors (TLRs), in WAT cells. The interaction of stress
signals  with  TLR4,  for  example,  activates  the  nuclear  factor-κB pathway,  which
increases NLRP3 expression[116-118].

Adipose  progenitors  could be  key regulators  of  macrophage recruitment  and
activation in  WAT[84].  Indeed,  human ASC express  active TLRs,  including TLR4,
whose activation results in the secretion of the pro-inflammatory cytokines IL-6 and
IL-8[119].  Moreover,  adipose  progenitors  express  molecules  that  favor  immune
differentiation,  such  as  osteopontin,  which  was  identified  as  one  of  the  factors
involved in macrophage accumulation during diet-induced obesity[120]. In line with
this notion, we showed that human ASC secrete MCP-1 in vitro[121], and that mouse
ASC populations enriched in pre-adipocytes (CD34+ ASC) could be responsible for
most  of  the  MCP-1 secretion in  mice[122].  In  addition,  we observed that  ASC can
support  in  vitro  hematopoiesis,  with  a  tendency  to  generate  macrophages  from
hematopoietic progenitors[67].  Moreover,  while adipocytes are the main source of
hormones  that  regulate  energy  metabolism  (such  as  adiponectin  and  leptin),
inflammatory cytokines are mostly secreted by cells  from the SVF[123].  Therefore,
adipose  progenitors  can be  key players  in  the  regulation of  the  metabolic  infla-
mmation established during obesity,  acting as a key source of secreted immune-
mediators in adipose tissue, both in normal and in pathological conditions[124].

Although macrophage infiltration in obese adipose tissue potentiates inflammation
and  favors  the  development  of  comorbidities,  the  pro-inflammatory  cytokines
secreted by infiltrating macrophages with an M1-phenotype could also decrease WAT
mass  by  stimulating  adipocyte  lipolysis  and  inhibiting  adipogenesis[98].  In  fact,
classically activated M1 macrophages impair insulin signaling and adipogenesis in
adipocytes,  by  both  direct  and paracrine  signals[94].  The  immune and metabolic
interactions that occur within WAT may have evolved as a mechanism to regain
homeostasis,  in order to prevent the obesity-associated mobility impairment that
makes animals more vulnerable to predators[125].

The  mechanisms  regulating  adipogenesis  and  inflammatory  responses  from
stromal cells have been the subject of several studies, using various in vivo and in vitro
model systems[126-129]. These studies have shown that the TNF-receptor superfamily
molecule CD40 is expressed during adipogenic differentiation and interacts with
surrounding  immune  cells,  modulating  adipocyte  inflammatory  responses  and
insulin resistance[127,128]. Additionally, a study by Tous et al[129] identified sphingosine
kinase-1 as a potential therapeutic target to attenuate chronic inflammation in obesity
and related metabolic  diseases,  as  this  molecule  regulates  the pro-inflammatory
response in adipose progenitors.

Impact of inflammation induction on ASC functionality
ASC functionality is directly affected by obesity-induced inflammation[121,130]. Some
studies have reported an inverse correlation between the body-mass index (BMI, a
commonly  used  obesity  indicator)  and  ASC  differentiation  capacity[130-132].  In
agreement with these data, our studies and those of others demonstrated that ASC
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from obese subjects have decreased ability to differentiate into adipocytes in vitro,
when compared with those from lean subjects,  as  assessed by intracellular  lipid
accumulation and/or the expression of adipogenic genes[121,130-133].  Isakson et al[134]

suggested that the inflammatory state in adipose tissue may be responsible for the
impaired  adipocyte  differentiation  observed  in  obesity.  Indeed,  inflammatory
cytokines are anti-adipogenic[135], and it is possible that ASC from obese patients carry
a “memory” of differentiation inhibition from the inflammatory environment in vivo,
and which  manifests  itself  as  impaired  adipogenesis  in  vitro.  Pro-inflammatory
macrophages secrete factors that impair human adipogenesis from ASC in vitro[136,137],
and there is a negative correlation between the adipogenic capacity of obese ASC and
the up-regulation of inflammatory genes[130,138]. In contrast, some studies reported that
ASC from obese donors showed higher expression of adipogenic genes, suggesting
that obese ASC are more potent in adipogenesis[138,139]. A recent study showed that
ASC from obese pigs (given a high-fat diet) exhibited increased adipogenic potential
relative to those from lean pigs, at the onset of obesity[140]. The discrepancies between
studies on the impact of inflammation on the adipogenic potential of ASC could be
due to differences in the methods used to evaluate adipogenesis, or to the use of
donors with different adiposity grades, or at different stages of obesity development.

The pro-angiogenic potential of ASC is also altered in obesity. ASC from morbidly
obese individuals have higher mRNA and protein expression of the anti-angiogenic
factor TSP-1 than ASC from lean individuals[130]. In addition, “lean” ASC (i.e., those
differentiated from adipose tissue of lean individuals) had increased capacity to form
tube-like networks while “obese” ASC (derived from obese individuals) were not
responsive to angiogenic stimuli[141], showing a reduced capacity to form capillary-like
structures[142]. Moreover, extracellular vesicles from obese ASC exhibited lower levels
of  angiogenic-related  factors  and,  consequently,  reduced  angiogenic  potential
compared with those derived from lean ASC[143].

The ASC differentiation capacity is also disrupted in patients with type-2 diabetes
mellitus. Global gene expression profiling revealed that ASC from type-2 diabetes
donors have low levels of adipogenic genes compared with those from non-diabetic
donors[144], indicating a decreased potential for adipogenic differentiation in diabetes.
Additionally, ASC from diabetic rats were less effective at forming microvessels in
vivo than those from non-diabetic animals[145].

Obesity also alters the immunomodulatory properties of ASC, and their ability to
secrete  chemical  mediators.  ASC isolated from patients  with different  adiposity
grades exhibit different secretion patterns[146,147]. In particular, we demonstrated that
ASC from morbidly obese patients secrete more proinflammatory cytokines, such as
IL-6 and IL-8[121], which is in agreement with data from other groups showing that
obese ASC display up-regulation of inflammatory genes (including IL-6, IL-8, IL-10
and MCP-1) compared with lean ASC[138,148]. In addition to the increased expression of
inflammatory markers, obese ASC had increased migration and phagocytosis capacity
compared  with  lean  ASC.  Besides,  ASC  from  obese  individuals  show  reduced
capacity to activate the M2 macrophage phenotype and to suppress lymphocyte
proliferation[149]. Therefore, the immunomodulatory properties of ASC are altered in
obesity, which may be related to the role of adipose progenitors as key regulators of
the immune response during obesity development. As well as in obesity, alterations
in  immunomodulatory  properties  are  observed in  patients  with  type-2  diabetes
mellitus[149],  and global gene expression profiling revealed that genes involved in
inflammation are upregulated in ASC from type-2 diabetes patients[144]. Recently, Liu
and colleagues[150] showed that ASC derived from mice with type-2 diabetes are less
effective  at  restricting  CD4+T  lymphocyte  proliferation  and  pro-inflammatory
“polarization” (during pro-inflammatory immune phenotype acquisition) than ASC
from lean mice.

Collectively, these data show that obesity and other immune metabolic pathologies
disrupt ASC/adipose progenitor functionality, favoring a pro-inflammatory response.
This  response,  in turn,  impairs  ASC adipogenic  capacity,  which may reduce the
ability of adipose progenitors to generate new adipocytes in WAT depots, ultimately
leading to  ectopic  fat  storage.  Overall,  evidence from a large number of  studies
indicate that ASC/adipose progenitors are key regulators of the immune response in
obesity and other metabolic disorders, highlighting the potential of ASC use in cell-
based regenerative therapies.

REGIONAL DIFFERENCES IN ASC FUNCTIONALITY IN
OBESITY AND THEIR EFFECT ON FAT EXPANSION AND
DISTRIBUTION PATTERNS
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ASC behavior in WAT depots in obesity
Numerous studies evaluated the behavior of ASC derived from different WAT depots
(in both rodents and humans; Table 1), to test the hypothesis that the properties of
depot-specific ASC could account for some of the differences in morphology, function
and response to metabolic challenges observed between WAT depots.

Baglioni et al[85] reported that, for both lean and overweight subjects, ASC derived
from subcutaneous WAT depots have higher growth rate and adipogenic potential
than those derived from visceral WAT depots. In addition, adipocytes derived from
subcutaneous  ASC  have  greater  capacity  to  secrete  adiponectin  and  are  less
susceptible  to  lipolysis  than  adipocytes  derived  from  visceral  ASC.  Therefore,
functional  differences  between  subcutaneous  and  visceral  WAT  depots  could
originate from differences in depot-specific stem cells. Moreover, microarray analysis
revealed that the genes differentially expressed between subcutaneous and visceral
ASC are implicated in energy and lipid metabolism; importantly, genes involved in
cholesterol biosynthesis and triacylglycerol metabolism were upregulated in visceral
ASC[151]. Genome-wide expression profiles of ASC derived from subcutaneous and
visceral  depots  are  highly  distinct,  in  particular  for  the  expression  of  genes
responsible for early development, which gave rise to the idea that adipose depots
exist as individual mini-organs[152,153].

Numerous  studies  have  compared  depot-specific  ASC  from  lean  and  obese
subjects, to investigate if the differences between depot-specific ASC may account for
the differential responses of adipose depots during the development of metabolic
dysfunctions.  We have recently  demonstrated that  ASC from the  visceral  depot
secreted  the  highest  levels  of  IL-6  and  IL-8  compared  with  ASC  derived  from
subcutaneous and preperitoneal WAT depots[86]. Other studies also reported increased
secretion of pro-inflammatory,  pro-angiogenic and pro-migratory molecules (IL-
6[154,155], IL-8[154], CCL-5[154], MCP-1[86,154,155], G-CSF[86], GM-CSF[155], eotaxin[155], IL-1ra[155]

and VEGF[155]) by ASC from the visceral depot, when compared with those derived
from the subcutaneous depot. Therefore, visceral ASC appear to secrete more pro-
inflammatory cytokines than subcutaneous ASC, both in obese and in non-obese
states, which is in line with the stronger pro-inflammatory pattern adopted by visceral
WAT in response to metabolic challenges.

Fernández  et  al [156]  were  the  first  to  report  the  isolation  of  ASC  from  the
preperitoneal WAT depot. These authors observed that preperitoneal ASC have a
higher adipogenic potential than those derived from the subcutaneous WAT depot.
Comparing ASC from abdominal subcutaneous, preperitoneal and visceral WAT
depots of morbidly obese women, we demonstrated that preperitoneal ASC have the
highest  ability to differentiate to the adipogenic lineage in  vitro.  In addition,  we
observed  that  ASC  derived  from  the  visceral  depot  had  the  lowest  adipogenic
potential[86],  which could be  explained by the  strongly  pro-inflammatory milieu
established in this depot during obesity. For example, IL-6 production in visceral
WAT is 3 fold higher than in the subcutaneous depot[146,157]. Moreover, the macrophage
accumulation observed in WAT depots during obesity development[62,63] is particularly
high  in  the  visceral  compared  with  the  subcutaneous  WAT  depot[158].  We  have
recently demonstrated that,  compared with subcutaneous SVF cells,  visceral SVF
populations have higher numbers of CD14+CD206- cells, a phenotype associated with
M1 macrophages[86].

Although some studies showed that visceral ASC have higher adipogenic potential
than those from subcutaneous depots, others studies reported the opposite, both in
humans[85,86,151,153,159-166] and in mice[152,167-169], with no differences reported in two studies
in humans[131,170]. Thus, there is currently no clear consensus regarding the differences
in adipogenic potential between depot-specific ASC populations. Differences in donor
adiposity grades and sex, in ASC isolation and adipogenic induction protocols, as
well as in methods of adipogenic evaluation could account for this discrepancy, and
highlight the importance of technical standardization in this area[173]. Nevertheless, as
most studies suggest that there are differences in the adipogenic capacity of ASC
derived from distinct WAT depots, together with differences regarding their pro-
inflammatory  potential  (Figure  1),  it  is  likely  that  ASC/adipogenic  precursors
contribute  to  establish  distinct  fat  distribution  and expansion  patterns  between
depots,  and  the  balance  between  hypertrophy  and  hyperplasia  during  obesity
development.

Fat distribution and expansion capacity of different WAT depots
As mentioned earlier, WAT can expand through increases in the size of adipocytes
(hypertrophy),  as well  as by increases in the number of adipocytes (hyperplasia,
through adipogenesis).  Obese  individuals  where  the  visceral  WAT is  expanded
preferentially have a greater risk of developing other metabolic and cardiovascular
diseases than those who have more subcutaneous WAT expansion[174-176], which has a
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Table 1  Functional aspects of human adipose-derived stem/stromal cells derived from different adipose depots

ASC depot origin Species Metabolic status
of subjects Gender Sample number

(n)
Functional

aspects of ASC Publications

SC and VC Human Non-obese Male and female 18 Proliferation: SC >
VC

Baglioni et al[85], 2012

Adipogenic
potential: SC > VC

Adiponectin
secretion by ASC-

derived adipocytes:
SC > VC

Lipolysis
susceptibility of

ASC-derived
adipocytes: VC > SC

SC, PP, VC Human Morbidly obese Female 12 Adipogenic
potential: PP > SC >

VC

Silva et al[86], 2017

IL-6, IL-8, MCP-1, G-
CSF secretion: VC >

SC = PP

PAI-1 secretion:
SC=PP > VC

Adiponectin
secretion by ASC-

derived adipocytes:
PP > SC = VC

SC e VC Human Obese Male and female 29 Proliferation: SC >
VC

van Harmelen et
al[131], 2004

Adipogenic
potential: SC = VC

SC and VC Human Non-obese Female 5 Surface markers
(CD31-, CD34-,
CD45-, CD73+,

CD90+, CD105+): SC
= VC

Kim et al[151], 2016

Proliferation: SC >
VC ;

Adipogenic
potential: SC > VC ;

Genetic pattern: SC
≠ VC

Lipid biosynthesis
and metabolism

genes expression:
VC > SC

DNA-dependent
transcription: SC >

VC

SC and VC Mice and human Non-obese and
obese

Male and female 198 (human) Genome-wide
expression profiles

(including embrionic
development and

pattern specification
genes): SC ≠ VC

Gesta et al[152], 2006

SC, VC Human Lean and obese Male and female 12 Proliferation: SC >
VC

Tchkonia et al[153],
2007

Adipogenic
potential: SC > VC
mesenteric > VC

omentum

Induced-apoptosis
susceptibility VC >

SC
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Genome-wide
expression profiles

(including early
development genes):

SC ≠ VC

SC and VC Human Obese Female 8 MCP-1, IL-6, IL-8,
CCL-5 secretion: VC

> SC

Zhu et al[154], 2015

SC and VC Human Non-obese Male and female 15 MCP-1, eotaxin, IL-
1ra, IL-6, GM-CSF,

VEGF secretion: VC
> SC

Perrini et al[155], 2013

SC and PP Human Non-obese and
obese

Male 8 Proliferation: SC >
PP

Fernández et al[156],
2010

Adipogenic
potential: PP > SC

SC and VC Human Lean and obese Female 14 Adipogenic
potential: SC > VC

Hauner et al[159],
1988

SC and VC Human Not stated Not stated Not stated Adipogenic
potential: SC > VC

Adams et al[160], 1997

SC and VC Human Non-obese and
obese

Male and female 12 Adipogenic
potential: SC > VC

Niesler et al[161], 1998

Susceptibility to
induced apoptosis:

VC > SC

SC and VC Human Non-obese and
obese

Male and female Not stated Adipogenic
potential: SC > VC

Digby et al[162], 2000

SC, VC Human Obese Male and female 16 Adipogenic
potential: SC > VC
mesenteric > VC

omentum

Tchkonia et al[163],
2002

SC, VC Human Obese Male and female 18 Adipogenic
potential: SC > VC

omentum

Tchkonia et al[164],
2005

Resistance to
induced apoptosis:
SC > VC omentum

Proliferation: SC =
VC mesenteric > VC

omentum

SC, VC Human Overweight and
obese

Male and female 31 Adipogenic
potential: SC > VC

Tchkonia et al[165],
2006

Resistance to
induced apoptosis:
SC > VC mesenteric

> VC omentum

SC and VC Human Not stated Not stated 21 Proliferation: SC =
VC

Toyoda et al[166]2009

Adipogenic and
osteogenic potential:

SC > VC

SC and VC Mice Non-obese and
obese

Not stated Not stated Proliferation: SC >
VC

Macotela et al[167],
2012

Adipogenic
potential: SC > VC

SC and VC Mice Not stated Male Not stated Adipogenic
potential: SC > VC

Meissburger et al[168],
2016

SV and VC Mice High-fat diet Male and female Not stated Proliferation in
response to high-fat

diet: SC > VC

Joe et al[169], 2009

Adipogenic
potential: SC > VC

SC and VC Human Non-obese and
obese

Male and female 18 Adipogenic
potential: SC = VC

Shahparaki et al[170],
2002

SC and VC Human Non-obese Male and female 13 ASC-derived
adipocytes C/EBP,

AP-2 and
adiponection

expression: SC > VC

Perrini et al[171], 2008
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Adiponectin
secretion of ASC-

derived adipocytes:
VC > SC

Stimulated glucose
uptake ASC-derived
adipocytes: VC > SC

SC e VC Mice Lean Male Not stated MMP14 expression:
SC = VC

Tokunaga et al[172],
2014

MMP8 and MMP13:
VC > SC

ASC: Adipose-derived stem/stromal cells; G-CSF: Granulocyte colony-stimulating factor; GM-CSF: Granulocyte-Macrophage colony-stimulating factor; IL:
Interleukine;  MCP-1:  Monocyte chemoattractant protein-1;  MMP: Matrix metaloproteinase;  PP: Preperitoneal;  SC: Subcutaneous;  VEGF: Vascular
endothelial growth factor; VC: Visceral.

protective role against the metabolic complications of obesity induced by high-fat
diets[177,178].

Hypertrophic  adipocytes  are  associated  with  adipose  tissue  dysfunction  and
inflammation[179-181], while adipocyte hyperplasia is associated with improved insulin
sensitivity and other metabolic parameters[182], indicating that the balance between
hypertrophy and hyperplasia during WAT expansion can determine the effect of
adipose tissue expansion on metabolic disease development. A comparison of WAT
depots suggested that hyperplasia contributes to subcutaneous WAT expansion more
than to the expansion of visceral WAT, after a high-fat diet[169]. Given the association
of  hypertrophic  adipocytes  with  adipose  tissue  dysfunction,  the  preferential
expansion of visceral WAT by hypertrophy rather than hyperplasia could represent
the mechanism underlying the link between visceral WAT expansion and obesity. On
the other  hand,  the  preferential  expansion of  subcutaneous WAT in  humans by
hyperplasia may explain why subcutaneous WAT expansion is  considered com-
paratively “healthier” than visceral WAT expansion.

However, lineage-tracing experiments in transgenic male mice have challenged this
view, by detecting an increase in the formation of new adipocytes in the epididymal
visceral WAT, with no measurable adipocyte formation in the subcutaneous WAT, in
mice given a high-fat diet[183,184]. Later studies demonstrated that in vivo hyperplasia in
WAT varies according to the specific depot and the sex,  being influenced by sex
hormones[185]. While males have higher potential for expansion by hyperplasia in the
visceral  WAT only,  females  exhibit  WAT hyperplasia  in  both  visceral  and sub-
cutaneous depots after a high-fat diet[185]. This may also occur in humans, since obesity
development in men is associated predominantly with visceral WAT expansion, while
obesity development in women involves subcutaneous WAT expansion[22,186]. Adding
further complexity to this issue, Tchoukalova et al[187] reported that overfeeding in
humans induces different mechanisms of WAT expansion in upper- and lower-body
subcutaneous  WAT  depots:  while  upper-body  abdominal  subcutaneous  WAT
predominantly expands by adipocyte hypertrophy, lower-body subcutaneous WAT
preferentially  expands  by  adipocyte  hyperplasia.  Moreover,  differences  in
preadipocyte  replication  or  apoptosis  could  explain  the  differential  patterns  of
expansion between upper- and lower-body subcutaneous WAT depots.

The numerous in vitro and in vivo studies described in this review suggests that the
different physiopathological properties of distinct WAT depots could be attributed to
the  intrinsic  properties  -  including gene  expression,  adipogenic  and angiogenic
potentials,  and inflammatory behavior -  of adipose progenitors cells within each
adipose compartment. However, Jeffery et al[185] recently challenged this hypothesis by
demonstrating, in a series of elegant transplantation experiments in transgenic mice,
that  donor  adipose  progenitor  cells  behave  as  resident  progenitors  after
transplantation. As previously described, levels of hyperplasia were only detected in
visceral WAT of male mice fed with a high-fat diet, but not in subcutaneous WAT,
indicating that  subcutaneous adipose progenitors  did not  enter  adipogenesis[184].
Importantly, when subcutaneous adipose progenitors were injected into the visceral
WAT  depot,  they  proliferated  in  response  to  the  high-fat  diet,  but  neither
subcutaneous nor visceral adipose progenitors proliferated when transplanted into
the  subcutaneous  WAT depot[185].  These  exciting  data  may suggest  that  adipose
progenitors  from distinct  WAT depots,  despite  having  different  developmental
origins[188,189],  are functionally plastic  and capable of  responding to high-fat  diets
according to cell-extrinsic factors of the depot microenvironment. Therefore, these
new  data  suggest  that,  irrespective  of  their  origin,  adipose  progenitors  behave
according to the WAT depot in which they dwell. Although it is clear that ASC from
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Figure 1

Figure 1  Adipogenic and pro-inflammatory potentials of adipose-derived stem/stromal cells derived from different abdominal adipose tissue depots.
Adipose-derived stem/stromal cells (ASC) from different abdominal adipose tissues have different adipogenic and immunomodulatory properties. Pre-peritoneal ASC
have the highest capacity to generate new adipocytes by adipogenesis and low pro-inflammatory profile. ASC from visceral abdominal depot have the highest capacity
to secrete pro-inflammatory cytokines such as interleukine (IL)-1ra, IL-6 and IL-8 together with the lowest adipogenic potential. ASC: Adipose-derived stem/stromal
cells; WAT: White adipose tissue.

distinct fat depots contribute differently to obesity, further studies are now necessary
to  clarify  the  contribution  of  cell-extrinsic  and/or  intrinsic  factors  in  obesity
development.

CONCLUSION
Adipose progenitors play an important role in obesogenic WAT growth and the
regulation of adipogenesis by these cells may be used in novel therapeutic strategies
against obesity and related diseases. There is no doubt that ASC from different WAT
depots have distinct properties, which are not totally autonomous, as the distinct
microenvironments of each WAT depot influence the function of adipose progenitor
in WAT expansion. Moreover,  distinct in vivo  niches of adipose progenitors may
account for the differential susceptibilities of adipose depot to the development of
metabolic dysfunction. Future studies on adipose progenitor niches, considering the
depot-specific  microenvironment  and the  influence  of  sex  influence  on  adipose
progenitor activation, should elucidate the regulatory signals that govern adipose
progenitor function. Ultimately, these studies may allow adipose progenitors to be
targeted in therapeutic approaches to prevent obesity development or to allow obese
individuals to reach a healthier metabolic status.
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