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Mitochondria generate most cellular energy and are targeted by
multiple pathogens during infection. In turn, metazoans employ
surveillance mechanisms such as the mitochondrial unfolded pro-
tein response (UPRmt) to detect and respond to mitochondrial dys-
function as an indicator of infection. The UPRmt is an adaptive
transcriptional program regulated by the transcription factor
ATFS-1, which induces genes that promote mitochondrial recovery
and innate immunity. The bacterial pathogen Pseudomonas aeru-
ginosa produces toxins that disrupt oxidative phosphorylation
(OXPHOS), resulting in UPRmt activation. Here, we demonstrate
that Pseudomonas aeruginosa exploits an intrinsic negative regu-
latory mechanism mediated by the Caenorhabditis elegans bZIP
protein ZIP-3 to repress UPRmt activation. Strikingly, worms lacking
zip-3 were impervious to Pseudomonas aeruginosa-mediated
UPRmt repression and resistant to infection. Pathogen-secreted
phenazines perturbed mitochondrial function and were the pri-
mary cause of UPRmt activation, consistent with these molecules
being electron shuttles and virulence determinants. Surprisingly,
Pseudomonas aeruginosa unable to produce phenazines and thus
elicit UPRmt activation were hypertoxic in zip-3–deletion worms.
These data emphasize the significance of virulence-mediated UPRmt

repression and the potency of the UPRmt as an antibacterial response.
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Metazoans differentiate pathogenic and commensal bacteria
in part by monitoring the integrity of essential intracellular

activities. For example, the opportunistic pathogen Pseudomonas
aeruginosa secretes multiple toxins that perturb host protein
synthesis and mitochondrial function (1–3). Interestingly, dis-
ruption of either process, independent of bacterial infection,
elicits immune response activation (4–7). P. aeruginosa secretes
multiple toxins capable of perturbing oxidative phosphorylation
(OXPHOS), including cyanide, siderophores, and phenazines,
which impair OXPHOS complex IV, host iron acquisition, and
electron transport, respectively (2, 3, 8, 9).
One mechanism by which cells respond to mitochondrial

dysfunction is by activating the mitochondrial unfolded protein
response (UPRmt), which is regulated by the bZIP protein
ATFS-1, a unique transcription factor that harbors both a mi-
tochondrial targeting (MTS) and nuclear localization (NLS)
sequence. ATFS-1 is efficiently imported into healthy mito-
chondria via its MTS and degraded in the mitochondrial
matrix. However, mitochondrial perturbations such as perturbed
proteostasis and OXPHOS impairment reduce mitochondrial
protein import, which in turn causes the accumulation of ATFS-
1 in the cytosol. ATFS-1 can then traffic to the nucleus via its
NLS. In the nucleus, ATFS-1 induces a transcriptional program
that includes a mitochondrial recovery program, as well as an
antibacterial response involving peptides and secreted lysozymes
that defend against bacterial pathogens (10, 11). The presence of
both the MTS and a NLS allows ATFS-1 to respond to mito-
chondrial import deficiency as a surrogate for OXPHOS function

and also serves as a mechanism to detect and defend against
pathogens that perturb mitochondrial function (12).

Results
P. aeruginosa Perturbs Mitochondrial Function and Impairs UPRmt

Activation. Using the UPRmt transcriptional reporter strains
hsp-6pr::gfp and hsp-60pr::gfp, in which GFP expression is regu-
lated by mitochondrial chaperone promoters, we sought to better
understand the relationship between P. aeruginosa exposure,
mitochondrial dysfunction, and UPRmt activation. Exposure of
Caenorhabditis elegans to P. aeruginosa has been shown to result
in modest activation of hsp-6pr::gfp (12, 13). Consistent with the
pathogen causing mitochondrial dysfunction, mitochondrial
membrane potential was depleted within 3 h of exposure to P.
aeruginosa, and oxygen consumption was also impaired (Fig. 1 A
and B and SI Appendix, Fig. S1A).
Diverse forms of mitochondrial stress are known to cause

UPRmt activation. For example, when worms were raised on the
nonpathogenic food source Escherichia coli (OP50), impairment
of mitochondrial genome replication due to ethidium bromide
(EtBr) exposure resulted in hsp-6pr::gfp activation (Fig. 1C) (4).
Surprisingly, when worms were exposed to both P. aeruginosa
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and EtBr, hsp-6pr::gfp was impaired (Fig. 1C). Similarly, P. aer-
uginosa infection impaired UPRmt activation caused by the clk-
1(qm30) or isp-1(qm150) mutant alleles, which impair ubiqui-
none biosynthesis and OXPHOS, respectively (14) (Fig. 1 D and
E and SI Appendix, Fig. S1B). Interestingly, UPRmt repression
required the P. aeruginosa two-component regulator GacA (Fig.
1 C–E), which is required for the expression of most virulence
genes in P. aeruginosa (15–17). Together, these data suggest that
P. aeruginosa evolved a mechanism to impair the UPRmt during
infection.

ZIP-3 Negatively Regulates UPRmt Activation. We next sought to
identify the mechanism(s) by which the UPRmt is inhibited
during P. aeruginosa exposure by focusing on host factors. We
previously found that ATFS-1 regulates expression of the gene
encoding the bZIP transcription factor ZIP-3 by binding the zip-3
promoter (18) and mediating the induction of zip-3 mRNA
transcription during mitochondrial dysfunction caused by spg-7
(RNAi), clk-1 mutation, and paraquat treatment (SI Appendix,
Fig. S1 C–E) (4). zip-3 was also transcriptionally induced in a
strain expressing constitutively active ATFS-1, which harbors a
mutation that impairs the MTS and promotes its nuclear accu-
mulation (11, 19) (SI Appendix, Fig. S1F). Importantly, the bZIP
domain of ZIP-3 was one of four C. elegans bZIP domains pre-
viously found to dimerize with the bZIP domain of ATFS-1
in vitro (20), suggesting heterodimer formation between ATFS-
1 and ZIP-3 may affect ATFS-1 function.
Intriguingly, when raised on E. coli, zip-3(gk3164) loss-of-

function mutants displayed modest UPRmt activation (Fig. 2A
and SI Appendix, Fig. S2A), suggesting that ZIP-3 is either re-
quired for mitochondrial function or functions as a negative reg-
ulator of activated ATFS-1. Impressively, the UPRmt was strongly
activated in zip-3(gk3164) worms raised on several pathogenic P.
aeruginosa strains within 12 h (Fig. 2A and SI Appendix, Fig. S2B),
unlike in wild-type worms (21). Moreover, while UPRmt activation
in clk-1(qm30) worms was repressed during P. aeruginosa infection

(Fig. 1D and SI Appendix, Fig. S1B), clk-1(qm30);zip-3(gk3164)
worms displayed robust activation of the UPRmt following 48 h P.
aeruginosa exposure (Fig. 2B). These data demonstrate that ZIP-3
is required for UPRmt inhibition during P. aeruginosa infection.
We next sought to determine the physiological impact of

UPRmt inhibition by P. aeruginosa during infection. Impressively,
zip-3(gk3164) worms survived significantly longer than wild-type
worms during P. aeruginosa exposure (Fig. 2C), in a manner
dependent on atfs-1 (Fig. 2C). Furthermore, the prolonged sur-
vival of zip-3(gk3164) worms on P. aeruginosa was comparable to
the prolonged survival conferred by the constitutively active al-
lele atfs-1(et15) (SI Appendix, Fig. S2C). As with the atfs-1(et15)
strain (12), the intestinal colonization of P. aeruginosa was re-
duced in zip-3(gk3164) relative to wild-type worms, which also
required atfs-1 (Fig. 2 D and E). Combined, these data indicate
that zip-3–deletion worms are resistant to P. aeruginosa in a
manner dependent on UPRmt activation, suggesting that zip-3
negatively regulates atfs-1.

ZIP-3 Stability Is Regulated by the Ubiquitin Ligase WWP-1 and
Proteasomal Degradation. To better understand the mechanism
by which ZIP-3 is regulated and impacts the UPRmt, transgenic
strains were generated in which GFP or a ZIP-3::GFP fusion
protein was expressed via the zip-3 promoter. GFP was expressed
at high levels, indicating that the zip-3 promoter was active (Fig.
3A). However, ZIP-3::GFP was difficult to detect, suggesting
that the fusion protein has a relatively short half-life (Fig. 3A).
Impressively, inhibition of a core proteasomal subunit via pbs-1
(RNAi) caused ZIP-3::GFP accumulation within intestinal nu-
clei (Fig. 3B), indicating that in addition to transcriptional reg-
ulation, ZIP-3 is also regulated by protein stability.
We next generated a strain expressing GFP::ZIP-3 from the

native locus via CRISPR-Cas9. Importantly, GFP::ZIP-3 pre-
vented UPRmt activation during exposure to P. aeruginosa, unlike
zip-3 deletion, indicating that the fusion protein was functional (SI
Appendix, Fig. S3A). To identify potential ubiquitin ligases that
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Fig. 1. P. aeruginosa perturbs mitochondrial function and represses the UPRmt. (A) Images of TMRE-stained wild-type worms following 15 h of exposure to E.
coli, P. aeruginosa, or P. aeruginosa-ΔgacA. (Scale bar, 0.1 mm.) (B) Oxygen consumption rates (OCRs) of wild-type worms following 12 h of exposure to E. coli,
P. aeruginosa, or P. aeruginosa-ΔgacA. n = 10; error bars indicate mean ± SD; ****P < 0.03 (Student’s t test). (C) hsp-6pr::gfpworms on E. coli, P. aeruginosa, or
P. aeruginosa-ΔgacA exposed to a control or 30 μg/mL ethidium bromide. Images were obtained 27 h after exposure. (Scale bar, 0.1 mm.) (D) clk-1(qm30);hsp-
60pr::gfpworms exposed to E. coli, P. aeruginosa, or P. aeruginosa-ΔgacA for 48 h. (Scale bar, 0.1 mm.) (E) isp-1(qm150);hsp-60pr::gfpworms exposed to E. coli,
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regulate GFP::ZIP-3 degradation, we initially examined previous
transcriptional profiling data of those mRNAs induced during
mitochondrial dysfunction (4). Of the seven ubiquitin ligases ex-
amined (SI Appendix, Table S6), only wwp-1(RNAi) caused an
accumulation of GFP::ZIP-3 within intestinal nuclei (Fig. 3B).
WWP-1 is a well-conserved HECT domain ubiquitin ligase with
over 20 known substrates in mammals (22). WW domain ubiquitin
ligases bind specifically to PY motifs (-PPxY-) within their sub-
strates. Interestingly, ZIP-3 harbors a single PY motif (-PPPY-)
(Fig. 3C), suggesting that WWP-1 interacts directly with ZIP-3 to
ubiquitinate and target it for degradation (23, 24). To examine the
role of the PY motif, the -PPxY- motif in GFP::ZIP-3 was altered
to either -PPxA- or -PPxF- via CRISPR. Furthermore, like wwp-1
(RNAi), either amino acid substitution caused accumulation of
GFP::ZIP-3 in the intestinal nuclei (SI Appendix, Fig. S3B). Com-
bined, these data indicate that ZIP-3 is recognized and ubiquitinated
by WWP-1 and degraded by proteasomes.
Importantly, ZIP-3 stabilization caused by either wwp-1(RNAi)

or ZIP-3PPxA was sufficient to repress clk-1(qm30)–induced
UPRmt activation (Fig. 3D and quantified in SI Appendix, Fig.
S3C), consistent with ZIP-3 being a negative regulator of ATFS-1.
We next examined the impact of ZIP-3 stabilization on UPRmt

activation caused by the constitutively active allele atfs-1(et15).
ATFS-1et15 harbors an impaired MTS, which causes nuclear ac-
cumulation of ATFS-1 and constitutive activation of the UPRmt

independent of mitochondrial stress (19). Impressively, ZIP-3PPxA

reduced UPRmt activation in atfs-1(et15) worms (Fig. 3E and
quantified in SI Appendix, Fig. S3D), indicating that ZIP-3 inhibits
the activated form of ATFS-1, rather than perturbing mitochon-
drial function, consistent with ZIP-3 harboring an NLS and being
localized in the nucleus (Fig. 3B and SI Appendix, Fig. S3B).

ZIP-3 Limits a Subset of ATFS-1–Dependent Transcripts That Confer
Resistance to P. aeruginosa. Because the resistance of zip-3–
deletion worms to P. aeruginosa required atfs-1, we identified the
atfs-1–regulated transcripts increased in zip-3(gk3164) worms
exposed to P. aeruginosa (25), as they potentially comprise genes
that confer pathogen resistance. Following 18 h of P. aeruginosa
exposure, 1,082 mRNAs were induced in zip-3(gk3164) worms
relative to wild-type worms (SI Appendix, Fig. S4A and Table
S1). Of those, the induction of 108 mRNAs required atfs-1 during
mitochondrial dysfunction caused by spg-7(RNAi) (26) (SI Ap-
pendix, Fig. S4 B and C and Tables S2 and S3), consistent with
ZIP-3 inhibiting activated ATFS-1. These mRNAs include compo-
nents involved in mitochondrial recovery (Fig. 3 F and G), innate
immunity (Fig. 3 H and I), iron acquisition (Fig. 3J), and fat
metabolism (Fig. 3K). Of note, many of the mRNAs altered in
zip-3(gk3164) worms exposed to P. aeruginosa were not affected
by atfs-1 deletion during mitochondrial stress (SI Appendix, Fig.
S4C), indicating ZIP-3 has roles independent of ATFS-1 and the
UPRmt. Furthermore, zip-3(gk3164);atfs-1(cmh15) worms de-
veloped slower than either the zip-3(gk3164) or atfs-1(cmh15)
mutants alone, also consistent with atfs-1–independent roles for
zip-3 (SI Appendix, Fig. S5).

C. elegans Responds to P. aeruginosa–Produced Phenazines to
Activate the UPRmt. Next, we took advantage of the robust UPRmt

activation that occurred in zip-3(gk3164) worms exposed to P.
aeruginosa to identify the pathogen-produced molecules that per-
turb mitochondrial function and activate the UPRmt. Interestingly,
P. aeruginosa unable to produce phenazines (P. aeruginosa-Δphz)
(27, 28) did not activate the UPRmt in worms lacking zip-3 (Fig.
4A). Moreover, phenazine treatment was sufficient to perturb mi-
tochondrial function (Fig. 4B) and activate the UPRmt (Fig. 4C) in
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worms raised on nonpathogenic E. coli, consistent with phenazines
being redox-active compounds that can perturb OXPHOS (3, 29).
Importantly, worms expressing degradation-resistant ZIP-3Y167A

were unable to activate the UPRmt upon phenazine exposure (Fig.
4C), consistent with ZIP-3 repressing UPRmt activation during P.
aeruginosa exposure. Of note, P. aeruginosa strains unable to pro-
duce cyanide or multiple siderophores still caused UPRmt activa-
tion, suggesting that in this assay, the most potent mitochondrial
toxins are phenazines (SI Appendix, Fig. S6).
Last, we sought to gain insight into the relationship between

virulence-mediated UPRmt repression (Fig. 1) and the P.
aeruginosa-produced phenazines that perturb mitochondrial
function and activate the UPRmt. One possibility is that UPRmt

repression increases phenazine potency by impairing a mito-
chondrial stress response. However, wild-type worm survival was
similar upon exposure to wild type or P. aeruginosa-Δphz (Fig.
4D), suggesting the associated mitochondrial perturbation (Figs.
1A and 4B) did not decrease survival. Alternatively, UPRmt re-
pression may prevent the activation of an antimicrobial response
initiated in response to phenazine-dependent mitochondrial
perturbation (Fig. 4C).

To further examine these models, wild-type and zip-3–deletion
worms were exposed to wild type or P. aeruginosa-Δphz. Sur-
prisingly, zip-3(gk3164) worms were not resistant to P.
aeruginosa-Δphz as they were to wild-type P. aeruginosa. In fact,
the pathogenic strain unable to produce phenazines was con-
siderably more toxic to worms lacking zip-3 (Fig. 4D). We next
examined the impact of P. aeruginosa-Δphz in atfs-1(cmh15)
worms that cannot activate the UPRmt. Consistent with the
UPRmt regulating an antibacterial response, atfs-1(cmh15)
worms were more sensitive to P. aeruginosa than wild-type worms
(Fig. 4E). However, survival of atfs-1(cmh15) worms was similar
when exposed to P. aeruginosa or P. aeruginosa-Δphz (Fig. 4E).
These findings suggest that the mitochondrial dysfunction caused
by phenazines allows the host to initiate an antimicrobial re-
sponse to prolong survival. However, in the absence of phena-
zines, the host is unable to engage the UPRmt, resulting in
decreased survival.

Discussion
The interactions between host cells and P. aeruginosa that fa-
cilitate pathogen detection and host response remain unclear.
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worms on control or wwp-1(RNAi) and clk-1(qm30);zip-3Y167A;hsp-60pr::gfp on control or zip-3(RNAi). (Scale bar, 0.1 mm.) Quantification is given in SI Ap-
pendix, Fig. S3C. (E) atfs-1(et15);hsp-60pr::gfp or atfs-1(et15);zip-3Y167A;hsp-60pr::gfp on control or zip-3(RNAi). (Scale bar, 0.1 mm.) Quantification is given in SI
Appendix, Fig. S3D. (F–K) tsfm-1, dnj-10, lys-3, abf-2, ftn-1, and cpt-4 transcripts as determined by qRT-PCR in wild-type or zip-3(gk3164) worms on P. aeruginosa
(n = 3, ±SD); *P < 0.05 (Student’s t test). RFU, relative fluorescence unit.

Deng et al. PNAS | March 26, 2019 | vol. 116 | no. 13 | 6149

CE
LL

BI
O
LO

G
Y

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1817259116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1817259116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1817259116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1817259116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1817259116/-/DCSupplemental


Our findings indicate that C. elegans detects P. aeruginosa
through phenazine-mediated disruption of OXPHOS and re-
sponds by initiating the UPRmt via the transcription factor
ATFS-1. However, the P. aeruginosa virulence response engages
a host negative regulatory mechanism. ZIP-3 impairs active
ATFS-1 and the associated mitochondrial-protective and anti-
bacterial response, limiting a pathway that impairs intestinal
colonization and prolongs host survival.
Studies in multiple organisms have suggested that phenazines

are virulence factors that impair electron transport and mito-
chondrial function (30, 31). However, phenazines serve multi-
ple functions for Pseudomonas species independent of
infection. Perhaps most intriguing, phenazines are required to
maintain redox balance in Pseudomonas biofilms where the in-
ternal bacteria are hypoxic (32, 33). Perhaps similarly, the P.
aeruginosa lawn used in the C. elegans slow-killing assay is hyp-
oxic as well (34). In both scenarios, phenazines serve as electron
shuttles to maintain redox balance throughout the biofilm by fa-
cilitating the transfer of electrons to available oxygen. As electron
shuttles, phenazines can also impair the eukaryotic electron
transport chain.
Importantly, P. aeruginosa lacking phenazines remains patho-

genic toward C. elegans and in the absence of ZIP-3 is considerably
more toxic. We propose that the mitochondrial perturbation

caused by phenazines is detected by ATFS-1 via mitochondrial
surveillance, which in turn activates a response to promote mito-
chondrial function and eliminate the bacteria. However, P. aeru-
ginosa exploits the host negative regulator ZIP-3 to repress UPRmt

activation. Consistent with this model, UPRmt repression is de-
pendent on the pathogenicity of P. aeruginosa (Fig. 1 D and E),
while the phenazines that perturb mitochondrial function and
activate the UPRmt are secreted independent of the virulence
response (Fig. 4E) (3, 27, 29, 31).
We have shown that ZIP-3 is a labile negative regulator of

ATFS-1 that is degraded by proteasomes in a manner dependent
on the ubiquitin ligase WWP-1. ZIP-3 stabilization is sufficient
to inhibit the UPRmt during mitochondrial dysfunction by
impairing nuclear ATFS-1, likely by forming a heterodimer (20).
However, it will be interesting to elucidate the inputs that de-
termine ZIP-3 protein stability during mitochondrial stress.
WWP-1 or ZIP-3 may receive additional inputs that either
stimulate or impair ZIP-3 degradation. PY domain phosphory-
lation can influence interactions with WW domain ubiquitin li-
gases (35). Our data suggest that phosphorylation of the PY
domain is required for ZIP-3 degradation as altering the PY
domain from -PPPY- to -PPPF- within ZIP-3 prevented degra-
dation (SI Appendix, Fig. S3B). However, the stimuli or potential
tyrosine kinase or phosphatase remain to be identified. It will
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Fig. 4. P. aeruginosa-secreted phenazines allow worms to detect the pathogen and initiate a protective antibacterial response. (A) zip-3(gk3164);hsp-6pr::gfp
worms on wild-type P. aeruginosa or P. aeruginosa-Δphz. (Scale bar, 0.1 mm.) (B) Representative images of TMRE-stained wild-type worms on E. coli treated
with DMSO or phenazines. (Scale bar, 0.1 mm.) (C) hsp-6pr::gfp or zip-3Y167A;hsp-6pr::gfp worms raised on E. coli treated with DMSO or phenazines. (Scale bar,
0.1 mm.) (D) Survival of wild-type and zip-3(gk3164) worms exposed to P. aeruginosa or P. aeruginosa-Δphz. Statistics are given in SI Appendix, Table S5. (E)
Survival of wild-type and atfs-1(cmh15) worms exposed to P. aeruginosa or P. aeruginosa-Δphz. Statistics are given in SI Appendix, Table S5. (F) Schematics of
the interactions between P. aeruginosa, mitochondrial perturbation, and UPRmt repression via ZIP-3.
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also be exciting to determine the function of ZIP-3–mediated
negative regulation in the absence of pathogens as multiple con-
sequences of prolonged UPRmt activation have been observed,
including impaired development (19), loss of dopamine neurons
(36), and the propagation of deleterious mitochondrial genomes
(11, 37), indicating that UPRmt activation must be strictly regulated
by both positive and negative regulators.

Materials and Methods
The full details of worm strains and bacteria strains are described in SI Ap-
pendix. The procedures for tetramethylrhodamine, ethyl ester (TMRE)

staining, the oxygen consumption assay, qPCR, RNA sequencing combined
with phenazine treatment, P. aeruginosa slow-killing assays, and P. aerugi-
nosa intestinal accumulation assays are described in SI Appendix. Image and
statistical analysis is also described in SI Appendix.
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