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Abstract

Field research target regions within two basaltic geologic provinces are described as Earth analogs to Mars.
Regions within the eastern Snake River Plain of Idaho and the Big Island of Hawai‘i, the United States, provinces
that represent analogs of present-day and early Mars, respectively, were evaluated on the basis of geologic
settings, rock lithology and geochemistry, rock alteration, and climate. Each of these factors provides rationale for
the selection of specific targets for field research in five analog target regions: (1) Big Craters and (2) Highway
lava flows at Craters of the Moon National Monument and Preserve, Idaho, and (3) Mauna Ulu low shield, (4)
Kilauea Iki lava lake, and (5) Kilauea caldera in the Kilauea Volcano summit region and the East Rift Zone of
Hawai‘i. Our evaluation of compositional and textural attributes, as well as the effects of syn- and posteruptive
rock alteration, shows that basaltic terrains in Idaho and Hawai‘i provide a way to characterize the geology and
major geologic substrates that host biological activity of relevance to Mars exploration. This work provides the
foundation to better understand the scientific questions related to the habitability of basaltic terrains, the rationale
behind selecting analog field targets, and their applicability as analogs to Mars. Key Words: Volcanic terrains—
Planetary analogs—Field regions—Basalt—Rock alteration. Astrobiology 19, 260-283.

1. Introduction spaceflight concepts of operation for science-driven ex-

ploration of the martian surface. Accordingly, the BASALT

ASA’s BASALT (Biologic Analog Science Associated

with Lava Terrains) research program comprises an in-
ternational team of scientists, engineers, mission operators,
and astronauts investigating martian habitability and the
technologies necessary for human/robotic exploration of
Mars. The driving goal of the BASALT program is to inte-
grate three Mars-focused disciplines (science, operations,
and technology) to inform future human spaceflight activities
(e.g., Lim et al., 2019; Payler et al., 2019). During field
campaigns, the methods within each discipline are designed
to seamlessly provide a high-fidelity simulation of human

research program enables the connection between what can
be learned before exploration to knowledge that becomes
available during a ground-based mission. We focus on Earth
analog regions that will provide insight into the scientific
questions related to habitability of specific types of basaltic
terrains. This article presents an overview of the rationale
behind the BASALT analog field targets and their applica-
bility as planetary comparisons to Mars during relatively
early and late periods of Mars’ geologic history.

The ability to identify evidence of habitable environments
on Mars is a high priority within the scientific community and
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the Mars Exploration Program Analysis Group (MEPAG,
2015). BASALT aims to help define what constitutes a
habitable Mars environment in terms of geologic substrate
and climate, and to address both biological and geological
questions related to the search for extant and extinct life on
Mars. The BASALT program is driven by the hypothesis
that the geologic substrate will affect the diversity and bio-
mass of life, which will vary with different combinations of
rock composition, texture, and alteration condition. To test
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the correlation between geology and biologic activity and to
evaluate possible Mars-like scenarios, geologic analogs and
the biota within and on solid rock are closely examined for
potential associations and how the microbiota interact with
the rock itself. Results are expected to provide clues to the
habitability and potential types of life that could have pro-
liferated early in Mars’ history, or may yet still be active.
Analog field areas in Idaho and Hawaii, the United States
(Fig. 1), and the regions of interest (ROIs) within, were
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FIG. 1. Landsat images (Google Earth®, Copernicus imagery) in the vicinity of research areas (red boxes) at COTM on
the eastern Snake River Plain, Idaho, (upper) and Kilauea Volcano on the Big Island of Hawai‘i (lower). COTM, Craters of
the Moon National Monument and Preserve.
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chosen based on their heritage as planetary analogs (e.g.,
Greeley, 1974, 1982; Greeley and King, 1977) and for
volcanic processes known to have occurred during Mars’
history (Carr, 1973, 2006; Carr and Head, 2010), which
attest to their potential to serve as appropriate astrobiology
analogs. At our field targets, as on Mars, the composition of
material available for physical and chemical provision of
nutrients and energy for biologic activity is predominantly
basaltic lava and related lava types such as hawaiite and
latite. In particular, we address the various types of rock
alteration, including characteristic minerals, textures, local
settings, and scales, influencing the availability of nutrients
and energy sources for biota within these chosen analog
regions. We discuss their geologic attributes in terms of two
primary goals: (1) to assess the compositional and textural
diversity that characterizes the ROIs and (2) to apply these
attributes and the information gained from field experiences
(and subsequent laboratory work) to Mars geology and what
might be observed at comparable sites on Mars.

2. The Influence of Rock Alteration

Diversity in volcanic rock types (chemistry, mineralogy,
texture) may be derived through either magmatic evolution
or processes related to the subsequent alteration of pris-
tine rock. Primary magmatic processes, related to volcanism
style and geologic setting, lead to differentiated products
that may comprise a wide spectrum of compositions in any
volcanic province. Subsequent changes to rock mineralogy
and texture via alteration can dramatically affect the avail-
ability of CHNOPS elements and other chemical species
used by biology (Uroz et al., 2009). Responses to alteration
conditions include devitrification, oxidation, dissolution (with
potential loss of mobile elements), secondary mineral de-
position, and textural modifications related to these trans-
formations. Although we know that basaltic terrains can
host a rich diversity of microbial life (e.g., Dunfield and
King, 2004; Costello et al., 2009; Kelly et al., 2011; Cockell
et al., 2011a, 2011b, 2013), we still have very little under-
standing of how the geological environment influences mi-
crobial community structure and habitability. Determining
the most appropriate locations for sample acquisition is
therefore directly related to the condition of rock alteration,
which can greatly affect texture, lithology, and chemistry.

2.1. Types of rock alteration

Processes related to rock alteration include the oxidizing
effects of high-temperature, syn-eruptive volcanic gases,
secondary fumarolic or other hydrothermal reactions, low-
temperature weathering by meteoric fluids, and physical
weathering and reworking. All of these can contribute to a
host of variant compositions and textures. For the purpose of
this study, mineral assemblages fall into two broad cate-
gories: primary and secondary. Primary minerals are those
that crystallize from magma (pre- or syn-eruptive conditions),
while secondary minerals are formed through the subsolidus
alteration of primary minerals by the interactions of aqueous
fluids, gases, or heat.

Basalt is a fine-grained, mostly crystalline igneous rock
composed of varying amounts of plagioclase feldspar and
pyroxene often forming with other components, including
olivine, oxides, glass, and minor accessory minerals such as
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apatite and sulfides. These primary constituents are all
nominally anhydrous. Following the emplacement of a fresh
lava flow, a variety of secondary processes can act to form
secondary minerals and textural modifications that will re-
flect the alteration process. The extent of alteration depends
on the temperature, length of exposure time, and the com-
positions of the primary rock substrate and fluids/gases in-
volved. Alteration conditions can be relatively hot and dry
(syn-eruptive), hot and wet (hydrothermal or fumarolic),
cool and wet (long-term meteoric water interaction), or even
cool and dry (high desert conditions). Wet conditions can
entail additional complexities related to relatively high or
low pH and the concentration of dissolved solids.

Our sampling strategy was intended to provide significant
information on these secondary alteration processes relevant
to their biological habitability. Variations in alteration fea-
tures found in cracks, gas cavities, pits, mounds, channels,
and so on were highly relevant to the selection of targeted
sampling locations, so each class of alteration is considered
individually in the following sections. While field visual
inspection and in situ analyses (e.g., Sehlke et al., 2019)
help to identify the most attractive sample locations during
field work, confirmation typically must rely on subsequent
laboratory analyses of replicates (e.g., Cockell et al., 2019).
Whether assessed during field work or in laboratory exper-
iments, the types of alteration important to this program, in
terms of temperature, process, and implied exposure times,
are summarized as follows (Fig. 2).

2.1.1. Unaltered rock. Unaltered rock is generally out-
crop (flow lobe, spatter rampart, lava surface) material con-
sisting of basalt that has not been altered by volatiles. Rock
is typically black/dark gray with dense to vesicular textures.
Outcrops with minimal alteration may be considered es-
sentially ‘‘unaltered’” with respect to secondary miner-
alization, especially in locations where significant textural
variability is related to syn-eruptive processes (Fig. 2A, B).
It is expected that unaltered material will be located away
from vents, cracks, and active fumaroles. Unaltered out-
crops may also be found where the rock has been protected
(by overburden, dry climate, etc.) from long-term exposure
to weathering agents.

2.1.2. Syn-emplacement alteration. Alteration is caused
by the high-temperature, near-instantaneous, oxidizing ef-
fect of volcanic gases derived during an eruption (Fig. 2C,
D). Fresh lava and tephra, normally appearing vitreous steel-
gray to black at the time of eruption, becomes intensely
red due to the oxidation of iron (from ferrous to ferric re-
dox species), which is concomitantly associated with other
changes such as devitrification of interstitial glass. The hot
gases that cause alteration are released directly from the lava
itself, or less likely, from its interaction with underlying
moist ground. Syn-eruptive alteration typically results in
patches of bright colors, including red, orange, yellow, and
even purple.

2.1.3. Alteration by fumaroles. Alteration of rock is
caused by steam and/or magmatic gases (H,O, CO,, SO,,
HCI, HS, and F) released following emplacement or de-
velopment of the volcanic feature (lava flow, cone, fissure,
crater, etc.). Magmatic gases tend to have relatively low pH



BASALTIC PLANETARY ANALOGS FOR MARS

263

FIG. 2. Examples of rock textures and alteration exhibited in Idaho and Hawaii. (A) Minimal syn-emplacement alteration
(slight reddish oxidation) of Big Craters flow surface, (B) dense and frothy primary textures in Highway flow, (C) high-
temperature oxidation in Mauna Ulu lava, (D) high-temperature oxidation cavity on Mauna Ulu shield, (E) relict meteoric
fumarole on Mauna Ulu flank lavas, (F) active meteoric fumarole on Kilauea Iki lava lake, (G) relict fumarole on Kilauea
Iki lava lake, (H) recently active magmatic fumarole with native sulfur deposits on margin of Kilauea caldera.

due to the addition of carbonic and sulfur-containing com-
ponents to aqueous fluids (e.g., HO + SO, =H,SO,, sulfuric
acid) that result in chemical breakdown of primary minerals
such as plagioclase to produce clay minerals (Minitti et al.,
2007; Gerard and McHenry, 2012). Fluids may be derived
directly from the magma or indirectly from meteoric water.

The relative proportions of meteoric to magmatic compo-
nents may vary considerably in a given volcanic terrain.
Steam produced by the interaction of circulating water with
hot lava or fissures often leads to fumarolic activity without
significant mineralization related to typically acidic volcanic
gases. In some cases, these fumaroles (Fig. 2F) may actually
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contain magmatic components that have been leached out
and become incorporated into the emitted gas. Solfatara is
the name given to typically magmatic fumaroles in basaltic
terrains, that is, those that produce sulfurous fumes usually
derived from intrinsic volcanic gases.

In general, fumarolic mineral deposits (Fig. 2H) include
common varieties of native sulfur, sulfides, sulfosalts, sul-
fates, halides, oxides, hydroxides, carbonates, and borates.
Temperatures higher than surroundings, vent gases, and pre-
cipitating minerals all contribute to the creation of a relatively
hostile environment that may be colonized by extremophiles,
which is one of the most significant research topics within
the astrobiology community (e.g., Wynn-Williams et al.,
2001; Pikuta et al., 2007; Chang, 2016). Microbial com-
munities will likely vary in composition with distance from a
hotter interior fumarole toward more clement conditions.

Fumaroles that have gone extinct or are currently dormant
may be viable as places for alteration processes to continue
for months or years after gases have stopped being emitted.
Inactive fumaroles also may be associated with active ones
in the vicinity, a relation that is common in large fumarole
fields where activity is spread out over several tens or even
hundreds of meters. Alteration products in relict fumaroles
(Fig. 2E, G) likely comprise secondary material introduced
by fluids or directly deposited sublimates that are somewhat
resistant to weathering processes.

2.1.4. Ambient temperature alteration. This form of
“low-temperature’ alteration is essentially weathering re-
lated to the long-term effects of subaerial or subaqueous
chemical change under ambient climate conditions (Dessert
et al., 2003; Adcock et al., 2018). Meteoric water is gen-
erally important, in the form of precipitation, seepage, or
atmospheric moisture, which can result in chemical break-
down of minerals and glass, and also provide for transport
and deposition of chemical constituents of secondary min-
erals such as calcite, sulfates, smectites, and zeolites (e.g.,
Stefansson and Gislason, 2001; Richardson et al., 2012;
Mattioli et al., 2016; Kanakiya et al., 2017).

Chemical breakdown of primary minerals, regardless of
size, by normal low-temperature weathering or hydrother-
mal activity depends on temperature, pH, crystal composi-
tion, and structure. The long-term resistance to weathering
of dominant minerals in basaltic rocks generally decreases
in the order: plagioclase—pyroxene—glass—olivine (e.g., Hausrath
et al., 2008). Olivine, the least resistant, may decompose
within a few thousand years in warm, moist climates and
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thus may contribute to accumulation of available Fe and Mg
for biologic activity. Volcanic glass may take much longer
(several hundred k.a.); however, much faster rates of de-
composition for all minerals are expected under nonambient
conditions.

3. BASALT Field Target Regions

Targeted areas for field research are typically defined by
scales ranging in size from planetary to outcrop. Planetary
scale research areas are geologic provinces, such as the Big
Island of Hawai‘i or the eastern Snake River Plain (ESRP)
of Idaho. Designations adopted by the BASALT program for
smaller size areas (Table 1) that lie within major provinces
are as follows: zone, region, station, and location (in order of
decreasing size). A zone is depicted as a geologic system
(100s of kmz) within a province, such as the East Rift Zone
(ERZ) and Kilauea Volcano in Hawai‘i or Craters of the
Moon National Monument and Preserve (COTM) and the
Great Rift in Idaho. Regions are set within zones and refer to
specific features, generally <10 km?, that derive from a given
event. Examples include Mauna Ulu shield volcano on the
ERZ and the Highway Flow at COTM. Here we provide the
geologic details of target regions. While smaller subdivisions
are not considered in detail, many of the features used as
rationale for target region selection occur at the scale of
station (~ 10-100 m diameter, tens of mz) or location (1 m’
outcrop). Specifically, we focus on regions within the volcanic
terrains of COTM (Fig. 1, upper), and the Kilauea Volcano
summit region and ERZ of Hawai‘i Volcanoes National
Park (HAVO) (Fig. 1, lower).

3.1. Diversity in volcanic provinces

Volcanic provinces in Idaho and Hawai‘i represent sig-
nificant diversity in geologic setting and lava flow surface
types. Lava flow surfaces vary across a wide spectrum of
morphologies (Fig. 3A-H), exhibiting features that provide
conditions for biologic activity. Aside from syn- or post-
emplacement chemical alteration, each type has surficial and
internal characteristics related to intrinsic eruptive proper-
ties (temperature, composition, density, viscosity, etc.) and
the response to external physical stresses during emplace-
ment (magma supply rate, slope, cooling conditions, etc.).
The structures that form in response to these stresses are
characterized by differences in primary textures and types of
alteration, including secondary mineralization.

TABLE 1. TERMS USED BY BASALT TO DESIGNATE RELATIVE SCALES OF FIELD RESEARCH AREAS

Term Scale Examples

Province Hundreds of kilometers (geologic terranes) Hawaiian Islands, Snake River Plain

Zone Tens of kilometers COTM, ERZ, Kilauea Volcano

Region 1-10 km Mauna Ulu, Kilauea Iki, Highway Flow,

North Crater Flow

Station 10 m diameter (2016, ID and HI); up to 100 m Outcrop, deposit or cluster of features
(2017 HD) having similar visible characteristics

Location ~1m (Outcrop selected for sample) Collection point on outcrop

Replicate ~1m (Precisely where sample extracted) Collection point on outcrop

BASALT, Biologic Analog Science Associated with Lava Terrains; COTM, Craters of the Moon National Monument and Preserve; ERZ,

East Rift Zone.



BASALTIC PLANETARY ANALOGS FOR MARS

265

Middle FOM. =750 m

FIG. 3. Lava flow surfaces and volcanic features of potential target regions in Idaho and Hawai‘i. (A) Big Craters lava
flow, (B) Big Craters vent area (in foreground; white arrows point to people for scale), (C) Highway flow western margin,
(D) Highway flow surface, (E) Mauna Ulu flank lavas, (F) Mauna Ulu SW flank with active (meteoric) fumaroles, (G)
Kilauea Iki lava lake and eruptive vent, (H) Solfatara fumarole deposits along fissure in Kilauea caldera near SE margin.

The textures of basalt and derivative volcanic rocks are
mainly microcrystalline or glassy, some with small (less
than a few mm) crystals (phenocrysts) of primary minerals
such as plagioclase, olivine, and pyroxene. Many ground-
mass textures, that is, the material between crystals, are
glassy in appearance to the naked eye and even under mi-
croscopic analysis, but they actually may have a submi-
croscopic crystalline texture that is discernible only via

electron microscopy. One example is the Big Craters (BC)
lava flow (Fig. 3A) that has a rough glassy surface at cm-
scale due to ripped vesicles caused by physical stretching
during emplacement.

3.1.1. Selection of target regions. Selection of BASALT
field targets on Earth was based on the premise that the
biomass and diversity of life that can proliferate on volcanic
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rock substrates are influenced by conditions of surface
morphology, age, weathering, and rock chemistry, includ-
ing chemical alteration. Research targets (RTs) in Idaho
(Fig. 4), and Hawai‘i (Fig. 5) are similar in some respects
and serve as complementary systems, with differences in
geologic setting, climate, and age that can be explored as
analogues to Mars. Both largely represent basaltic systems

HUGHES ET AL.

characterized by eruptive fissures, extension fractures, low
shields, and cones that depict plains volcanism (Greeley,
1982), known to have occurred on Mars (e.g., Greeley and
Spudis, 1981; Plescia, 1981, 2004; Carr, 2006; Hauber et al.,
2009, 2011). Geochemical diversity spans a large range from
pristine basalt to evolved, more silicic and/or more alkalic
compositions in both systems. Intermediate compositions,
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FIG. 4. Research area (outlined in Fig. 1, upper) in the northern part of COTM. Upper: outline of major volcanic features
and research target regions RT 1 (Big Craters vent) and RT 2 (Highway flow). Lower: Landsat image (Google Earth) of map

area. RT, research target.
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FIG. 5. Research area (outlined in Fig. 1, lower) near Kilauea summit and proximal part of the East Rift Zone. Upper:
outline of major volcanic features and research target regions RT 3 (Mauna Ulu), RT 4 (Kilauea Iki), and RT 5 (caldera
floor SE of Halema‘uma‘u Crater). Lower: Landsat image (Google Earth) of map area.

including trachybasalt (hawaiite), basaltic trachyandesite
(benmoreite), and trachydacite (latite), are derived from a
basaltic parent.

While the ERZ remains volcanically active in a relatively
warm, moist tropical climate, the Great Rift is currently
inactive in a cooler, drier climate (Table 2). Kilauea erup-
tions are historical, with active fumaroles emanating from
recently erupted lava flows; however, the most recent
eruptions on the ESRP, including COTM, occurred a little
over 2000 years ago (Kuntz er al., 1992, 2007). Weather
near the summit of Kilauea and the ERZ varies daily from
rainy to sunny throughout the year; whereas conditions at
COTM and the northern segment of the Great Rift are charac-
terized by hot, windy, sunny summers and cold, snowy winters.

3.1.2. Geologic settings. The Great Rift-COTM system
on the ESRP and the Kilauea—ERZ system on the Big Island
of Hawai‘i represent, respectively, continental and oceanic
intraplate volcanism (i.e., not associated with active plate
margins). This primary difference is the foremost rationale
for selecting these zones, namely that oceanic and conti-
nental lithospheres have significantly different compositions
and structures. Volcanic derivatives, therefore, will exhibit
differences in compositional trends reflected in geochemis-
try, mineralogy, and texture. Regardless, both systems have
been attributed in some degree to volcanic hotspots, gen-
erated by mantle thermal plumes from deep sources. They
both exhibit deposits related to volcanic fissure eruptions
along magmatic rift zones and have many similar surface
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TABLE 2. WEATHER CONDITIONS IN TARGET REGIONS FROM ONLINE SOURCES

Average maximum Average minimum Annual total Annual
Region Elevation temperature (July) temperature (January)  precipitation snowfall
Kilauea (summit) 1220 m (4000") 28°C (83°F) 18°C (64°F) 1.75m (69”) 0

COTM (visitors Ctr.) 1800m (5910 29°C (85°F)

—12°C (11°F) 0.40m (15.5”) 2.27m (89.4")

Sources: www.nps.gov/havo/index.htm; www.nps.gov/crmo/index.htm

constructs such as spatter ramparts and cones, pahoehoe and
‘a’a lava flows, and self-leveed stagnated lava ponds.

While similarities between both systems are inherent in
closely matched volcanic features, fundamental differences
exist in lava composition and, by inference, the processes of
magma genesis. Besides the overall contrast between oce-
anic and continental settings, one notable factor in volcanic
evolution is how each system is related to a mantle plume.
The Big Island of Hawai‘i is an oceanic island situated on,
or very near, an active (mantle plume) hotspot (e.g., Wilson,
1963a, 1963b; Clague and Dalrymple, 1987; Clague, 1996;
Sherrod et al., 2007), whereas the COTM system on the
ESRP is situated in the time-transgressive track (the ‘“wake’”)
of the Yellowstone hotspot that was in the vicinity ~10m.y.
ago (e.g., Armstrong et al., 1975; Pierce and Morgan, 1992;
Smith and Braile, 1994). Thus, ESRP magma genesis may
not be directly related to the Yellowstone hotspot, which left
the vicinity long before recent eruptions.

Significant differences exist between the two systems
in lava composition, emplacement age, and climate, all of
which are important factors that can influence the bio-
availability of nutrients. In terms of volcanic activity and
climate, the relatively dry climate and currently inactive
volcanic pile at COTM are used to represent present-day late
Amazonian Mars. The moist climate and active volcanism at
Kilauea and the ERZ are intended to represent late Noachian
through Hesperian and possibly early Amazonian Mars,
when volcanism was more extensive early in Mars geologic
history. Understandably, these representations are not exact
analogs; however, the current knowledge of Mars’ geo-
logic history (e.g., Head et al., 2006; Carr and Head, 2010;
Hauber er al., 2011) suggests that they are appropriate for
the evaluation of similar processes that could affect bio-
logic activity in volcanic terrains. Justification for this
two-pronged approach is inherent in the notion that biologic
activity may have either proliferated early in Mars’ history
and died out, or life is currently viable and may ultimately be
discovered (or introduced) in some locales on the planet.

Differences in composition also reflect intrinsic differ-
ences in eruption temperatures and gas composition, both of
which could have significant effects on the degree of high-
temperature syn-emplacement alteration or the number and
types of fumaroles. Lava flows on the northern part of the
Great Rift at COTM are chemically evolved from basal-
tic parents, with possible contamination from assimilation
of country rock (Leeman, 1982b). In particular, they have
significantly higher alkali metal concentrations (Fig. 6), even
when their silica content remains within more primitive
ranges. In contrast, the lava flows on Kilauea and the ERZ
are generally basaltic with much more primitive composi-
tions, both with regard to SiO; and total alkali metal content
(K,0 + Na,O) (Fig. 6).

Geochemical differences may further be associated with
the processes and products of rock alteration and, by in-
ference, they will further modify the availability of nutrients
and energy sources for biological activity. Subdued sur-
face weathering likely characterizes present-day Mars such
that the rate of rock alteration is currently slow relative to
surface processes on Earth. Although analog field targets
on Earth are generally younger and therefore will have ex-
perienced weathering processes over a shorter time span
compared with their martian counterparts, rock alteration
on early Mars was possibly more acidic, which would en-
hance mineral decomposition and the deposition of sec-
ondary jarosite (Elwood Madden et al., 2004; Hurowitz
et al., 2006). Perhaps more importantly, alteration generated
by the interaction of surfaces with hot eruptive volcanic
gases or sustained fumarolic activity on either planet will be
much faster and produce secondary mineral assemblages
distinct from those related to weathering processes.

Since chemical weathering is likely to be more effec-
tive in warm, moist climates such as Hawai‘i compared
with colder, drier conditions in Idaho, differences in types
of weathering, as well as the length of exposure time to
weathering agents, will have a significant effect on alter-
ation mineralogy. While COTM lavas have been exposed to
external weathering agents for a longer period of time
compared with Kilauea, the degree of chemical weathering
is significantly lower. Each of the targeted research areas
(Figs. 4 and 5) has unique compositional, lithologic, and
textural properties associated with primary and secondary
processes. Primary differences in geochemical signatures of
major elements TiO,, K,O, P,0s5, MgO, FeO, and CaO
(Fig. 7) reflect the various physical properties of targeted
regions. The geochemical differences are manifested in dif-
ferent lava flow types, geomorphology, and human accessi-
bility (Fig. 3), which must be investigated via remote sensing
(RS) before planning field work. Although significant geologic
information is available to field geologists studying Earth,
a crewed Mars mission would necessarily rely on RS im-
agery to determine ground conditions to be expected. The
need for this type of preliminary geologic information de-
rived from orbital or robotic imagery, including the types
and intensities of rock alteration, cannot be overstated.

RS data sets are evaluated here to illustrate the issues that
go into mission planning and, especially, daily field excur-
sions. Selection of targeted regions is based on preliminary
RS data aimed at specific scientific interest and expected
results (Brady et al., 2019). Selection also follows the
evaluation of rock alteration determined by RS analysis, that
is, the multispectral signatures that provide clues to the
causes, mechanisms, and types of rock alteration. An ex-
ample of RS sensitivity to chemical signatures (i.e., miner-
alogical and alteration properties) is shown in Fig. 8 for the
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Kilauea Iki region (RT 4). The two satellite-acquired images
illustrate (1) a pan-sharpened ~ 1 m/pixel true color scene
and (2) a multispectral, false color mineralogical parameter
map (Fig. 8, upper and lower, respectively). The false color
image enables the distinction of sensitivities to Fe-oxidation
(red), average visible brightness, or sulfur deposits (green),
and the presence of ferrous iron in mafic minerals (blue).
Thus, the detailed evaluation of these types of RS data, a
topic to be presented in a forthcoming article, leads to better
understanding of how basaltic and similar lava flow types, as
well as other volcanic deposits, are affected by liquid water,
volatiles, fumaroles, and any other climate condition that
will cause changes in the availability of elemental nutrients.

3.2. ESRP and the Great Rift

Relatively young and compositionally diverse volcanics
comprise a series of tholeiitic basalts and derivatives (ha-
waiites, latites, and rhyolites) in the upper 1-2km of the
ESRP. The surface morphology of the ESRP, a 400 x 100 km
topographic and structural depression, is dominated by ba-

saltic low shields and lava fields that erupted from ~ 1-2m.y.
ago to the present; most are younger than ~400 k.y. The
most recent (Holocene) eruptions of both basaltic and
evolved lavas on the ESRP (e.g., Kuntz et al., 1992; Hughes
et al., 1999), including the lava fields of Hells Half Acre,
Wapi, Cerro Grande, and Craters of the Moon, have not
been covered by light-colored eolian deposits. These lava
fields are well exposed in remote imagery (e.g., Landsat),
and in outcrop, as extensive dark-gray to black patches
(Fig. 1, upper). Beneath this series of relatively young vol-
canics, and in outcrops exposed on the margins of the ESRP,
lie much older (~ 10 m.y. old) rhyolite ignimbrites and lava
flows associated with the Yellowstone hotspot (Armstrong
et al., 1975; Pierce and Morgan, 1992; Smith and Braile,
1994), which is currently active ~200km east of COTM.

Each basaltic low shield was constructed by a series
of low-viscosity, tube-fed basalt lava flows that initially
erupted from fissures oriented perpendicular to the WSW-
ENE trend of the ESRP. These monogenetic lava flow fields
dominate the upper volcanic sedimentary regional ESRP
sequence (Greeley, 1982; Leeman, 1982a; Kuntz et al.,
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Associated with Lava Terrains.

1992; Hughes et al., 2002a, 2002b). By contrast, the poly-
genetic lava flows in the COTM field, which erupted in-
termittently since ~ 15 k.y. ago along the Great Rift, have
chemically evolved basalt-like compositions, such as ha-
waiite and latite (Fig. 6).

The Great Rift is the most predominant of several vol-
canic rift zones and numerous vent corridors, all of which
are aligned perpendicular to ENE-WSW regional Basin-
and-Range extension (Kuntz et al., 1992; Hughes et al.,
2002b). Most of the low shields on the ESRP were con-
structed along aligned eruptive vents active during different
episodes. While tholeiitic basalts (low shields) dominate the
terrain, the COTM system contains numerous steep cones
and compositionally diverse lavas that make it unique in the
ESRP.

Extensive geologic mapping and petrologic analyses (e.g.,
Kuntz et al., 1992, 2007) show that COTM lava field is the
largest, mostly Holocene, basaltic lava field in the conter-
minous United States covering ~ 1600 km? with ~ 30 km?
of lava flows and other products of volcanism. Several well-

known lava flows in the northern part of the Great Rift
include Highway flow, North Crater flow, BC flow, Serrate
flow, Devil’s Orchard flow, and Blue Dragon flow. These
flows are depicted schematically as flow lines along with
dominant vents (tephra cones) in Fig. 4 (upper), and the
lavas exhibit dramatically different colors and surficial
morphology in Landsat imagery in Fig. 4 (lower). Sig-
nificant differences in surface morphology have been as-
sessed during evaluations of these flows as planetary
analogues (e.g., Hughes er al., 2016; Mallonee et al., 2016;
Neish et al., 2017). These flows erupted within a relatively
short period of time (~2100-2200 years BP) during
“Eruptive Period A” (Kuntz er al, 1989, 2007) and are
mapped as some of the youngest units in the research zone
(only Broken Top flow is stratigraphically younger, but still
within the short eruptive period).

Preliminary geochemical data from the work of Kuntz
et al. (1992) and unpublished data by the authors of this
study indicate that the Highway and Serrate flows (“HW”’
in Figs. 6 and 7) are chemically equivalent although they
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erupted separately. Also, the BC and North Crater flows
(““BC” in Figs. 6 and 7) are chemically equivalent to each
other, but different from the Highway and Serrate flows.
These equivalency associations imply at least two eruptions
from each of two magma reservoirs in the northern COTM
region. Available geochemical data are insufficient to de-
termine whether there are other equivalency associations
within the youngest group of lava flows or if other magma
sources are involved.

3.2.1. BCflow (RT 1). The BC lava flow is a compound
hawaiite lava flow that compositionally plots across the
boundary between hawaiite (also known as trachybasalt) and
mugearite (also known as basaltic trachyandesite) (Fig. 6).
Surface morphology, generally a moderate-relief hummocky

pahoehoe (Fig. 3A), varies with distance from the source at
BC vents (tephra cones) (Figs. 3B and 4) and with transi-
tions in flow type. Morphological differences are also in-
herent between individual flow lobes. The morphology of
BC flow is characterized by ~1-4 m relief, with smooth
pahoehoe plateaus, inflated mounds (tumuli), collapse pits,
and meter-thick breakout lobes. BC also exhibits broken and
rubbly lava crusts, characteristic of slab-pahoehoe surfaces.

The BC flow was targeted because the composition
is similar to true basalt, yet with a higher alkali metal
concentration, and lies conveniently between primary ESRP
basalt and evolved latitic compositions (Fig. 6). It further
represents an analogue for the least-evolved (lowest SiO,)
alkalic composition of outcrops analyzed by Curiosity Ro-
ver at Gale Crater (Sautter et al., 2015). The BC flow was
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deemed more appropriate than the chemically equivalent
North Crater flow because high levels of foot traffic in the
North Crater flow area presented a higher potential for
contamination through human activities. Actually, the vent
area for the BC flow, as opposed to the BC lava flow itself,
was selected as a research target for BASALT (RT 1)
(Fig. 4) primarily for accessibility concerns, and also be-
cause a reconnaissance study of the vent area at BC indi-
cated significant potential for fumarolic alteration along an
extension crack located on the west flank. Preliminary
sampling and analysis further justified, with NPS permission
to venture into otherwise restricted areas, our decision to
engage in more detailed analysis.

3.2.2. Highway flow (RT 2). The Highway flow (RT 2)
(Fig. 4) is a thick (up to ~15m) chemically evolved latite
(“HW” in Fig. 6) flow with a tall and steep flow front and
an extremely rugged surface, ~4-8m relief, of jagged
spires and steep-sided cracks. Generally it can be charac-
terized as an ‘a’a flow with block and slab-pahoehoe com-
ponents (Fig. 3C, D). The rugged high-relief morphology
reflects its emplacement as multiple lobes of sluggish, vis-
cous lava from an eruptive vent most likely north of the
highway (Fig. 4, upper). The selection of Highway flow as a
research target is also based on its highly evolved chemical
composition (Fig. 7) that represents similarly evolved mar-
tian volcanics such as the highly alkaline (latitic) rocks
determined by Curiosity Rover in Gale Crater (Fig. 6).
Moreover, the region, although remote and quite rugged, is
ideal for access to pristine flow surfaces.

As a research target, regardless of challenging acces-
sibility issues, the Highway flow provides opportunity to
evaluate variability in rock textures as well as possible
zones of alteration associated with such variances. Notably,
the Highway flow has abrupt variations in texture between
dense, stony material and vesicular (‘‘frothy”’), glassy ma-
terial. Field investigations and detailed measurements of this
bimodal transition (Sandmeyer et al., 2017) indicate that
dense layers, which are evenly distributed, are often sepa-
rated by isolated pods of frothy lava. Foaming of lava to
produce frothy textures likely occurred when volatiles either
accumulated in the hinges of lava folds or expanded dra-
matically due to local depressurization in extension cracks.
These areas of frothy texture are more conducive to al-
teration owing to their greater permeability and reactive
surface area and potentially provide a more habitable
environment.

3.3. Kilauea Volcano and the ERZ

Hawaiian Islands, according to the leading and now
widely accepted hypothesis, evolve in stages of volcanic
eruption (Clague and Dalrymple, 1987). These stages reflect
the development of the magmatic source as the Pacific
tectonic plate, on which rides the Hawaiian-Emperor vol-
canic chain, moves over the mantle-derived Hawaiian hot
spot (e.g., Wilson, 1963a, 1963b). Four eruptive periods
relevant to this idealized model include (1) preshield (sub-
marine eruptions), (2) shield (tholeiitic basalt), (3) postshield
(chemically evolved alkalic lavas), and (4) rejuvenated stages
(Clague and Dalrymple, 1987; Peterson and Moore, 1987;
Moore and Clague, 1992; Clague, 1996). Significant changes
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in surface morphology occur during these stages, which are
largely manifested in the accumulation of primary to evolved
lavas over time.

According to the Clague and Dalrymple (1987) model,
copious amounts of tholeiitic basalt magma erupt mainly
during the shield stage (>95% of the volcano’s volume),
producing long thin lava flows that lead to an increase
in land mass and island size. Kilauea and Mauna Loa,
the closest subaerial volcanoes to the active hot spot,
are currently in the shield stage of their development,
whereas other volcanoes on the Big Island (Mauna Kea,
Hualalai, and Kohala), are transitioning into postshield
stages (Clague, 1996; Sherrod et al., 2007).

The shield stage includes caldera collapse, eruptions of
caldera-filling lava, and the growth of low shields and cones
along magmatic rift zones. Lower volume magma with
chemically evolved compositions erupted during the latter
part of the shield stage results in steep-sided cinder cones
and shorter lava flows. As eruptions diminish, growth stages
are ultimately overtaken by loss of land mass due to ero-
sion, landslides, and other geomorphic changes (e.g., Stearns,
1946). As the youngest subaerial volcano in Hawai‘i (and
possibly the most active volcano on Earth), Kilauea ex-
emplifies the shield stage of Hawaiian eruptions with nota-
ble activity during the 19th and 20th centuries that has
continued unabated into this century. The subaerial sections
of Kilauea Volcano are thus dominated by basalt lavas with
only meager transitions to more chemically evolved com-
positions relative to the compositions of other Hawaiian
subaerial volcanoes (e.g., Wolfe and Morris, 1996a, 1996b).
Over 90% of the volcano is covered in lava flows <1500
years old (Sherrod et al., 2007), and many of these are
historical flows.

Eruptions have resulted in significant changes at and near
the summit, including pit craters and active lava lakes in
the caldera (Peterson, 1967; Holcomb, 1987; Peterson and
Moore, 1987; Neal and Lockwood, 2003). Significant activity
has also occurred along flanking magmatic rift zones, along
the Southwest Rift Zone in 1920, 1971, and 1974, and along
the ERZ, which has been nearly continuously active since
1955 (Holcomb, 1987; Sherrod et al., 2007). Regular updates
from the US Geological Survey (https://volcanoes.usgs.gov/
volcanoes/Kilauea) indicate that the lower ERZ, which is
currently quiet, entered a vigorous eruptive stage in May
2018 that continued for several months along fissures in
the area of Leilani Estates. The recent eruption produced
a prodigious amount of lava that consumed numerous
homes and reached the ocean in several places (https://
volcanoes.usgs.gov/volcanoes/kilauea/multimedia_maps
.html). Moreover, the summit region deformed consider-
ably due to magma drain-out since our personal observations
in 2016 when the Halema‘uma‘u lava lake was full. The
resulting rim collapses have apparently compromised one of
our research targets (RT 5, Section 3.3.3. Kilauea caldera).

As with COTM research targets, accessibility and per-
mitting through the HAVO have significantly influenced
the selection of research targets at Kilauea. Research tar-
gets were selected to represent (1) different styles of lava
eruption and emplacement and (2) different types of alter-
ation related to fumarolic or syn-eruptive gases. These tar-
gets include the following: (RT 3) the flanks and proximal
lavas of Mauna Ulu, (RT 4) lava lake of Kilauea Iki, and
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(RT 5) altered basalts near the SE margin of Kilauea caldera
(Fig. 5).

3.3.1. Mauna Ulu (RT 3). The ERZ eruptions of Mauna
Ulu occurred for ~2.5 years during 1969-1971 (Swanson
et al., 1979) and again for about the same length of time
from February 3, 1972, to July 22, 1974 (Decker, 1987,
Tilling et al., 1987). Both eruptive episodes produced pro-
digious amounts of lava that constructed the Mauna Ulu
shield in two stages, created a lava lake in the summit, filled
nearby pit craters (including the west pit of Makaopuhi
Crater), and eventually flowed through an extensive lava
tube system to the sea. Details of the 1972-1974 eruptive
phase, including the appearance of myriad volcanic features
on the surface as well as the relationships to regional ground
deformation at Kilauea, are extensively documented in the
work of Tilling et al. (1987). According to an assessment of
magma transfer by Decker (1987), the heights of Mauna Ulu
and nearby Alae, an adjacent low shield, grew significantly
during Mauna Ulu activity. These two vents were connected
by a subterranean magmatic plumbing system during 1972—
1974 resulting in lava lakes in both craters. Moreover, as the
1969-1971 activity waned and the Mauna Ulu lava lake
subsided between eruptions, the regional magmatic plumb-
ing system in Kilauea was manifested in increased summit
inflation and a brief eruptive episode (September 1971) in
the caldera and Southwest Rift Zone (Duffield et al., 1982).

Basalt lava flows on the flanks of Mauna Ulu have
relatively low-relief (~1-2m), shelly to dense vesicular
pahoehoe, a morphology that is characteristic of most fresh
lavas on Kilauea (Fig. 3E, F). Meager amounts of weath-
ering have occurred since 1974, and most surfaces remain
fairly fresh even though many park visitors have made the
popular trek to the crater rim. Steam continues to rise from
the summit crater and numerous fumaroles are active near
the rim. Fumaroles also appear in a few locations on the
lower flanks, notably where lava filled a small pre-existing
pit crater. Most of the fumarolic activity (e.g., Fig. 3F) is
non-sulfurous and appears to be related to recycling of
meteoric water rather than primary emission of mag-
matic gases. Mauna Ulu lavas are considered ideal, in terms
of both accessibility and scientific study, for sampling
fresh lava and basalt that have been slightly altered
by meteoric fumaroles. It also provides good locales to
observe and sample lava that has been extensively oxi-
dized by syn-eruptive hot gases, which is evident in ex-
posures of red-orange, highly vesiculated portions of
lava exposed in the walls of several flow channels and
collapse pits.

3.3.2. Kilauea Iki (RT 4). The Kilauea Iki lava lake was
the result of lavas filling the Kilauea Iki pit crater during the
spectacular 1959-1960 summit eruption of Kilauea Volcano
(Richter et al., 1970; Helz and Thornber, 1987). The lake
was one of several, including Alae in 1963 and Makaopuhi
in 1965, formed by lava infilling into prehistoric pit craters
on Kilauea in the second half of the 20th century; these were
soon covered by Mauna Ulu lavas. Lava fountains blasted up
to 580 m high during the 1959 episodes at Kilauea Iki. Lava
filled the ~1.4x0.65km pit (dimensions at lake level) with a
126 m deep lava lake at maximum depth, and spewed reticulite
(pumice) and agglutinated spatter, which grew into a 70-m-
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high tephra cone (Fig. 3G) adjacent to the vent (Neal and
Lockwood, 2003). Detailed records and continuous chrono-
logical accounting of the Kilauea Iki lava lake (Richter et al.,
1970) demonstrate that magma migration away from the
summit region also resulted in summit subsidence, causing the
collapse of the molten core of the Halema‘uma‘u lava lake.
The lava lake also subsided by ~15m (to a new depth of
~ 111 m), which left fresh lava covering the lower walls of the
pit. These related events (such as others during Hawaiian
volcanic stages) signify the importance of Kilauea’s inter-
connected magmatic plumbing system.

The Kilauea Iki lava lake remains thermally productive
although it subsided and solidified after the eruption. Nu-
merous fumaroles strewn over the surface appear as mounds
of inflated, discolored vents that emit hydrothermal gases
with temperatures well over ambient conditions. As a re-
search target region, the floor of the lava lake is accessible to
a field team, but also is susceptible to tourist visitation,
especially along the well-traveled trail across the pit. Tar-
geted regions are thus dependent on maintaining distance
from tourist activities and selecting the most remote loca-
tions that meet scientific purposes.

3.3.3. Kilauea caldera (RT 5). The caldera at Kilauea’s
summit, such as other calderas in active shield growth, is a
dynamic system that essentially lies directly over the pri-
mary magmatic source. Sequential collapse of caldera walls
along circumferential normal faults, ascent and withdrawal
of magma causing inflation followed by collapse, highly
active volcanic fissures aligned along rifts, and circular pit
craters (often with lava lakes) are some of the dominant
features in Kilauea caldera.

A growing body of evidence indicates that such features
also define the evolution of summit calderas of most ba-
saltic shield volcanoes on Earth and other planetary bodies
(Francis and Oppenheimer, 2004). This notion is supported
by both Kilauea and Mauna Loa calderas, which have been
described and mapped as structures related to subsidence
due to the withdrawal of magma into rift zones on the flanks
of the volcano. Walker (1988) suggests that the Hawaiian
calderas are shaped by many small events rather than a few
great eruptions. The notion of multiple caldera collapses is
supported by mapping in the summit region that indicates at
least two caldera-forming eruptions at Kilauea (Neal and
Lockwood, 2003).

Complex processes associated with the evolution of Kilauea
caldera are manifested in the 1971 and 1974 eruptive fis-
sure system along the SE margin and the exposure of 18
dikes in the north and west walls of the caldera (Neal and
Lockwood, 2003). The selection of the fissure system as
a research target region (RT 5) is due to the proximity to
Halema‘uma‘u crater, which purportedly lies above or at
least near the active magma reservoir (e.g., Walker, 1988).
This close proximity to the magmatic source most likely
provides access to active fumaroles and fumarolic deposits
(Fig. 3G) that are derived from magmatic gases rather than
circulating meteoric water. Such activity is more likely to
produce sulfurous deposits (native sulfur, sulfides, sulfates)
with implications for the biological substrates different from
those deposited by fumaroles due to heated meteoric water
and thereby providing a contrast to the fumaroles found at
nearby Mauna Ulu.
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4. Analogy to Mars
4.1. Volcanic settings on Mars

Current knowledge of Mars’ geologic history suggests the
development of several types of potentially habitable envi-
ronments, especially in the Noachian period, where abun-
dant meteoric water (including groundwater), evidenced by
extensive phyllosilicate deposition and the formation of
valley networks (Poulet et al., 2005; Carr and Head, 2010;
Ehlmann et al., 2011) was present. Recent work by Ehlmann
et al. (2011) suggests that the widespread phyllosilicates
might be associated with subsurface low-grade metamor-
phism rather than surface meteoric water. While these en-
vironments likely ranged from hot springs (e.g., Squyres
et al., 2008; Yen et al., 2008; Ruff and Farmer, 2016) to
depositional deltas (Carr and Head, 2010), one of the major
environmental factors, at least in Mars’ early history, was
basalt and basalt-related volcanism (Fig. 9). Microorgan-
isms may have grown directly on volcanic rocks, or perhaps
at least in materials and fluids produced locally in volcanic
terrains without the global presence of meteoric water. Al-
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though they are planetary neighbors, Mars and Earth have
fundamental chemical and physical differences that impact
the nature and style of volcanism on their surface. Cosmo-
chemical bulk composition models suggest that the nebular
components that accreted to form Mars were not much
different than those that formed Earth (Wanke and Dreibus,
1994; Taylor, 2013).

Differences in oxidation state and subsequent core for-
mation were likely responsible for notable differences in the
composition of bulk silicate Mars versus bulk silicate Earth
(Taylor, 2013). The most notable difference is the FeO-rich
nature of the martian mantle (18.1wt %) (Taylor, 2013)
compared with that of Earth (8.05 wt %) (McDonough and
Sun, 1995). This Fe-rich characteristic yields basaltic melts
that are enriched in FeO (13-21 wt %) compared with their
terrestrial counterparts (~ 10-15wt %); however, the ba-
saltic lavas at COTM have FeO contents at the high end of
the terrestrial range (e.g., Kuntz et al., 1992; Richardson
et al., 2012). Chemical plots (Fig. 7) of SNC basaltic mete-
orites and rocks analyzed in situ by Mars rovers (Bridges and
Warren, 2006) also reveal significantly lower TiO, and P,Os5
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Kilauea
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{ Volcanism
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FIG. 9. Major geologic events in Mars’ history, with relative intensities depicted as variations in width of light-gray
shaded regions (Carr and Head, 2010), illustrate significant differences in surface processes that affect climate between early
and late Mars. The relatively young ages of research targets at Kilauea (Sherrod et al., 2007) and COTM (Kuntz et al., 1992)
are shown for comparison, with their respective analogs to time spans on Mars shown as dark arrows. Geologic eons (Earth,
left and Mars, right) show ages in billions of years (Ga) of the major divisions of geologic time for both planets.
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compared to our basaltic-to-intermediate research targets;
whereas MgO, CaO, and K,O show no overall differences
from the Earth counterparts. In addition to Fe-enrichment,
Mars is also thought to be rich in S with mantle and crust
concentrations twice that of Earth (King and McLennan,
2010). These differences have important implications for the
composition of magmatic products emplaced on the surface
(e.g., lava flows and magmatic fumaroles).

The cumulative knowledge derived from studies of mar-
tian meteorites, orbital spacecraft, and in sifu lander- and
rover-based investigations has shown that the upper crust
and much of the surface of Mars are dominated by basaltic
materials (McSween et al., 2009; McSween, 2015). Evi-
dence for the existence of more evolved volcanic materials
has been identified from orbital spectroscopy investigations
(Christensen et al., 2005; Broz et al., 2015b; Rogers and
Nekvasil, 2015), analyses from the Mars Exploration Rover
Spirit (McSween et al., 2007; Skok et al., 2010), newly
discovered martian meteorites (Agee et al., 2013; Santos
et al., 2015), and from in situ analyses of the Mars Science
Laboratory (MSL) in Gale Crater (Sautter et al., 2014;
Schmidt et al., 2014; Morris et al., 2016). Analyses by MSL
in Gale Crater extend the known martian igneous com-
positions (Figs. 6 and 7) to much higher alkali and silica
contents than previous investigations. In addition, MSL’s
identification of crystalline tridymite (a high-temperature,
low-pressure, Si0O, polymorph) suggests that silicic volca-
nism has occurred on Mars (Morris et al., 2016), further
broadening the styles and compositions of volcanism ex-
pected for the planet.
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Mars’ smaller size relative to Earth gives it a larger sur-
face area to volume ratio, which influences the rate at which
the planet has cooled, yielding a thick, rigid lithosphere
(Schubert et al., 1992; Nimmo and Stevenson, 2001). A
thick lithosphere creates a deeper rheological barrier during
magma ascent and likely plays an important role in the
absence of plate tectonics. Further complicating the process
of magma ascent, storage, and emplacement is the lower
gravity producing a smaller buoyant force, which drives
magma ascent on Earth (Wilson and Head, 1994). A lower
buoyant force implies that bodies of magma must have a
larger volume to ascend.

The net result of these physical differences is reflected
in the ages of major geologic and climatic events through-
out Mars’ geologic history (Carr and Head, 2010). Most of
the volcanic and surface processes related to weathering,
transport, and deposition occurred much earlier (billions of
years ago) in the planet’s history compared with the young
ages (within the last few thousand years) of our terrestrial
target regions (Fig. 9). Mars’ intense geologic processes
early during planetary evolution also resulted in the em-
placement of more voluminous lava flows with greater ef-
fusion rates from larger dikes tapping deeper magma reservoirs
(Wilson and Head, 1994; Greeley et al., 2000). Coupled
with the absence of plate tectonics, this allows the con-
struction of massive volcanic edifices such as the great
martian shield volcanoes Olympus Mons, Alba Mons, As-
craeus Mons, Pavonis Mons, and Arsia Mons of the Tharsis
region (Fig. 10). These prominent landforms reflect a
style of volcanism characterized by voluminous eruptions of

0° ' 60 120° 180°

FIG. 10. Locations of features on Mars referred to in text. Map base is digitized topography from the Mars Orbiter Laser
Altimeter (MOLA) instrument on the Mars Global Surveyor, provided by the NASA Goddard Space Flight Center. Points A
and B in the Tharsis region are the locations of volcanic features shown in Fig. 11.
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basaltic lava that form large central shield volcanoes sur-
rounded by many fissures, lava flows, and smaller (low)
shields. Although the Tharsis region dominates the volca-
nology of Mars, other volcanic provinces are significant,
including but not limited to Elysium Mons and Nili Patera,
which is the summit caldera of the great Syrtis Major Pla-
num volcano (Fig. 10). The dramatic age differences
(Fig. 9) and the greater relative intensity of early Mars
geologic processes attest to the rationale of evaluating field
targets from multiple settings.

Two other prominent basaltic volcanic features of Mars
are the Hesperian ridged plains, which were extensive
flood basalts that resurfaced nearly 30% of the older No-
achian crust (Head et al., 2006), and the less prominent yet
ubiquitous (and younger) basaltic plains volcanism (Ples-
cia, 1981; Hauber et al., 2009) located mostly within the
Tharsis region. Hesperian flood basalts, while not readily
recognized as volcanic features on Mars, are represented
by numerous low ridges interpreted by Head er al. (2006)
as erosional remnants of extensive dikes exposed north and
east of Huygens Crater (Fig. 10). Plains-style volcanism,
for which the ESRP is a well-exposed, relatively young
terrestrial analog, comprises coalescent low shields and
their eruptive fissures, multiple extensive lava flows, and
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spatter and scoria cones (Greeley and King, 1977; Greeley,
1982). On Mars, basaltic plains-style volcanism has oc-
curred relatively recently in the Tharsis region (Hiesinger
et al., 2007), perhaps within the last 100 million years
(Hauber et al., 2011), implying the possibility of a present-
day dynamic system. Numerous low shields, lava flows
and other volcanic features are evident in orbiter imagery
(NASA Planetary Data Systems, https://pds.nasa.gov).
Examples of relatively small plains-style shields, lava
flows, and fissures on the eastern flank of the Tharsis
region (Fig. 11), imaged by the Context Camera (CTX) on
the Mars Reconnaissance Orbiter (MRO), illustrate similar
scale and morphology of martian features to Hawai‘i and
Idaho analogs.

Despite the chemical and physical differences between
Mars and Earth, the study of martian meteorites and ex-
tensive orbital and in sifu spaceflight exploration have
demonstrated that martian volcanic landforms and compo-
sitions are remarkably similar to those found on Earth in
intraplate tectonic settings (Greeley and Spudis, 1981; Hau-
ber et al., 2009). These intraplate settings (e.g., continental
basaltic plains and ocean islands) represent an analogous
system for comparison of the volcanic processes occurring
on Earth and Mars.

FIG. 11.
Tharsis region (A and B in Fig. 10). (A) Illustrates an ~ 25-km-diameter low shield, centered at 00°20" latitude -106°12’
longitude, surrounded by lava flows and incised by a major fissure. (B) Illustrates a smaller ~ 3 km cone, centered at 02°30’
latitude -100°24" longitude, with N-S eruptive fissure that produced lavas exposed as flow lobes west and north. Volcanic
features in both images are represented in Idaho and Hawaii analog terrains. Mars Reconnaissance Orbiter CTX images
obtained from Google Earth. CTX, Context Camera.

Grayscale CTX composite images of low shields, lava flows, and fissures located east of Pavonis Mons in the
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4.2. ESRP and the Great Rift

Volcanism on the ESRP provides numerous geomorpho-
logic features considered to be analogs to volcanism rec-
ognized on Mars where plains-style volcanism occurred
largely in the Tharsis region and locally in the Elysium
Mons region (Hauber et al., 2009, 2011). Comparison of
low-shield volcanoes in the ESRP and in Syria Planum on
Mars using multivariate cluster analysis reveals that (1)
plains volcanism is morphologically distinct from other
expressions of terrestrial volcanism and (2) the martian low-
shield and ESRP volcanoes define this distinct morpholog-
ical group (Henderson, 2015). This research demonstrates
that the martian and terrestrial volcanoes form a morpho-
logical spectrum where ESRP volcanoes are smaller and the
low shields of Mars are systematically larger, which is to be
expected given the physical differences between the planets.

Compositional diversity in volcanic rocks of the ESRP
provides the association of geochemistry with geomor-
phology (Kuntz et al., 1992; Hughes et al., 1999). Low
shields and lava fields on the ESRP are typically basaltic,
whereas the scoria cones and thick lava flows of the COTM
volcanic field have intermediate compositions relatively
enriched in Si0,, alkalis, FeO, TiO,, and P,Os compared to
the tholeiitic basalt that comprises much of the surrounding
regions. These intermediate compositions have similarities
to the alkaline volcanic rocks of Gusev Crater and clasts
within the martian meteorite NWA 7034 (Usui et al., 2008;
Adcock et al., 2018). An important consideration is that the
chemical signatures, especially the compositions of exposed
rock, may reflect variable amounts of postemplacement al-
teration. Although the COTM rocks were emplaced between
18,000 and 2000 YBP, their weathering rates are very low
and controlled by glass dissolution (Adcock et al., 2018).
The young age and arid climate of COTM may indicate
only minimal modification by interaction with the environ-
ment. Thus, any alteration observed on COTM flows is more
likely due to syn-emplacement gas interaction and/or post-
emplacement fumarolic processes.

4.2.1. BC vent and flow. The source of the BC flow is a
vent located at the base of a series of nested scoria cones
elongated along the trend of the Great Rift fissure system.
This configuration is common for terrestrial basaltic erup-
tions and the COTM lava field. Scoria cones have been
suspected on Mars (Bleacher er al., 2007, 2009), but only
recent advances in imaging have allowed detailed exami-
nation of these features (Broz et al., 2015a). Differences in
shape and form occur between martian and terrestrial cones
owing to differences in atmospheric thickness and gravity,
but overall there are many similarities, including the close
association with lava flows near their base (Hauber et al.,
2009; Broz et al., 2015a).

4.2.2. Highway flow. The morphologically and chem-
ically distinct Highway lava flow at COTM provides a
unique analog to less ubiquitous, more evolved Mars vol-
canic features. The identification of small-scale volcanic
edifices with morphologies and spectral properties consis-
tent with the eruption of chemically evolved (e.g., Figs. 6
and 7), viscous lavas reveals that Mars is host to local-
ized occurrences of more silicic expressions of volcanism
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(Christensen et al., 2005; Skok et al., 2010; Broz et al.,
2015b; Rogers and Nekvasil, 2015). These flows are ex-
posed in the central caldera of Nili Patera (also known as
Syrtis Major) and within the southern highlands at Terra
Sirenum, locations where the crust is expected to be thick.
Magma ascent through the crust would result in multiple
levels of storage consistent with the presence of small vol-
umes of evolved lavas. These processes are analogous to the
Highway flow where its location on the northern margin of
the ESRP leads to a more complicated path of storage, as-
cent, and eruption resulting in a small-volume, viscous si-
licic lava flow (Putirka et al., 2009). On Mars, the detection
of hydrated silica deposits by the Spirit rover has been in-
terpreted as evidence for a volcanically driven hydrothermal
system (Squyres et al., 2008; Skok et al., 2010) that may
have supported biological activity. This discovery suggests
the preservation of potentially habitable aqueous environ-
ments on the martian surface.

4.3. Kilauea Volcano and the ERZ

The Mars Exploration Rover Spirit conducted an exten-
sive investigation of numerous different volcanic features
within Gusev Crater. During its 9-year mission, Spirit en-
countered potentially primitive olivine-phyric basaltic rocks
(Monders et al., 2007, Filiberto et al., 2010), basalts, and
trachyandesites enriched in alkalis (McSween et al., 2007,
2009), a basaltic pyroclastic deposit called ‘““Home plate”
(Squyres et al., 2007), soils composed of extremely high
concentrations of either ferric sulfates or opaline silica
(Johnson et al., 2007; Squyres et al., 2008; Yen et al., 2008),
and silica sinter deposits (Ruff and Farmer, 2016). These
features collectively indicate that Spirit was exploring a re-
gion of Mars that once hosted active volcanic hydrothermal
springs and fumaroles (Squyres et al., 2008; Yen et al., 2008;
Ruff and Farmer, 2016). These discoveries coupled with
sulfate-rich mineralogy of the martian surface and the de-
tection of jarosite by Rover Opportunity at Meridiani Planum
(Squyres et al., 2004) suggest that alteration on Mars oc-
curs under water-limited low-pH conditions (Hurowitz and
McLennan, 2007). Interpretations of these observations have
important implications for martian habitability and have
stimulated numerous investigations of active volcanic hydro-
thermal environments as analogs to Mars.

The islands of Hawaii are the most accessible, relevant
active volcanic environment for these analog studies, having
led to a rich heritage of Mars-centric investigations. Studies
focusing on variations in alteration of basaltic tephra (e.g.,
acidic, oxidizing, sulfurous, and ambient) collected from the
summit regions of Haleakala and Mauna Kea have shown
that these materials are a compelling, although incom-
plete, spectral analog to the globally distributed martian dust
(Bell et al., 1993; Golden et al., 1993; Morris et al., 2000a;
Bishop et al., 2007; Hamilton et al., 2008). Near actively
outgassing volcanoes, the interaction of acidic solutions
derived from magmatic gases with basalt leads to the for-
mation of thin, visible coatings of amorphous silica on ba-
salt and tephra. This occurs in many places across Hawai ‘i
and research has focused on this style of alteration, often
termed acid-fog, as a process and spectral analog for regions
on Mars showing evidence for silica or ‘‘high-silica phases’
(Crisp et al., 1990; Schiffman et al., 2006; Minitti et al.,
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2007; Chemtob et al., 2010; Seelos et al., 2010; Chemtob
and Rossman, 2014). A similar, more pervasive style of
alteration occurs in and near fumaroles emitting magmatic
gases (e.g., H,0, H,S, SO,, CO, CO,) and is typified by the
presence of amorphous silica, sulfate minerals, Fe-oxides,
and native sulfur (Morris et al., 2000b; Bishop et al., 2005;
McCanta et al., 2014; Yant et al., 2016).

The primary purpose of many of these analog studies is to
constrain the geochemistry and mineralogy of altered ma-
terials and examine their spectral properties to identify their
unique signatures in RS data sets from Mars. We seek to
examine these terrains in a similar manner but with an ad-
ditional focus on the habitability and biodiversity within
extreme environments. In contrast to the abundant research
into geothermal hot springs, few studies have focused on the
microbial habitability of these active volcanic features pri-
marily because it was assumed that they were too hot to
harbor life (Brock, 2012) and the technology required for
successful DNA extraction in these environments did not
exist (Benson et al., 2011; Wall et al., 2015).

5. Conclusions

Volcanic features on Earth, as analog environments for early
and present-day Mars, ideally must be associated with specific
regions on Mars. Mission designs for crews can take on many
forms and involve seemingly endless discussions as to target
regions, duration, capabilities, and science objectives. Without
the benefit of geologic reconnaissance missions on the surface,
the analog locations can only be related to general target re-
gions of Mars, with the notion that more specific targets to
investigate will become known in time. While much of Mars’
surface is basalt or basalt like, regional alteration of volcanic
terrains is likely to have occurred early in the geologic history,
whereas long-term alteration since then would be related to
cold, dry conditions or the interaction of lavas with ice. The
analog environments selected for this work, while not exact
conditions of Mars’ environment, are notably variable in
composition and within environmental settings that enable the
types of alteration and biological activity to be assessed, with
regard to both modern and ancient Mars.

Similar realms on Mars are most likely to be located
near vents, for example, near relict fumaroles or in spe-
cific parts of flows or vent deposits that have experienced
high-temperature oxidation due to volcanic gas emanations.
Secondary deposits related to low-temperature meteoric
weathering may not be ubiquitous on Mars, but perhaps
present in more localized regions. Thus, the importance of
this research, in terms of assessing analog environments
for potential biologic activity, is to learn what forms of
information are necessary to target Mars missions designed
to search for evidence depicting pre-existing or current life
forms. Premission investigative techniques, including or-
biter RS, geologic mapping, and rover-based information,
provide significant clues to enable mission planning.

With continued efforts, the current assessment of research
targets in Hawai ‘i and Idaho could be expanded to (1) include
additional lava flow types and compositions to fill in textural
and chemical gaps; (2) venture into active high-temperature
systems appropriate to extremophile biota; (3) investigate
more remote areas that might require greater logistical sup-
port, but may yield significantly different results by com-
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parison; and (4) attempt to gain access to subsurface features
(deeper than a few cm) in lava flows. The latter two efforts
could include venturing into lava caves, which might provide
additional information regarding mineral deposits as well as
natural protection from surface exposure.

Basaltic terrains on Earth host a diverse microbiota. Even
just 2 months after an eruption, lava is capable of hosting a
diverse microbial assemblage that includes the capacity to
oxidize sulfur and iron as sources of energy (Kelly et al.,
2014). To understand the habitability of basaltic terrains and
the biota they may support, we need to have a clear un-
derstanding of how primary geological materials chemically
weather to produce secondary products, and the influence of
these alteration processes on the availability of nutrients and
energy. As there are many different alteration processes, one
challenge is to define the major types of alteration sequences
that can be expected on Mars by using terrestrial analogs. As
we have shown here, the basaltic terrains in Idaho and
Hawaii have provided a way to characterize the geology and
major alteration types. This work provides the foundation
for a better understanding of the habitability of specific
types of basaltic terrains.
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Abbreviations Used

BASALT = Biologic Analog Science Associated
with Lava Terrains
BC =Big Craters
COTM = Craters of the Moon National Monument
and Preserve
ERZ = East Rift Zone
ESRP =eastern Snake River Plain
HAVO =Hawai‘i Volcanoes National Park
MSL = Mars Science Laboratory
ROIs =regions of interest
RS =remote sensing
RT =research target




