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Platelet degranulation, a form of regulated exocytosis, is cru-
cial for hemostasis and thrombosis. Exocytosis in platelets is
mediated by SNARE proteins, and in most mammalian cells this
process is controlled by Munc18 (mammalian homolog of
Caenorhabditis elegans uncoordinated gene 18) proteins. Plate-
lets express all Munc18 paralogs (Munc18-1, -2, and -3), but
their roles in platelet secretion and function have not been fully
characterized. Using Munc18-1, -2, and -3 conditional knockout
mice, here we deleted expression of these proteins in platelets
and assessed granule exocytosis. We measured products se-
creted by each type of platelet granule and analyzed EM platelet
profiles by design-based stereology. We observed that the
removal of Munc18-2 ablates the release of alpha, dense, and
lysosomal granules from platelets, but we found no exocytic role
for Munc18-1 or -3 in platelets. In vitro, Munc18-2– deficient
platelets exhibited defective aggregation at low doses of collagen
and impaired thrombus formation under shear stress. In vivo,
megakaryocyte-specific Munc18-2 conditional knockout mice
had a severe hemostatic defect and prolonged arterial and
venous bleeding times. They were also protected against arte-
rial thrombosis in a chemically induced model of arterial
injury. Taken together, our results indicate that Munc18-2,
but not Munc18-1 or Munc18-3, is essential for regulated
exocytosis in platelets and platelet participation in thrombo-
sis and hemostasis.

Exocytosis of alpha, dense, and lysosomal granules from plate-
lets plays important roles in hemostasis, thrombosis, and inflam-
matory processes. Alpha granules contain soluble proteins (e.g.
von Willebrand factor and fibrinogen) and membrane-associated
proteins (e.g. P-selectin and integrins �IIb and �3) that propagate
platelet adhesion and aggregation (1). Dense granules store ADP, a
key autocrine and paracrine agonist for platelet activation, and
other small molecules (e.g. serotonin and ATP) (2). The function
of lysosomal granule contents remains speculative (3).

During exocytosis, the membrane of a secretory vesicle (e.g.
platelet granule) fuses with the plasma membrane, allowing the
release of its soluble contents into the extracellular space and
the incorporation of its membrane-associated proteins into
the plasma membrane. SNARE3 (soluble N-ethylmaleimide–
sensitive factor attachment protein receptor) proteins are
required for this process. SNARE proteins on the secretory
granule membrane (vesicle-associated membrane protein
(VAMP)) and plasma membrane (syntaxin (Stx) and synap-
tosomal-associated protein 25 (SNAP25)) form a highly sta-
ble coiled-coil structure (trans-SNARE complex) that pulls
apposing membranes together during fusion (4, 5). Trans-
SNARE complex formation and membrane fusion during
exocytosis are regulated by Munc18 (mammalian homolog
of Caenorhabditis elegans uncoordinated gene 18) proteins
(6). Munc18 keeps Stx in a “closed” conformation that hin-
ders the formation of nonproductive, ectopic, SNARE com-
plexes (7). Interactions between Munc13 and Munc18 cata-
lyze the transition of Stx to an “open” conformation and
favor the association of the SNARE domain of Stx with those
of VAMP and SNAP25 (8, 9). Finally, Munc18 interacts
directly with the trans-SNARE complex to stabilize it and
facilitate membrane fusion (10 –12).

Platelets express Munc18-1, -2, and -3, proteins (13, 14)
encoded by the Stx-binding protein (Stxbp) 1, 2, and 3 genes,
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respectively. One study suggests that Munc18-1 controls exo-
cytosis in platelets (14). Munc18-3 was originally isolated from
platelets and called platelet Sec1 protein (15). Earlier reports on
permeabilized platelets found that Munc18-3 contributes to
platelet secretion by interacting with Stx4 (13). Another study
used Munc18-3 global knockout (KO) mice, but only heterozy-
gotes could be studied because homozygosity is lethal (16, 17),
and the conclusion was that haploinsufficiency for Munc18-3
has no effects on platelet exocytosis (18). Mutations in the
gene encoding Munc18-2 cause familial hemophagocytic lym-
phohistiocytosis type 5 (FHL-5), an autosomal recessive disor-
der characterized by an inflammatory response mediated by
T-lymphocytes, natural killer cells, and macrophages (19).
Platelets from a biallelic and a heterozygous FHL-5 patient had
severe and intermediate exocytic defects, respectively, suggest-
ing that Munc18-2 is a limiting factor in platelet secretion (20).

We investigated the role of all three Munc18 paralogs in
platelet secretion and platelet-dependent pathophysiology.
Although the absence of Munc18-1 or Munc18-3 had no effects on
exocytosis, the lack of Munc18-2 suppressed the release of alpha,
dense, and lysosomal platelet granules almost completely, impair-
ing platelet aggregation and thrombus formation in vitro. Finally,
using megakaryocyte-specific KO mice, we proved that Munc18-2
in platelets, and not in other tissues, is required for venous and
arterial hemostasis and for arterial thrombosis.

Results

Expression and targeting of Munc18 proteins in platelets

By RT-qPCR, we found that C57BL/6J platelets express tran-
scripts for Munc18-1, -2, and -3. Munc18-2 was the most abun-
dant (Fig. 1A).

To study the role of these proteins in platelet exocytosis and
function, we selectively deleted their genes in megakaryocytes
using the Cre-loxP system. We used conditional KO mice for
the three genes (17, 21, 22) to generate global heterozygote
(�/�) and megakaryocyte/platelet-specific (�/�) KO mice.
Global homozygous KO mice for the three genes (�/�) were
not viable (17, 22–24).

Immunoblots of tissues and platelets confirmed that platelets
express the three Munc18 proteins (Fig. 1B). They also showed
that mice carrying alleles flanked by two loxP sequences
(“floxed” or F/F) and WT controls (�/�) expressed similar lev-
els of each Munc18 protein. Finally, all three �/� mouse lines
lacked expression of the targeted Munc18 protein only in plate-
lets, whereas its expression in other tissues was comparable
with that of the corresponding F/F littermates.

Munc18-2 regulates platelet exocytosis

To study how different Munc18 proteins contribute to plate-
let granule secretion, we assessed exocytosis of each type of
platelet granule. We measured the release of ATP (dense gran-
ules) and the translocation of P-selectin (alpha granules) and
LAMP-1 (lysosomal granules) to the plasma membrane upon
platelet activation. We stimulated platelets with a low and
high dose of thrombin as described previously (25). We
observed that Munc18-2 deletion severely impaired exocytosis
of dense, alpha, and lysosomal granules (Fig. 2, D–F, and Figs.
S1 and S2). The signal for our three markers of exocytosis was

barely detectable even with high-dose stimulation. Munc18-2
heterozygote platelets had a minor exocytic defect that failed to
reach statistical significance.

Platelets lacking Munc18-1 or Munc18-3 showed no exo-
cytic defects (Fig. 2, A–C and G–I). We did not test exocytosis in
platelets from heterozygote Munc18-1 and -3 mice given that
full deletion did not produce a secretory phenotype. For the
same reason, we opted not to study any Munc18-1 and
Munc18-3 mutants in subsequent functional experiments.

We confirmed the failure in alpha granule release in platelets
lacking Munc18-2 by measuring the secretion of a soluble
granule content, PF4 (platelet factor 4), instead of translocation of
a membrane protein (P-selectin) (Fig. 3, B and C). Given
the severe exocytic defect observed in thrombin-stimulated
Munc18-2–deficient platelets, we decided to assess potential ago-
nist dependence by studying exocytosis in response to a different
stimulus. We measured the secretion of ATP (dense granules) and
PF4 (alpha granules) following collagen stimulation and found that
the deletion of Munc18-2 impaired their release (Fig. 3, A and B).

Figure 1. Expression and deletion of Munc18 proteins. A, RT-qPCR of all
Munc18 proteins relative to �-actin in C57BL/6J platelets. n � 3– 4; bar, mean;
error bar, S.E. B, representative immunoblots of platelet and control tissue
lysates probed with anti-mouse Munc18-1, Munc18-2, or Munc18-3 antibody.
Bands for the three Munc18 isoforms ran at �67 kDa. �-Actin (�42 kDa) was
used as loading control. PCMCs, peritoneal cell-derived mast cells; black trian-
gles, 75-kDa molecular mass marker; white triangles, 50-kDa molecular mass
marker; gray triangles, 37-kDa molecular mass marker.
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Alterations in ADP release from dense granules can indi-
rectly affect the exocytosis of other platelet granules (25). To
test whether the defects observed in alpha and lysosomal gran-

ule exocytosis from Munc18-2�/� platelets was indirect, we
added exogenous ADP to the stimulated platelets and found
that it could rescue neither the secretion of PF4 (Fig. 3, B and C)

Figure 2. Deletion of Munc18-2 impairs dense, alpha, and lysosomal granule release in thrombin-stimulated platelets. Samples from Munc18-1 (A–C),
Munc18-2 (D–F), and Munc18-3 (G–I) mutant mice were stimulated with thrombin. A, D, and G, ATP release (dense granules) measured by luminometry in whole blood.
n � 6–9. B and C, E and F, and H and I, mean fluorescence intensity over baseline (�MFI) of P-selectin (alpha granules) (B, E, and H) and LAMP-1 (lysosomal granules) (C,
F, and I) translocated to the surfaceofwashedplateletsmeasuredbyflowcytometry. n�8–10. Color legends in A, D, and G applyto A–C, D–F, and G–I, respectively. White line,
mean; box, 25th–75th percentile; whiskers, 5th–95th percentile. #, p � 0.05; †, p � 0.01; *, p � 0.001; comparisons are to WT controls (�/�) unless otherwise specified.

Figure 3. Defective exocytosis in Munc18-2– deficient platelets is independent of the agonist used and cannot be rescued by exogenous ADP.
Samples from Munc18-2 mutant mice were stimulated with collagen (10 �g/ml unless otherwise specified) or thrombin (1 unit/ml) in the absence or presence
of ADP (10 �M). A, ATP release (dense granules) measured by luminometry in whole blood. n � 6. B and C, PF4 release (alpha granules) measured by ELISA. n �
5– 6. D and E, mean fluorescence intensity over baseline (�MFI) of P-selectin (alpha granules) (D) and LAMP-1 (lysosomal granules) (E) translocated to the
surface of washed platelets measured by flow cytometry. n � 6. The color legend in A applies to all panels. White line, mean; box, 25th–75th percentile; whiskers,
5th–95th percentile. †, p � 0.01; *, p � 0.001; comparisons are to WT controls (�/�) unless otherwise specified.
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nor the translocation of P-selectin (Fig. 3D) or LAMP-1 (Fig.
3E). A summary of all secretion assays is presented in Table S1.

Munc18-2 is required for platelet granule release but not for
granule biogenesis

To rule out the possibility that the abnormal secretion
observed in platelets lacking Munc18-2 was secondary to an
impairment in platelet granule formation, we analyzed the rest-
ing platelets by electron microscopy (EM) (Fig. 4A, top row).
Morphologic analysis of unstimulated platelets revealed no dif-
ferences in the volume densities and surface densities of alpha
or dense granules among all genotypes (Fig. 4, B–D). Assuming
that most granules are almost spherical, the simultaneous sta-
bility of these two stereology values indicates that there are no
changes in the number or size of granules (26, 27).

We then used EM and stereology on stimulated platelets to
confirm morphometrically what we had found in our secretion
assays. Qualitatively, we observed the characteristic shape
changes associated with platelet activation after exposure to
thrombin in all genotypes (Fig. 4A, bottom row). Quantitatively,
the volume density of the alpha and dense granules was expected
to decrease as a result of the loss of granules through exocy-
tosis following stimulation. However, Munc18-2– deficient
platelets lost almost no alpha (Fig. 4B) or dense (Fig. 4C)
granules. Once again, Munc18-2 heterozygote platelets
showed no defect in degranulation.

Munc18-2 is indispensable for platelet aggregation and
thrombus formation

To determine how the absence of Munc18-2 would affect
platelet function, we first studied platelet aggregation. Interest-
ingly, platelets not expressing Munc18-2 could form aggregates
only when a high dose of collagen was used (Fig. 5, A and B).
The flat aggregometry recordings indicate that Munc18-2–
deficient platelets do not even undergo shape changes when
stimulated with a low dose of collagen.

We then assessed platelet behavior under shear stress
in a collagen-coated flow chamber using fluorescently labeled
whole blood. We observed a marked difference in the rise of
fluorescence in samples from Munc18-2�/� mice, indicating a
severe defect in thrombus formation in Munc18-2– deficient
platelets independent of the degree of shear stress employed
(Fig. 5, C–F). The slight rise in the fluorescence signal from
Munc18-2�/� samples, which is better seen using a different
scale (Fig. S3), corresponds to the binding of platelets to the
layer of collagen.

Lack of Munc18-2 in platelets disrupts hemostasis and
thrombosis

We used two tail bleeding tests to study hemostasis. Using
the classic transection model, which depends largely on arterial
bleeding, we found that all of the Munc18-2�/� mice could not

Figure 4. Deletion of Munc18-2 impairs granule release but not granule biogenesis. Washed platelets from Munc18-2 mutant mice were activated with
thrombin (0.1 unit/ml). A, representative EM cell profiles before (top row) and after (bottom row) stimulation. Black triangle, example of a dense granule; white
triangle, example of an alpha granule; scale bars, 1 �m. B–D, values obtained by design-based stereology from �200 platelet profiles from three animals of each
genotype. B and C, volume density (Vv) of alpha granules (B) and dense granules (C) in resting and activated platelets. D, surface density (Sv) for both types of
granules in resting platelets. Color legend in B applies to B–D. White line, mean; box, 25th–75th percentile; whiskers, 5th–95th percentile. †, p � 0.01; *, p � 0.001;
comparisons are to WT controls (�/�) unless otherwise specified.
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stop bleeding and had to be euthanized after 20 min (Fig. 6A).
We then used a device we had described previously that repro-
ducibly makes a 0.8-mm– deep dorsal cut at the level where the
mouse tail is 3.8 mm in diameter (25), sectioning only the dorsal
venous plexus to induce venous bleeding, and observed that
Munc18-2�/� mice bled significantly longer than the controls
(Fig. 6B).

Finally, we assessed thrombosis in vivo with the FeCl3
model of carotid artery thrombosis (25, 28). Although most
Munc18-2�/� and Munc18-2F/F mice showed arterial occlu-
sion in less than 5 min, we did not observe any vessel occlu-
sion in Munc18-2�/� mice (Fig. 6C). None of these findings
was caused by abnormal numbers of circulating platelets in
the mutant mice (Table 1).

Discussion

The SM (Sec1/Munc18-like) family of proteins is crucial for
membrane trafficking in eukaryotic cells. In mammals, the
SM family members involved in regulated exocytosis are

Munc18-1, -2, and -3, and we found that mouse platelets
expressed all of them (Fig. 1).

Besides exocytosis in neurons (23) and neuroendocrine cells
(29, 30), Munc18-1 regulates the baseline secretion of mucins in
airway epithelial secretory cells (22). Other cells of hematopoi-
etic origin such as mast cells also express Munc18-1, and initial
experiments using siRNA suggested that Munc18-1 is required
for different forms of exocytosis in these cells (31, 32), but in a
recent study using gene deletion we disprove these conclusions
(17). Similarly, platelets express Munc18-1, and previous stud-
ies using inhibitory peptides on permeabilized platelets sug-
gested that Munc18-1 is required for alpha granule release (14).
The fact that we could not find any defect on the release of any
type of granule when we eliminated expression of Munc18-1 in
platelets is a strong argument against that statement (Fig. 2).

The interaction between Munc18-3 and its cognate, Stx4,
which is essential for exocytosis in pancreatic �-cells (33), adi-
pocytes (16), skeletal muscle (34), and neutrophils (35), has
been thought to mediate platelet granule secretion. Early stud-

Figure 5. Deletion of Munc18-2 impedes platelet aggregation and interferes with thrombus formation in vitro. A and B, samples from Munc18-2 mutant
mice were stimulated with collagen. Representative tracings of platelet aggregation (A) and maximum aggregation measured by light transmittance (B) on
platelet-rich plasma. n � 6. C–F, whole blood was labeled fluorescently and perfused over collagen-coated plates at low (C and D) or high (E and F) shear stress.
Thrombus buildup (C and E) was monitored by the change in fluorescence intensity over baseline (�MFI) and compared at 200 s (D and F). n � 5– 8; AU, arbitrary
units. The color legend in A applies to all panels. Circle or white line, mean; error bar, S.E.; box, 25th-75th percentile; whiskers, 5th–95th percentile. #, p � 0.05; †,
p � 0.01; *, p � 0.001; comparisons are to WT controls (�/�) unless otherwise specified.

Figure 6. Deletion of Munc18-2 in platelets disrupts hemostasis and thrombosis. A and B, tail bleeding times that depends mostly on arterial (A) and
venous (B) bleeding were recorded in Munc18-2 mutant mice. n � 8 –10. C, time to carotid occlusion after applying FeCl3 abluminally for 3 min. n � 6 – 8. Circle,
individual mouse; horizontal line, mean. #, p � 0.05; †, p � 0.01; *, p � 0.001; comparisons are to WT controls (�/�) unless otherwise specified.
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ies on permeabilized platelets found that targeting Munc18-3
(13, 14) or Stx4 (36 –38) could impair platelet exocytosis. Oth-
ers tried more definitive experiments using platelets from
Munc18-3 heterozygote global KO mice and found no defect in
exocytosis, but the residual expression of Munc18-3 could eas-
ily explain the absence of a phenotype (18). Here we achieved
for the first time complete removal of Munc18-3 in platelets
and show that this had no effect on exocytosis of dense, alpha,
or lysosomal granules (Fig. 2).

Based on the above findings, we conclude that neither
Munc18-1 nor Munc18-3 controls platelet regulated exocyto-
sis. One limit to this conclusion is given by the resolution of our
assays, but in mast cells, which also express the three Munc18
proteins, we could not detect any defect in cells lacking either
Munc18-1 or Munc18-3. In that study we used a high-resolu-
tion assay that monitors individual granule-to-plasma mem-
brane fusion events (17).

Two studies on platelets from five patients with FHL-5, all of
them with biallelic mutations in the gene for Munc18-2, indi-
cated that this protein plays an important role in platelet secre-
tion (20, 39), but the need for human samples limited the
number and type of experiments that could be performed.
Munc18-2 global KO mice were designed to model this disease,
but homozygosity was embryonically lethal (22, 24). Here we
use a conditional KO line in which we achieved total removal of
Munc18-2 form platelets. We observed an almost complete
suppression of release of alpha and dense granules (Figs. 2, S1,
and S2). These findings were confirmed by our stereology anal-
ysis, which showed that Munc18-2– deficient platelets contain
a normal number of granules of normal size and that they
undergo the expected shape changes upon stimulation but do
not release their granules (Fig. 4).

The only previous study that addressed the contribution of
Munc18-2 to lysosomal granule release used platelets form two
patients with FHL-5 and found only a partial exocytic defect
(20), raising the possibility that another Munc18 paralog was
involved in this process. In contrast, in our assays of lysosomal
granule exocytosis we observed a signal that was barely above
baseline in Munc18-2�/� platelets and no defect in the secre-
tion of lysosomal contents in platelets from Munc18-1�/�

and Munc18-3�/� mice (Figs. 2, 3, and S2). Thus, in the absence
of Munc18-2, the failure in platelet regulated exocytosis is
universal.

Based on evidence indicating that the release of each type of
platelet granule is differentially regulated (40 –42), we postu-
lated that different molecular components could mediate exo-
cytosis of each type of granule. We reported previously that
Munc13– 4 regulates dense granule release. The impaired

secretion of ADP from dense granules in Munc13– 4 – deficient
platelets indirectly affects the exocytosis of their alpha granules.
This was proven when we were able to rescue alpha granule
release with exogenous ADP in platelets lacking Munc13– 4
(25). However, the severe exocytic defects observed in Munc18-
2�/� platelets could not be rescued, even in the presence of high
doses of collagen or thrombin, or by addition of ADP (Fig. 3).
Consequently, these mutant platelets have an intrinsic defect in
the exocytic machineries of all three types of granules. There-
fore, although Munc13-4 could explain the differential release
of granules from platelets, Munc18-2 cannot because it seems
to be essential for all forms of platelet regulated exocytosis.

Previous studies on Munc18-2 in platelets lack functional
assays. Platelets from Munc18-2�/� mice were unable to form
aggregates at a low dose of collagen, but this defect was rescued
when the dose of collagen was increased (Fig. 5). This has been
reported in other platelets with defective exocytosis (25, 43, 44).
One mechanism described previously is that in platelets
exposed to high doses of collagen, �IIb�3 already present on
the plasma membrane is activated and mediates aggregation
(45, 46).

To study platelet adhesion and aggregation, using a test that
better simulates physiological conditions, we assessed the for-
mation and stability of thrombi by subjecting whole blood to
shear stress in a collagen-coated flow chamber. We chose a low
and a high shear stress to simulate the parameters found under
venous and arterial blood flow, respectively. We found that
although Munc18-2–null platelets could bind to the layer of
collagen, they failed to form thrombi in either of the conditions
(Figs. 5 and S3).

Finally, using megakaryocyte-specific Munc18-2 conditional
KO mice allowed us to study the consequences of lacking
Munc18-2 exclusively in platelets without affecting other tis-
sues with important roles in thrombosis and hemostasis.
Although Munc18-2�/� mice had a normal number of circulat-
ing platelets (Table 1), they had severe impairments in arterial
and venous hemostasis and did not form occlusive thrombi
after chemically induced endothelial damage (Fig. 6).

Interestingly, we did not find any significant defect in platelet
exocytosis or function in Munc18-2�/� mice. A study made on
platelets from one heterozygote FHL-5 human showed a mild
exocytic defect, suggesting that expression levels of Munc18-2
might have a rate-limiting factor in these processes (20). We
found a dose-dependency between platelet Munc13-4 expres-
sion and release of dense granules, formation of thrombi in vitro
and in vivo, and effectiveness of hemostasis (25), but we could
not replicate any of these findings in the case of Munc18-2
using multiple animals (Figs. 2– 6). Our results indicate that the

Table 1
Blood cell counts in Munc18-2 mutant mice
Results are mean � S.E. from 11 mice of each genotype. No significant differences were found among mice of all genotypes in any category.

Munc18-2�/� Munc18-2�/� Munc18-2F/F Munc18-2�/�

Red blood cells (	1012/liter) 8.6 � 0.2 8.3 � 0.13 8.3 � 0.2 8.2 � 0.2
White blood cells (	109/liter) 4.9 � 0.5 4.7 � 0.5 4.7 � 0.5 5.8 � 0.4

Lymphocytes 3.0 � 0.3 2.8 � 0.4 2.8 � 0.4 3.6 � 0.4
Monocytes 0.4 � 0.1 0.4 � 0.1 0.4 � 0.1 0.6 � 0.1
Granulocytes 1.5 � 0.2 1.5 � 0.2 1.5 � 0.1 1.6 � 0.1

Platelets (	109/liter) 700 � 55 685 � 49 764 � 22 746 � 35
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presence of Munc18-2 is critical for all forms of platelet regu-
lated exocytosis, but its expression is haplosufficient for these
processes.

Experimental procedures

Mice

Munc18-1, -2, and -3 are encoded by the Stxbp1, -2, and -3
genes, respectively. Previously, we had created Munc18-2 (22)
and Munc18-3 (17) conditional KO mice, and we obtained con-
ditional KO mice for Munc18-1 (from Dr. M. Verhage, Vrije
Universiteit Amsterdam) (21). In short, exon 2 of Stxbp1 and
exon 1 of Stxbp2 and Stxbp3 were flanked with two loxP sites
(floxed or F allele). Cre-mediated recombination of Stxbp1
exon 2 induces a frameshift that results in nonsense mutations
and the absence of protein expression, whereas the recombina-
tion of exon 1 of Stxbp2 or Stxbp3 eliminates the start codon
and expression in both cases.

We crossed Munc18-1F/F, Munc18-2F/F, and Munc18-3F/F

with B6.C-Tg(CMV-cre)1Cgn/J mice (catalogue No. 006054,
The Jackson Laboratory) to generate germline deletants (�
allele). Because global deletion of any of the Munc18 proteins is
lethal (17, 23, 24), we studied only global heterozygotes (�/�) for
the three genes. We also generated megakaryocyte/platelet-spe-
cific KO mice (Munc18-1�/�, Munc18-2�/�, and Munc18-3�/�)
by crossing Munc18-1F/F, Munc18-2F/F, and Munc18-3F/F with
C57BL/6-Tg(Pf4-icre)Q3Rsko/J mice (catalogue No. 008535, The
Jackson Laboratory).

All lines were on a C57BL/6J background. All experiments
were carried out using mice of both sexes and protocols
approved by the Institutional Animal Care and Use Commit-
tees of the University of Texas M. D. Anderson Cancer Center
and the Baylor College of Medicine.

Sample isolation

Under anesthesia with isoflurane, blood was collected into a
citrated syringe (50 �l of 4% sodium citrate; 21-gauge needle) by
inferior vena cava puncture. This sample was mixed with an
equal volume of Tyrode’s buffer (in mM: 5.56 glucose, 140 NaCl,
12 NaHCO3, 2.7 KCl, 0.46 NaH2PO4) and used as whole blood
or centrifuged (relative centrifugal force, 60; 10 min) to isolate
platelet-rich plasma (PRP). Washed platelets were obtained by
centrifuging PRP (relative centrifugal force, 635; 10 min),
washing the pellet with PBS, and resuspending it in Tyrode’s
buffer (2.5 	 108 platelets/ml). Cell counts were obtained
from whole blood and washed platelets with a scil VET abc
hematology analyzer (Scil, Henry Schein Animal Health) and
a Z2 counter (Beckman Coulter), respectively.

Expression studies

For RT-qPCR, the washed platelets were lysed (DNA/RNA
Shield, Zymo Research), and total RNA was isolated (E.Z.N.A.
Total RNA Kit I, Omega Bio-tek), concentrated and cleaned
(RNA Clean & Concentrator, Zymo Research), and reverse-
transcribed (qScript cDNA SuperMix, Quanta Biosciences).
cDNA was amplified (PerfeCTa qPCR ToughMix, Quanta Bio-
sciences), and the abundance of Munc18-1 (Mm00436837_
m1), Munc18-2 (Mm00441589_m1), Munc18-3 (Mm00441605_

m1), and �-actin (Mm00607939_s1) transcripts was relatively
quantified using hydrolysis probes (TaqMan gene expression
assays, Life Technologies) on a ViiA7 RT-PCR System (Applied
Biosystems). For immunoblotting, the tissue and platelet
lysates were run under denaturing conditions on 10% SDS-
polyacrylamide gels, transferred to nitrocellulose mem-
branes, and probed with anti–Munc18-1 (1:4000; M2694),
anti–Munc18-2 (1:200; HPA015564), anti–Munc18-3
(1:5000; M7695; all from Sigma-Aldrich), and anti–�-actin
(1:20000; ab119716; Abcam) antibodies.

Secretion assays

ATP release was assessed by stirring (1200 rpm, 37 °C, 5 min;
model 700 Lumi-Aggregometer) whole blood (600 �l diluted
5-fold in Tyrode’s buffer) in the presence of luciferin/luciferase
and collagen or thrombin (all from Chrono-Log Corp.). For PF4
release, 5 	 107 washed platelets were stimulated for 5 min with
thrombin or for 7 min with collagen, with or without ADP in
the presence of 0.7 mM CaCl2, and pelleted, and PF4 in the
supernatants was measured by ELISA (ELM-PF4. RayBiotech).
For P-selectin and LAMP-1 translocation, 2.5 	 106 washed
platelets were incubated in 40 �l of PBS with FITC–anti-P-
selectin (10 �g/ml, 10 min; RB40.34, BD Pharmingen) or FITC–
anti-LAMP-1 (10 �g/ml, 10 min; 1D4B, BD Pharmingen) anti-
bodies. The platelets were then stimulated with thrombin for 10
min in the presence of 0.7 mM CaCl2. Finally, samples were
placed on ice, diluted with 1 ml of PBS, and analyzed by flow
cytometry (LSR II, BD Biosciences). The difference between the
baseline and stimulated values of mean fluorescence intensity
(MFI) represents the gain in MFI (�MFI).

EM and stereology

Resting and activated (0.1 unit/ml thrombin, 0.7 mM CaCl2, 2
min) washed platelets were fixed in 0.1 M sodium cacodylate
buffer containing 2.5% glutaraldehyde (2 h), post-fixed in aque-
ous 1% OsO4 (1 h, both at room temperature), pelleted, and
embedded in 3% low-melting agarose. The agarose blocks were
dehydrated through an acetone series before embedding in
EMbed 812 resin (25). Sections (100 nm) were stained with
uranyl acetate and lead citrate prior to acquiring images with a
FEI Tecnai 12 transmission electron microscope (8200	, 100
KeV). For stereology, 10 fields/sample (�20 platelet profiles/
field) were analyzed in STEPanizer (47) with a grid consisting of
81 horizontal line pairs (line width � 2 pixels (0.0318 �m),
T-bar � 5 pixels (0.0795 �m)). We obtained the volume occu-
pied by platelet granules in regard to total platelet volume (vol-
ume density) and the granular surface area relative to total
granule volume (surface density) using a point-count and a line
intercept-count systems (25, 48, 49).

Aggregometry and flow-chamber assay

For aggregometry, the PRP (500 �l) was stirred (800 rpm,
37 °C, 10 min; model 700 Lumi-Aggregometer) in the presence
of 0.7 mM CaCl2 and collagen, and light transmission was
recorded over time. For the flow-chamber assays, whole blood
was anticoagulated with 80 �M PPACK (d-phenylalanyl-prolyl-
arginine chloromethyl ketone) and labeled with 10 �M mepa-
crine (37 °C, 20 min) before being perfused over collagen-
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coated (25 �g/ml; Helena Laboratories) plates at fixed shear
stress in a microfluidic BioFlux system (Fluxion Biosciences).
Thrombus buildup, monitored with a fluorescence microscope
every 10 s for 200 s, was analyzed using a BioFlux Montage (50).
The final thrombus size was used for statistical comparisons.

Bleeding time tests

We used mice (20 � 2 weeks old, 30 � 3 g) anesthetized with
Avertin (tribromoethanol in tert-amyl alcohol, 0.4 mg/g intra-
peritoneally). We tested arterial hemostasis by transecting the
tail 5 mm from the tip and venous hemostasis by sectioning
only the dorsal tail venous plexus. The device reproducibly
makes a transversal dorsal tail incision of 0.8 mm in depth at a
point where the tail has a diameter of 3.8 mm (25). In both cases,
the tails were immediately immersed in 37 °C saline, and the
time to cessation of bleeding was recorded. All animals were
euthanized after bleeding stopped or at 20 min. All bleeding
that did not cease was assigned a value of 20 min for statistical
analysis.

Ferric chloride-induced thrombosis

In mice (13 � 1 week old) anesthetized with pentobarbital
(50 mg/kg intraperitoneally), a common carotid artery was
exposed, and a 1 	 2–mm piece of filter paper soaked with 10%
FeCl3 was applied to its surface for 3 min. After removing the
filter paper and rinsing with saline, the time to cessation of
blood flow sustained for at least 1 min was recorded using a
Doppler flow probe (Transonic Systems). All animals were
euthanized after vessel occlusion or at 30 min. All vessels that
failed to occlude were assigned a value of 30 min for statistical
comparisons.

Statistical analysis

All our variables were continuous. We tested first for nor-
mality with D’Agostino’s K2 test. For normal data we first com-
pared the means of all groups using analysis of variance, and if a
significant difference was found we applied Tukey’s HSD test
for multiple pair-wise comparisons and Dunnett’s test for mul-
tiple comparisons against the control group. For non-normal
data we first compared all groups using the Kruskal–Wallis H
test and followed any significant result with Dunn’s test for
multiple comparisons. Significance was set at p � 0.05.
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