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Abstract

Despite advances in understanding the molecular pathogenesis of acute myeloid leukaemia 

(AML), overall survival rates remain low. The ability to predict treatment response based on 

individual cancer genomics using computational modeling will aid in the development of novel 

therapeutics and personalize care. Here, we used a combination of genomics, computational 

biology modeling (CBM), ex vivo chemosensitivity assay, and clinical data from 100 randomly 

selected patients in the Beat AML project to characterize AML sensitivity to a bromodomain 

(BRD) and extra-terminal (BET) inhibitor. Computational biology modeling was used to generate 

patient-specific protein network maps of activated and inactivated protein pathways translated 

from each genomic profile. Digital drug simulations of a BET inhibitor (JQ1) were conducted 

by quantitatively measuring drug effect using a composite AML disease inhibition score. 93% 

of predicted disease inhibition scores matched the associated ex vivo IC50 value. Sensitivity and 

specificity of CBM predictions were 97.67%, and 64.29%, respectively. Genomic predictors of 

response were identified. Patient samples harbouring chromosomal aberrations del(7q) or −7, +8, 

or del(5q) and somatic mutations causing ERK pathway dysregulation, responded to JQ1 in both 

in silico and ex vivo assays. This study shows how a combination of genomics, computational 
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modeling and chemosensitivity testing can identify network signatures associating with treatment 

response and can inform priority populations for future clinical trials of BET inhibitors.
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1. Introduction

Acute myeloid leukaemia (AML) is a complex heterogeneous disease characterized by 

uncontrolled proliferation of immature myeloid blasts and bone marrow failure [1]. Standard 

treatment for AML consists of cytarabine-based chemotherapy, with hematopoietic stem cell 

transplant as the only potentially curative option. The 5-year overall survival (OS) rate for 

patients younger than the age of 60 is approximately 40%, while 5-year OS for patients 

older than 60 is less than 20% [2,3]. Unfortunately, a majority of patients relapse, further 

complicating clinical care.

Studies suggest that AML may arise due to a series of genetic alterations that accumulate 

with age [2]. With the advent of next-generation sequencing technologies, the complex 

amalgam of cytogenetic, genetic, and epigenetic alterations present at diagnosis and/or 

relapse of AML are now better defined. Although chromosomal abnormalities occur in more 

than 50% of adult AML patients, most recurrent alterations are rare and found in less than 

10% of patients [1]. Commonly mutated genes include FLT3, NPM1, DNMT3A, IDH1, 
RUNX1, and cKIT, among others [1,4,5]. Certain cytogenetic abnormalities are used for 

prognostic and diagnostic purposes. For example, t(8;21)(q22;q22), t (15;17)(q22;q12) and 

inv(16)(p13.1;q22) alterations are favorable risks associated with better patient outcomes. 

Other more common alterations such as deletion or monosomy of chromosome 5 or 7 are 

poor risk factors associated with resistance to therapy and worse overall survival. Deletion of 

chromosome 5 occurs in approximately 10–20% of de novo AML cases [5]. A recent study 

suggests that loss of chromosome 5 may be an early event that leads to additional genetic 

alterations, including amplification of chromosome 8 [4]. Such heterogeneity complicates 

the prognosis and treatment of AML for these patients.

Epigenetic alterations are also considered key players in the progression of AML. The 

process by which leukaemia stem cells aberrantly self-renew and propagate the disease 

has been linked to changes in regulatory chromatin modifications [6]. Novel therapies 

that target these epigenetic modifiers such as demethylating agents (decitabine, azacitidine) 

and histone deacetylase inhibitors (panobinostat) have shown some promise in leukemia, 

other hematological malignancies, as well as solid tumors [7,8]. A new class of epigenetic 

therapy include the BET inhibitors (iBETs). The BET protein family consists of 3 

ubiquitously expressed proteins, BRD2, BRD3, BRD4, and the testis-specific protein BRDT. 

As chromatin scaffolds, they recruit elements of the positive transcriptional elongation 

factor b (P-TEFb) complexes to RNA polymerase II (RNA Pol II) to initiate transcriptional 

elongation. In AML and other hematological cancers, these BET proteins have been found 
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to preserve aberrant chromatin states, thereby increasing transcription of known oncogenes 

including c-MYC [9].

Using an RNAi screen, Zuber et al identified BRD4 as a chromatin modifier critical for 

tumor growth in an AML mouse model. The study demonstrated that suppression of BRD4 

using shRNAs, or the small-molecule inhibitor JQ1, led to robust anti-leukemic effects in 
vitro and in vivo [10]. Since the discovery of JQ1 as the first BET inhibitor with both 

differentiation and specific anti-proliferative effects on human squamous carcinoma, new 

derivatives and inhibitors have been generated [11]. Since then, several BET inhibitors have 

shown promise in AML and other hematological malignancies both in vitro and in early 

phase clinical trials (Table 1) [12–17].

The mechanisms that mediate sensitivity to the iBETs remain broad. In addition 

to downregulation of c-MYC, BET inhibitors have been shown to affect additional 

transcriptional regulators including FOSL1 and E2F target genes [18]. Wild-type NPM1 

has been shown to inhibit BRD4 activity. However, approximately 35% of AML patients 

harbor a mutation in NPM1c, which leads to the release of BRD4 and upregulation of the 

core transcriptional program which facilitates leukemia development. Treatment of NPM1c 
AML cells with a BET inhibitor can restore BRD4 inhibition, reducing BRD4 recruitment 

to chromatin and downregulating expression of critical oncogenes such as c-MYC [19]. 

Mutations in FLT3 are also common in AML, yet treatment with FLT3 tyrosine kinase 

inhibitors (TKI) is often associated with resistance. However, combining the BET inhibitor 

JQ1 with a FLT3 TKI, ponatinib, was highly synergistic and enhanced cell death in AML 

cell line models as well as human CD34 + AML blast progenitor cells [20]. These studies 

highlight the pleiotropic effects of BET inhibitors and their potential benefit to treat the 

heterogeneous nature of AML.

Due to the diverse mechanism behind leukemogenesis as well as the pleiotropic mechanisms 

mediating sensitivity to iBETS, not all cell lines and patients respond in the same manner 

or achieve the same depth of response. Therefore, success of these iBETs lies, in part, on 

the ability to identify patients likely to respond to targeted therapies before initiating therapy. 

Predictive simulation is an emerging technology in the era of personalized medicine. 

By performing next-generation sequencing and subsequently translating the genomic 

aberrations into patient-specific network maps of activated and inactivated protein pathways, 

a patient-specific cancer avatar can be created. After performing digital drug simulation on 

these avatars, sensitivity to specific therapies can be calculated in silico. Such an approach 

was shown to predict drug sensitivity in eight models of glioblastoma patient-derived 

tumor cells exposed to ten therapeutics with 75% accuracy [21]. Another retrospective 

study on three cohorts of myelodysplastic syndrome (MDS) patients accurately predicted 

drug responses to standard of care therapies (azacitidine, decitabine, and lenalidomide) 

with ≥80% accuracy [22]. One of the major advantages to using cancer avatars is the 

ability to assess tumor cell sensitivity to FDA-approved and investigational therapies 

by modeling their unique mutational profiles, broadening the therapeutic options for 

refractory patients and avoiding potentially ineffective regimens. This method also allows 

clinicians, researchers, and pharmaceutical companies to simulate digital clinical trials to 

gain perspective on molecular criteria for identifying sensitive and resistant profiles.
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This study has created simulated computational models of AML patient genomics to create 

a digital clinical trial to evaluate the cytotoxic effect of JQ1 on primary AML samples. 

Patients included in this virtual trial participated in the BEAT AML study spearheaded 

by our collaborators at Oregon Health Sciences University. Patient information including 

cytogenetics and whole-exome sequencing data were entered into a computational biology 

modeling (CBM) software system to generate patient-specific network maps, or cancer 

avatars. Using these patient-specific cancer avatars, we simulated in silico drug sensitivity 

assays to JQ1 to predict which patient samples will be sensitive to the drug. We compared 

the CBM drug sensitivity predictions with ex vivo drug sensitivity data of the primary AML 

cells treated with JQ1. Additionally, we correlated genomic abnormalities identified in this 

patient cohort to in situ and ex vivo JQ1 sensitivity to discover bio-markers and molecular 

aberrations that may be used prospectively to predict clinical response to JQ1 (Fig. 1).

2. Materials and methods

2.1. Patient samples

All patients gave consent to participate in the Beat AML cores study (NCT01728402), 

which had the approval and guidance of the Institutional Review Board at Oregon Health 

& Science University (OHSU), University of Utah, University of Texas Medical Center 

(UT Southwestern), Stanford University, University of Miami (UM), University of Colorado 

(UC), University of Florida (UF), National Institutes of Health (NIH), Fox Chase Cancer 

Center and University of Kansas (KUMC). Samples were sent to the coordinating center 

(OHSU; IRB#9570) where they were coded and processed. Access to patient data and all 

analyses for this study were approved by the UF IRB (#201601364). Patients provided bone 

marrow and/or peripheral blood, along with a skin punch biopsy as germline control.

Mononuclear cells were isolated by Ficoll-gradient centrifugation from freshly obtained 

bone marrow aspirates or peripheral blood draws and plated into assays within 24 h. All 

samples were analysed for clinical characteristics and drug sensitivity [47].

2.2. Whole exome, custom capture validation sequencing

Whole exome sequencing was performed on bone marrow and/or peripheral blood, 

along with a skin punch biopsy using Illumina Nextera Rapid Capture Exome capture 

probes. Custom capture validation probes were assembled by Roche Sequencing Solutions. 

Sequencing was performed on an Illumina HiSeq 2500.

2.3. Ex vivo functional screen

Small-molecule inhibitors, purchased from LC Laboratories (Woburn, MA, USA) and 

Selleck Chemicals (Houston, TX, USA), were reconstituted in DMSO and stored at −80 

°C. Inhibitors were distributed into 384-well plates prepared with a single agent/well in 

a 7-point concentration series ranging from 10 μM to 0.0137 μM for each drug. The 

final concentration of DMSO was ≤0.1% in all wells; plates were stored at −20 °C and 

thawed immediately prior to use. Primary mononuclear cells were plated across inhibitor 

panels within 24 h of collection. Cells were seeded into 384-well assay plates at 10,000 

cells/well in RPMI-1640 media supplemented with fetal bovine serum (10%), L-glutamine, 

Drusbosky et al. Page 4

Leuk Res. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



penicillin-streptomycin and β-mercaptoethanol (10−4 M). After three days of culture at 37 

°C in 5% CO2, MTS reagent (CellTiter96 AQueous One; Promega Madison, WI, USA) was 

added, optical density was measured at 490 nm [47].

2.4. AML computation biology model (CBM)

The computational biology model (CBM) used in this study is an extensively validated, 

comprehensive network of signalling, metabolic, epigenetic and transcriptional regulatory 

pathways underlying cancer physiology [21–25]. The network is created through a 

rigorous work-flow of manually curating and aggregating published experimental data 

and representing the functionality of the genes, proteins and interactions mathematically, 

using ordinary differential equations [21]. The CBM coverage includes pathway networks 

underlying many cancer phenotypes including growth factor, cytokine and chemokine 

signaling pathways, transcriptional, post-transcriptional, translational and post-translational 

regulation, epigenetic regulation, cell cycle machinery, oxidative and ER stress, protein 

homeostasis including proteasomal machinery and autophagy, DNA repair pathways, 

apoptotic cascade and TP53 signaling, metabolic pathways, angiogenic and immune­

suppressive pathways, among others. The CBM includes about 112 central pathways, over 

75,000 reactions, and 3300 cancer specific-genes including comprehensive coverage of 

the kinome, transcriptome, proteome and metabolome. This extensively integrated network 

that makes up the CBM can be used to predict a patient’s response to a single drug or 

a combination of drugs. Both prospective and retrospective validations have been shown 

in studies of glioblastoma multiform (GB), multiple myeloma (MM), myeloproliferative 

neoplasms (MPN) and MDS [22–26].

2.5. Creation of AML profiles

Bone marrow samples and clinical data from 100 AML patients from the BEAT AML 

project (Leukemia and Lymphoma Society) were obtained and underwent conventional 

cytogenetic, whole exome sequencing, and an ex-vivo drug sensitivity assay. Genomic 

aberrations were interpreted for phenotypic implications (i.e., gain of function (GOF) versus 

loss of function (LOF)). The cytogenetic segments related to deletions, gains, translocations, 

or derivatives, were interpreted as amplifications (AMP) and deletions (DEL) of the genes 

residing in those segments. The genes found on the loci of these affected regions of the 

chromosome are extracted from the human reference genome at ENSEMBL. The complete 

list of genes is matched with the CBM to identify those that are to be represented in the 

model. All genes that have coverage in the model (Suppl. table 5) are included in the input 

file that is used to create the patient cancer avatar. Genes reported to have a gain in copy 

number due to chromosomal amplifications are interpreted as being over-expressed at the 

gene expression level, while those genes in the deleted segments are considered a loss of 

copy number and are interpreted as having a knock-down in the model.

For mutation signatures, the gene variants with known functional impact and therapeutic 

implication are searched in the public domain and are recorded in a mutation library. 

Mutational signatures are processed through our internal variant calling workflow that 

utilizes DbNFSP, a database that uses multiple prediction algorithms including SIFT, 

FATHMM, Mutation Assessor, LRT, Mutation Taster, PROVEAN, MetaSVM, and others, 
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to determine if the gene mutation will have a functional impact on the protein, which will 

be classified as either deleterious or non-deleterious based on a concordance of more than 

5 algorithms [27–31]. A deleterious mutation in an oncogene is assumed to be a GOF 

mutation at the protein activity level, or a LOF if present in a tumor suppressor gene. 

Frameshift and missense mutations are assumed to cause a loss of protein function except in 

those cases where there is experimental evidence that the mutation causes a gain of function.

Finally, this input file is overlaid on the control model (non-tumorigenic baseline) by 

indicating the gene mutations, amplifications, deletions and translocations, and the profile is 

simulated as per the rules outlined above to create a dynamic disease state. Protein network 

maps are created for each patient profile based on their input data and disease specific 

biomarkers that are unique to each profile.

2.6. Digital drug model

JQ1 was used as a representative BET inhibitor. A digital drug model of JQ1 was created 

for CBM by programming its mechanism of action inhibiting the iBET target isoforms 

BRD4, BRD2 and BRD3 in the network, and the resultant effects on specific pathways and 

biomarkers determined from published literature [11,32,33].

2.7. Simulation and analysis

Using the digital drug model of JQ1, virtual applications of JQ1 were applied to each 

patient’s disease via computer simulation in a dose respondent fashion. The efficacy of 

JQ1 for each patient was measured as a function of disease inhibition score (DIS) – the 

degree to which crucial cancer signalling pathways and phenotypes were repressed. DIS is 

a composite of the percentage impact on proliferation and viability index with the drug in 

reference to the untreated disease network. The proliferation index is an average function 

of the active CDK-cyclin complexes that define cell cycle checkpoints and is determined 

by calculating contributions in the biomarkers CDK4-CCND1, CDK2-CCNE, CDK2-CCNA 

and CDK1-CCNB1. A viability index based on survival and apoptosis markers is also 

generated for each patient. The biomarkers constituting the survival index include AKT1, 

BCL2, MCL1, BIRC5, BIRC2 and XIAP, while the apoptosis index comprises the pro­

apoptotic markers of caspases, Puma and cleaved PARP. Viability of a cell is calculated as a 

ratio of survival index/apoptosis index, and the weightage of each biomarker is adjusted to 

achieve a maximum correlation with experimental trends of the endpoint from peer-reviewed 

studies.

Disease Inℎibition Score  =  %Inℎibition [Proliferation  +  V iability]

2.8. Statistics

Raw absorbance values were adjusted to a reference blank value, and then used to determine 

cell viability (normalized to untreated control wells). The concentration of inhibitor required 

to inhibit cell growth by 50% (IC50) was calculated using a non-linear regression analysis.
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Computational JQ1 drug sensitivity predictions were compared against JQ1 IC50 values 

obtained from experimental ex vivo testing. For ex vivo results, an IC50 < 2.70μM was 

considered sensitive and an IC50 > 2.70μM was considered resistant to JQ1 therapy. This 

threshold was determined based on the Cmax concentration derived from pharmacokinetic 

studies of JQ1.11 For CBM results, a DIS ≥ 30% was classified as sensitive (responder), 

and a DIS < 30% was classified as resistant (non-responder). Post-hoc analysis of virtual 

responders and non-responders were performed to determine all unique cytogenetic and 

genomic identifiers between the two groups. Correlation between actual response and 

predicted response was assessed by using a 2 × 2 contingency table to calculate PPV, NPV, 

sensitivity and specificity, and significance was calculated using a Chi-square test.

3. Results

3.1. Correlation summary of predictive vs. ex-vivo outcomes

As part of the BEAT AML study, ex vivo drug sensitivity assays were performed on 100 

patient’s sample from the BEAT AML study. Patient characteristics details are included 

in supplementary Table 1. CBM derived AML DIS for each patient were compared to 

experimentally determined ex vivo sensitivity towards JQ1 (Fig. 2, Suppl. Table 2 Table 

2). For ex vivo results, an IC50 less than 2.70 μM for JQ1 was considered sensitive and 

an IC50 greater than 2.70 μM was considered resistant to JQ1 therapy as indicated by the 

vertical Cmax dotted line on the plot. For predictive CBM results, patients with a DIS ≥ 

30% were classified as sensitive, whereas patients with a DIS < 30% were classified as 

resistant, indicated by the horizontal % threshold dotted line on the plot. A schema of 

patient-response is depicted in Fig. 3. Experimental sensitivity to JQ1 closely matched with 

virtual predictions using the CBM model. Of the 100 patients modeled from the BEAT AML 

project, 89 patients’ ex vivo results were considered sensitive to JQ1 and 11 were considered 

resistant. CBM correctly predicted 84 of 89 sensitive profiles to JQ1, and 5 of these incorrect 

predictions were false negatives. CBM accurately predicted 9 out of the 11 patient samples 

that showed resistance to JQ1, with the two mismatched predictions being false positive. 

As shown in Table 2, the CBM predictions of JQ1 sensitivity are highly accurate with 

positive predictive value (PPV) of 97.67%, negative predictive value (NPV) of 64.29%, and 

an overall accuracy of 93%. As calculated, specificity and sensitivity of our CBM model is 

81.82% and 94.38%, respectively.

3.2. Patient-specific CBM analysis for responders and non-responders to JQ1

Representative computer-simulated patient network maps are shown in Fig. 4A–D. Profile 

2305 was virtually simulated with increasing concentrations of JQ1 in silico. CBM predicted 

a 50% decrease in the profile’s AML disease inhibition, suggesting sensitivity to JQ1. This 

profile had an ex vivo IC50 of 0.04 μM. (Suppl Table 2) The mechanism of drug sensitivity 

was determined to be due to a gain of function of BRD2 and BRD4, key targets of JQ1 [9]. 

This patient profile also possessed loss of Dual specificity phosphatase 6 (DUSP6) activity, 

which promotes ERK activation, ultimately leading to an increase in its transcriptional 

target, c-MYC, another key mediator of JQ1 drug impact [34]. Additionally, a loss of 

function in the enzyme methylene tetrahydrofolate reductase (MTHFR) was observed in 

this patient profile. MTHFR has been shown to affect heterochromatin maintenance and can 
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lead to the hypermethylation of specific genes [35,36]. In a similar manner, abrogation of 

MTHFR may impact the expression of BRD2 and BRD4, further sensitizing this patient to 

the iBET JQ1 (Fig. 4A).

Patient ID 2304 had a different set of aberrations that supported the response of this profile 

to JQ1 (Fig. 4B). This patient had a LOF aberration in nucleophosmin (NPM1), a gene 

commonly mutated in one third of adult AML patients. Loss of NPM1 has been shown to 

activate a BRD4-dependent core transcriptional program in AML [19]. This patient also had 

a LOF of DUSP6 and MTHFR genes that would further enhance iBET sensitivity. Profile 

2304 had an ex vivo IC50 of 0.16 μM and a DIS of 57.54. (Suppl. Table 2)

Conversely, the patient profile 4006 is classified as resistant to JQ1 in silico as the AML 

disease inhibition was only reduced by 25% and this profile had an ex vivo IC50 of 10 

μM. (Suppl. Table 2) CBM identified resistance due to a LOF of EP300. EP300 functions 

as a histone acetylase that impacts gene transcription by recruiting bromodomain proteins, 

including BRD4 [37,38]. Loss of EP300 function also results in loss of BRD4, therefore 

making this profile less sensitive to JQ1. Additionally, amplification of AMPK (PRKAA1) 

was observed in this patient profile and may indirectly affect sensitivity to JQ1 (Fig. 4C). 

A recent study found that AMPK induces a pro-survival autophagic response after treatment 

with JQ1, and inhibiting AMPK could increase JQ1-mediated apoptosis [39].

Patient ID 1126 is also predicted to be a non-responder by CBM at DIS of 20.61 and ex vivo 

IC50 of 10 μM. Lack of response in this profile can be explained due to presence of a GOF 

mutation in Fibroblast growth factor receptor 4 (FGFR4) gene that can activate a parallel 

resistance pathway. (Fig. 4D) FGFR4 aberrations have been shown to cause resistance to 

chemotherapy in other cancers including colorectal cancer and could mediate this resistance 

through activating parallel RTK pathway loops thus overcoming BET inhibition [40,41].

3.3. Identification of common chromosomal aberrations with patient-specific response to 
JQ1

As part of the BEAT AML study, conventional cytogenetic analysis was provided for each 

patient sample (Suppl. table 1 & 3). Of the 100 patients included in the present study, 

18 patients presented one or more of the common cytogenetic abnormalities including 

monosomy 7, 7q-del, trisomy 8, 5q-del, 19p-amp, or 22q-del. As shown in Table 3, 

associations of some of these chromosomal aberrations with response to JQ1 were analysed. 

Patient samples harboring chromosomal aberrations del(7q) or monosomy 7 (n = 4), trisomy 

8 (n = 10) or del(5q) (n = 7) responded to JQ1 in both in silico and ex vivo sensitivity assays. 

Post-hoc analysis shows that the patients with trisomy 7, 7q-del, trisomy 8, or 5q-del would 

have a higher likelihood of sensitivity to JQ1 (p = 0.041) or other BET inhibitors. However, 

a single patient sample with del(22q) was not sensitive to JQ1.

3.4. Identification of common somatic aberrations with patient-specific response to JQ1

The insights gained from CBM predictive JQ1 response analysis in patient disease networks 

are supported by the frequency of occurrence of somatic mutations in the drug sensitizing 

pathways. Mutations in genes that are linked to ERK pathway dysregulation in the disease 

network including KRAS (n = 7), NRAS (n = 23), DUSP6 (n = 9) and NF1 (n = 6), were 
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present predominantly in the responder profiles. FLT3 (n = 30) and NPM1 (n = 9) mutations 

were also highly frequent in the responder profiles in this cohort (Suppl. table 4).

4. Discussion

There is a significant need to develop novel treatment strategies for AML and to personalize 

patient care. One approach uses computational modeling to predict treatment response based 

on patient-specific tumor genomics. The present study leveraged the use of CBM technology 

to predict response to the iBET JQ1 in AML patients, and validated the predictions 

by measuring JQ1-induced cytotoxicity on primary patient samples in an ex vivo drug 

sensitivity assay. Additionally, the in silico CBM technology provided novel insight into the 

mechanisms that mediate sensitivity and resistance and aids in the identification of potential 

biomarkers that predict response to iBET.

By integrating cytogenetic, genomic, and transcriptomic data from 100 patients participating 

in the BEAT AML study, we predicted these patients’ response to the iBET JQ1 using CBM 

technology. Our data shows high accuracy between digitally derived DIS and experimentally 

determined ex vivo IC50 values for JQ1, with a reported accuracy of 93% (Table 2, Suppl. 

Table 2). Additionally, the transparency of the CBM network provides insight into the 

molecular mechanisms mediating a response to JQ1. For example, profile 2305, which was 

predicted to be a responder (Fig. 4A), showed enhanced activity of key targets of JQ1 

and pro-tumorigenic proteins including BRD2 and BRD4 and loss of function of proteins 

expected to play an anti-tumorigenic function such as DUSP6 and MTHFR [34,36] In 

another responder profile 2304, the NPM1 mutation along with MTHFR loss enhanced 

BRD4 activity and sensitized the profile to BET inhibition (Fig. 4B). An example of a 

non-responsive patient, profile 4006 (Fig. 4C) suggests that loss of the his-tone acetylase 

EP300 may be responsible for lack of sensitivity to JQ1 due to its role in regulating 

BRD4 [37]. FGFR4 gain in another profile 1126 could be the reason for non-response to 

JQ1 due to activation of a parallel resistance pathway [40,41]. Due to the complexity of 

interactions between signalling pathways, additional validation of the roles these proteins 

play in mediating iBET sensitivity are necessary. However, these proteins, and others, that 

are highlighted by the CBM technology may help identify biomarkers that mediate response 

to iBETs including JQ1.

The results of this study also suggest that trisomy 8 is one of the cytogenetic aberrations 

associated with a positive response to JQ1 (Table 3). The gene coding for the oncogenic 

transcription factor, MYC, is located on chromosome 8. An increase in MYC expression has 

been associated with increased cancer cell proliferation and survival due to its pleiotropic 

effects on cell signalling pathways. For example, MYC can activate IRF4, MCL1, and 

Cyclin D1 expression, regulating cell death and cell cycle pathways [42,43]. Importantly, 

MYC was described as an important target of bromodomain proteins, including BRD4, 

and inhibition of bromodomain proteins by JQ1 leads to a significant decrease in MYC 

expression [32]. The ability of iBETs to modulate MYC expression has implications across 

a multitude of cancer types. MYC is also induced in profiles with dysregulated ERK [44,45] 

linked to mutations in ERK regulators KRAS, NRAS, DUSP6 and NF1 genes in JQ1 

responder profiles as evident from the gene matrix (Suppl. table 4).
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Other chromosomal abnormalities associated with a response to JQ1 include del-5q and 

monosomy 7. Genes present within these chromosomal regions may also mediate sensitivity 

to JQ1 such as NPM1 (chromosome 5) and EZH2 and KMT2C (chromosome 7), as 

they have been implicated in the regulation of bromodomain proteins. For example, loss 

of NPM1 activity increased BRD4 activity [19]. Additionally, a recent study found that 

sensitivity to iBETs can be enhanced by loss of EZH2 function [46].

Thus, through this CBM analysis of AML patients’ genetics and predicting JQ1 sensitivity 

using an AML- specific in silico approach, we have identified genomic aberrations with 

molecular mechanisms of sensitivity towards iBETs. The ability of the CBM to predict 

multiple genetic factors contributing to drug response is unique and nicely complements 

ex vivo and clinical studies for identifying genetic signatures for drug responses. The 

predictions however are based on interpretation and translation of genomic inputs for 

creating and understanding the patient disease characteristics. The false predictions could 

be due to incorrect interpretations of unknown deleterious variants or incomplete genomic 

data.

5. Conclusions

In this study, we ran a virtual clinical trial to evaluate the efficacy of the BET inhibitor 

JQ1 in patients with AML. Our study successfully validated the accuracy of our CBM 

technology using ex vivo drug sensitivity data. Additionally, by integrating known 

cytogenetic and genomic alterations specific for each patient, this CBM technology can 

elucidate novel biomarkers that may predict patient sensitivity to JQ1. Virtual clinical trials 

on larger datasets will help further elucidate the inclusion and exclusion criteria for response 

to iBETs and other such first-in-class therapeutics used in specific disease settings.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Schema for the Retrospective Virtual Clinical Trial.

Schematic illustrates the study design and methods. 100 randomly selected patients form 

the BEAT AML project were modelled using CBM on which efficacy of the JQ1 digital 

drug model was evaluated. Predicted responses to JQ1 were compared with ex vivo 

chemosensitivity assay to determine prediction correlation and accuracy. Post-hoc biomarker 

analysis was done to determine genomic predictors of JQ1 response.
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Fig. 2. 
Illustration of AML disease inhibition score associations with ex vivo JQ1 IC50 values. A 

scatterplot representing ex vivo determined IC50 (X-axis) and virtually simulated disease 

inhibition scores of JQ1 (Y-axis). Cut-offs to determine sensitivity and resistance were 

determined empirically. For CBM response predictions (Y-axis), 30% disease inhibition 

was chosen as the threshold for response (horizontal threshold dotted line). A disease 

inhibition score > 30% is classified as a responder, or sensitive to JQ1, while a disease 

inhibition score < 30% is classified as a non-responder, or resistant to JQ1. For ex vivo 

IC50 values (X-axis), the Cmax of JQ1 was calculated from a previous study and used as 

the threshold for response. [11] (Vertical Cmax dotted line) IC50 < 2.7μM was considered 

sensitive, and IC50 > 2.7μM was considered resistant. The green diamonds indicate the 

responder and non-responder predictions that matched with the ex vivo response, while the 

red diamonds indicate false negatives and false positive predictions. Green diamonds (light) 

vs. red diamonds (Dark) (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article).
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Fig. 3. 
Schema representing JQ1 responders and non-responders. Delineation of virtual and ex vivo 
profiles sensitive and resistant to JQ1.

Drusbosky et al. Page 16

Leuk Res. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
A-D: Computer-simulated patient-specific network maps and digital response to JQ1. 

Patient specific network maps were generated using CBM modeling. Patient 2305(A) 

and 2304 (B) are representative examples of profiles predicted to be sensitive to JQ1 

as measured by the in-silico AML disease inhibition score. Patient 4006 (C) and 1126 

(D) are representative examples of profiles predicted to be resistant to JQ1 as measured 

by the in-silico AML disease inhibition score. Boxes highlighted in light green represent 

gene mutations leading to protein loss of function or knock-down contributing to drug 

sensitivity. Boxes highlighted in darker green represent gene mutations leading to protein 

gain of function or over-expression contributing to drug sensitivity. Boxes highlighted in 

purple represent gene mutations leading to loss of function or knock-down of proteins 

contributing to drug resistance, and boxes highlighted in dark blue represent gene mutations 

leading to protein gain of function or over-expression contributing to drug resistance. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article).
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Table 2

Statistical Summary of AML Patients’ Predicted Response to BET Inhibitor JQ1.

Sensitivity Specificity PPV NPV Accuracy

BET Inhibitor (JQ1) 96.67%
(95% CI: 92.2999.33)

64.29%
(95% CI: 42.3681.51)

94.38%
(95% CI: 87.3798.15)

81.82%
(95% CI: 48.2297.72)

93.00%
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