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Abstract

The dual specificity phosphatase slingshot homolog 1 (SSH1) contributes to actin remodeling by 

dephosphorylating and activating the actin-severing protein cofilin. The reorganization of the actin 

cytoskeleton has been implicated in chronic hypertension and the subsequent mechano-adaptive 

rearrangement of vessel wall components. Therefore, using a novel Ssh1−/− mouse model, we 

investigated the potential role of SSH1 in angiotensin II (Ang II)-induced hypertension, and 

vascular remodeling. We found that loss of SSH1 did not produce overt phenotypic changes and 

that baseline blood pressures as well as heart rates were comparable between Ssh1+/+ and Ssh1−/− 

mice. Although 14 days of Ang II treatment equally increased systolic blood pressure in both 

genotypes, histological assessment of aortic samples indicated that medial thickening was 

exacerbated by the loss of SSH1. Consequently, quantitative real-time PCR analysis of the 

transcripts from Ang II-infused animals confirmed increased aortic expression levels of 

fibronectin, and osteopontin in Ssh1−/− when compared to wild type mice. Mechanistically, our 

data suggest that fibrosis in SSH1 deficient mice occurs by a process that involves aberrant 

responses to Ang II-induced TGFβ1. Taken together, our work indicates that Ang II-dependent 

fibrotic gene expression and vascular remodeling, but not the Ang II-induced pressor response, are 

modulated by SSH1-mediated signaling pathways and SSH1 activity is protective against Ang II-

induced remodeling in the vasculature.

Hypertension is a pathological state characterized by increased humoral signaling and 

chronically elevated strain on the cellular components of the arterial wall. One of the 

consequences of hypertension is the induction of gene expression related to inflammation, 

fibrosis, and hypertrophy in vascular cells (1–3). Although inflammation may facilitate 

hypertension-related cardiovascular complications, the molecular pathways that result in 

hypertension-induced inflammation, fibrosis, and hypertrophy are incompletely understood.
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During hypertension vascular smooth muscle cells (VSMCs), a main component of the 

vessel wall, adapt to their altered mechanical and chemical environment by undergoing 

phenotypic modulation. Specifically, in Angiotensin II (Ang II)-induced hypertension, 

vascular remodeling is associated with increased activity of the transcription factors nuclear 

factor kappa B (NF-κB)(1, 4, 5), activator protein (AP-1) (6, 7), and CRE-binding protein 

(CREB) (8, 9) leading to the upregulation of monocyte chemoattractant protein 1 (MCP-1) 

(2), transforming growth factor β (TGFβ) (10, 11), osteopontin (OPN) (12–14), fibronectin 

(FN1) (11, 15–17) and collagens (COL) (16, 18) in VSMCs.

The actin cytoskeleton is a dynamic network that regulates several key cellular processes 

such as contraction, migration, rheology, proliferation, mechanotransduction, and gene 

expression (19–22). Importantly, the actin cytoskeleton has also been shown to participate in 

the cellular responses initiated by Ang II (23, 24) and mechanotransduction (25, 26). The 

actin-binding protein cofilin and its upstream activator slingshot phosphatase (SSH1) are key 

regulators of actin dynamics (27–29). Indeed, our previous work has shown that, in VSMCs, 

this pathway is required for platelet-derived growth factor (PDGF)-induced migration (30, 

31) and adaptation to mechanical strain (25). Furthermore, in the vasculature SSH1 

expression is upregulated during neointima formation (32), dysregulated in a Fbln4 −/− 

model of aortic aneurysm formation (33), and promotes the transition of blood monocytes 

towards a hypermigratory proatherogenic phenotype (34). SSH1 has also been implicated in 

inflammatory signaling via regulation of NF-κB activity in endothelial (35), immune (36) 

and epithelial cells (37). Therefore, we hypothesize that SSH1 plays a key role in vascular 

remodeling during Ang II-induced hypertension.

With the generation of a Ssh1−/− mouse model, we demonstrate that loss of SSH1 

exacerbates Ang II-induced fibrosis by upregulating the expression of OPN, and FN1 in the 

aorta. Our data also indicates that SSH1 deficient cells display an abnormal response to 

TGFβ1 downstream of Ang II-mediated signaling.

Materials and Methods

Generation of Ssh1−/− Mice

Mice with a gene trap inserted into the second intron of the Ssh1 gene were produced by 

Taconic Biosciences. Briefly, Ssh1 −/− mice were generated from an OmniBank clone of 

embryonic stem cells made by Lexicon Pharmaceuticals (38). These 129/SvEv stem cells 

were injected into C57BL/6 albino blastocysts which were then transferred into the uterus of 

a host female. Heterozygote founders were produced and further bred with C57BL/6 mice. 

Ssh1 −/− mice were back-crossed at least seven generations and wild type littermates were 

used as controls. Mice used in the following experiments were 4–6 months of age. Animals 

were conventionally housed in the Division of Animal Research facilities at Emory 

University or the Atlanta Veterans Affairs Medical Center and were given regular chow and 

water ad libitum. All procedures using animals were reviewed and approved by both the 

Emory University and the Atlanta Veterans Affairs Medical Center Institutional Animal Care 

and Use Committees and were performed according to National Institutes of Health criteria.
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Blood Pressure Measurement and Osmotic Mini-pump Implantation

Ssh1+/+ and Ssh1−/− mice were implanted with telemetry devices to measure baseline blood 

pressure and heart rate, as previously described (39). In short, mice were implanted with 

sterile PA-C10 blood pressure probes (Data Sciences International) and then allowed to fully 

recover for 7 days prior to the initiation of data collection. Blood pressures were then 

monitored for 10 s each minute for a 24-h period. Additionally, systolic blood pressure was 

measured by computer-assisted tail cuff transmission photoplethysmography, (Visitech 

Systems) in Ssh1+/+ and Ssh1−/− mice infused with Ang II. To establish baseline blood 

pressure mice were habituated to the procedure for 4–5 days and only the last day’s 

measurements are included in the results. Average systolic blood pressure was calculated 

from the arithmetic mean of ten successive measurements. In experiments involving Ang II-

induced hypertension, mice were anesthetized and osmotic mini-pumps (Azlet) containing 

[Asn1, Val5]-Ang II (Sigma) (750 μg/kg/day) or 0.9% saline were subcutaneously implanted 

into the mice, as previously described (40, 41). Blood pressure was measured over 14 days. 

Aortas from these animals were later harvested for RNA, protein, or histology.

Vascular Contractility and Stiffness Measurements

Vascular contractility and stiffness was measured as previously described (42, 43). In short, 

Ssh1 +/+ and Ssh1 −/− mice were euthanized by CO2 asphyxiation and their aortas were 

quickly excised and cut into ~5mm rings. The rings were then mounted on hooks that were 

attached to a Harvard Apparatus Differential Capacitor Force Transducer and resting tension 

of each aorta was set at 15 mN. Contractility was assessed by generating concentration 

response curves to potassium chloride (KCL, 0–80 mM) and phenylephrine (PE, 0.1 nM to 

10 μM). Data were obtained using Powerlab hardware (AD Instruments) and was analyzed 

with LabChart software (AD Instruments). Generated forces were expressed as percentages 

of the maximal force produced in response to KCL or PE. In studies assessing aortic 

stiffness, rings were mounted between two wires in an organ bath and maximally dilated 

with 30 μM sodium nitroprusside. The distance between the wires was increased until a 

deflection in the force measurement was observed. The distance between the two wires was 

then further increased in 10 μm increments while tension was monitored.

RNA Isolation and Real-time PCR

Whole aortas were harvested from CO2 euthanized mice and adherent fat was carefully 

removed. Aortas were homogenized with a motorized rotor/stator device and RNA was 

purified from the resulting homogenate using the RNeasy kit (Qiagen). First-strand cDNA 

synthesis was performed using 1 μg of total RNA, random 15-mer primers and Superscript II 

reverse transcriptase (Invitrogen) following the manufacturer’s instructions. Real-time 

reactions included Platinum Taq DNA polymerase (Invitrogen) and SYBR Green 

(Invitrogen). Mouse specific primers to detect Ssh1 (Qiagen), Ssh2 (Qiagen), TGFβ1 

(Qiagen), COL1α1 (Forward −5’ CCTAAGGGT CCCCAATGGTGAGACG 3’; Reverse- 

5’-GGGGGTTGGGACAGTCCAGTTCTTC 3’), FN1 (Forward- 5’ 

CTCAACCTCCCTGAAA CGGCCAACT 3’; Reverse- 5’ 

TCTTGGGGTGCCAGTGGTCTCTTGT 3’), and OPN (Forward- 5’ 

CTTTTGCCTATTTGGCATTGCCTCCTC 3’; Reverse- 5’ 
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CACAGAATCCTCGTTCTCTGCATGGT 3’) were used in the subsequent real-time 

reactions and message expression was quantified using the LightCycler Instrument (Roche 

Applied Science). Data analysis was performed using the mak3 module of the qpcR software 

library in the R environment (44, 45).

Western Blotting

Mouse aortas were harvested, cleaned of fat and connective tissue, and then flash frozen in 

liquid nitrogen. Frozen aortas were ground into a fine powder using a pre-chilled mortar and 

pestle. Proteins were extracted in Hunters buffer (25 mmol/L HEPES, 150 mmol/L KCl, 1.5 

mmol/L MgCl2, 1 mmol/L EGTA, 10 mmol/L Na-pyrophosphate, 10 mmol/L NaF, 1% Na 

deoxycholate, 1% Triton X 100, 0.1% SDS, 10% Glycerol, Na-orthovanadate and protease 

inhibitors) from there lysates sonicated and cleared at 10,000 x g for 5 minutes. Proteins 

were separated using SDS-PAGE and transferred to Immobilon-P polyvinylidene difluoride 

(PVDF) membranes (Millipore), blocked with 5% non-fat dairy milk, and incubated with 

primary antibodies to SSH1 (Cell Signaling Cat #13578), p-cofilin ser-3 (Cell signaling Cat 

#3311), cofilin (Gentex Cat# GTX102156), OPN (R&D # AF808), TGFβ1 (Cell Signaling 

#3711), TGFβRII (Santa Cruz Cat# sc-17799) smooth muscle 22 (SM22) (Abcam 14106) or 

β-actin (Sigma Cat #A5441). Subsequently, blots were incubated with horseradish 

peroxidase-conjugated secondary antibodies and proteins were detected by enhanced 

chemiluminescence (ECL, Millipore). Images were acquired using a Carestream Molecular 

Imaging (Carestream) device. Band intensity was quantified by densitometry using Image J 

software (NIH).

Histology and Morphometric Assessment

Mice were euthanized using CO2 and tissues were pressure perfused with saline and fixed 

with 10% buffered formalin. Whole aortas were excised, paraffin embedded, and cut into 

5μm sections. Aortas were stain with hematoxylin and eosin for morphometric analysis and 

stain with Mason’s Trichrome to evaluate fibrotic regions of the vessel. Images were 

acquired with the NanoZoomer SQ (Hamamatsu) slide scanner using a 40x objective and 

NDP.scan software. Morphometric measurements of the aorta were performed using Image J 

(NIH) and NDP.view2 software (Hamamatsu). Image analysis included aortas from 3–6 

animals per treatment group and 3–4 sections per aorta.

For immunofluorescent imaging sections were blocked and then incubated with smooth 

muscle α2-actin (α-SMA) (Sigma Cat# A5228), calponin 1 (CCN1) (Sigma Cat# 231-R1), 

or FN1 (Millipore Cat# AB2033) primary antibodies overnight at 4°C. The sections were 

washed and incubated with species specific secondary antibodies conjugated with Alexa 

Fluor 598 (Jackson Immunoresearch Cat# 711–585-152). Sections treated with secondary 

antibodies alone did not show specific staining. Confocal micrographs were acquired with a 

Zeiss LSM 510 META Laser Scanning Confocal Microscope System using a 20x air 

objective lens and Zeiss ZEN acquisition software. When comparing sections from different 

experimental groups, all image threshold settings of the confocal microscope remained 

constant. Image analysis included aortas from 3–5 animals per treatment group and 3–4 

sections per aorta. Mean fluorescence intensity and percent area were calculated using 

Image J software (NIH).
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Statistics

Results are expressed as means ± SEM. Differences among groups were analyzed using 

student’s t-test and two-way analysis of variance (ANOVA), followed by the Bonferroni 

post-hoc test. A value of P<0.05 was considered statistically significant.

Results

Characterization of C57BL/6J-SSHGt(OST146683)Lex Mice

To examine the contribution of SSH1 to vascular homeostasis and pathology, we generated a 

global knock out mouse using an embryonic stem cell clone with a gene trap construct 

inserted into the second intron of the Ssh1 gene (chromosome 5 NCBI Gene ID: 231637) 

(Supplemental Figure 1A). The successful disruption of the target gene was initially 

confirmed by evaluating mRNA expression in the cerebellum and bladder via RT-PCR (data 

not shown). Lack of SSH1 phosphatase did not result in increased embryonic or perinatal 

lethality (Supplemental Figure 1B) and, compared to their littermates, Ssh1−/− mice grow 

with normal weight gain (Supplemental Figure 1C) and without obvious abnormalities in 

their general appearance.

Loss of Ssh1 mRNA and protein expression in the aorta was verified by quantitative real-

time PCR and western blot. Ssh1 mRNA levels were reduced by approximately 90% in 

aortic Ssh1−/− samples when compared to samples from Ssh1+/+ (Figure 1A). Importantly, 

Ssh1 deletion did not significantly alter the expression of the known paralog gene Ssh2 in 

the aorta (Figure 1A). At the protein level, SSH1 expression was undetectable in aortic 

samples harvested from Ssh1−/− mice, while protein samples from Ssh1+/+ aortas contained 

a band that migrated around 130 kDa, which is the predicted molecular weight of SSH1 

(Figure 1B). Using phospho-specific antibodies, we confirmed that aortas from Ssh1−/− mice 

have significantly more phosphorylated, and therefore inactive cofilin than littermate 

controls (Figure 1C). These data are consistent with loss of cofilin phosphatase activity.

Despite the loss of the phosphatase activity, histological examination of aortas from 

unchallenged mice did not reveal any overt structural alterations. Morphometric analysis of 

the hematoxylin and eosin stained sections indicate that parameters such as lumen area, 

medial area, total vessel area and media to lumen ratio are equivalent in Ssh1+/+ and Ssh1−/− 

mice (Figure 2A and B). Additionally, immunofluorescent images of aortic sections show 

comparable expression of the differentiation markers α-SMA and CNN1 (Supplemental 

Figure 2) indicating that VSMC differentiation was unchanged in Ssh1−/− mice in vivo.

Previously, it has been established that during aging intrinsic stiffening of vascular smooth 

muscle cells, is due to changes in the actin cytoskeleton and contributes to aortic stiffness 

(46). Therefore, we determined if SSH1 deficiency alters the mechanical and contractile 

properties of the aorta. Isometric forces were measured in isolated aortic rings exposed to 

increasing concentrations of the α-adrenergic agonist, PE or after depolarization with 

exogenous KCL. Despite lowered activity of the actin severing protein cofilin, aortic 

segments from Ssh1−/− mice did not display significant differences in maximal contraction 

or force generation in response to KCL (Figure 3A) or PE (Figure 3B). Additionally, when 

aortic segments were incrementally elongated, force generation was also unaltered by loss of 
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the phosphatase (Figure 3C). These results indicate that the mechanical and contractile 

properties of the vessels were unchanged by loss of SSH1 expression in basal conditions.

Simultaneously, we used telemetry to evaluate the impact of SSH1 depletion on blood 

pressure, heart rate and activity levels. Data from a 24h cycle demonstrates that loss of the 

phosphatase does not significantly alter the mean arterial pressure (Figure 4A), heart rate 

(Figure 4B), or activity levels (Figure 4C). Taken together, our data indicate that the 

depletion of SSH1 phosphatase and the concomitant decrease in cofilin activity do not alter 

aortic architecture, blood pressure or heart rate in this unchallenged mouse model.

SSH1 Depletion Does Not Alter Angiotensin II-induced Hypertension

Since cytoskeletal reorganization has been implicated in hypertension and vascular 

inflammation (19, 23, 24), and SSH1 phosphatase regulates stimulus-dependent actin 

remodeling along with inflammatory signaling in vitro (25, 30, 31, 35, 36), we decided to 

evaluate the impact of SSH1 depletion on Ang II-induced hypertension and vascular 

remodeling. First, we examined the consequences of SSH1 depletion on Ang II-induced 

hypertension using computer-assisted tail cuff transmission photoplethysmography. Blood 

pressure was measured at 0, 7, and 14 days post implantation of Ang II or saline-filled 

osmotic minipumps. After 7 days of Ang II treatment and throughout the course of the 

experiment, we observed significant increases in systolic, diastolic, and mean arterial 

pressure in both groups of animals (Table 1). Additionally, after seven days of Ang II 

systolic blood pressure was slightly elevated in Ssh1−/− mice when compared with wildtype 

controls; however, mean arterial pressure and diastolic blood pressure were comparable 

between both genotypes (Table 1).

Angiotensin II-induced Vascular Remodeling and Fibrosis Are Increased in SSH1 Deficient 
Mice

Dynamic regulation of the actin cytoskeleton plays a key role in vascular remodeling in 

response to hypertension (47, 48). Thus, we examined if there were changes in the aortic 

structure and composition between Ssh1+/+ and Ssh1−/− animals after 14 days of Ang II 

treatment. Aortic sections were stained for morphometric analysis and fibrosis within the 

vascular wall with hematoxylin and eosin (Supplemental Figure 3) or Mason’s Trichrome 

(Figure 5A), respectively. Predictably, Ang II treatment increased the media to lumen ratio 

in both genotypes when compared to saline controls (Figure 5B). Interestingly, the Ang II-

mediated changes in media to lumen ratio were further increased in Ssh1−/− mice (Figure 

5B). Ang II treatment also significantly increased the percentage of medial fibrotic staining 

when compared to controls in both groups (Figure 5C). In agreement with the increase in 

aortic hypertrophy, medial fibrosis was also exacerbated by the loss of SSH1 (Figure 5C).

Angiotensin II Induces Expression of SSH1 Phosphatase and Loss of SSH1 Potentiates 
Vascular Fibrotic Gene Expression

Consistent with an increase in vascular fibrosis after Ang II treatment, aortas from Ssh1−/− 

mice displayed marked increases in Fn1 mRNA expression (Figure 6A) and protein 

deposition (Figure 6B) when compared wildtype mice. Additionally, AngII-induced OPN 

mRNA and protein levels were exacerbated in the aortas of mice deficient in SSH1(Figure 
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7A-C). Interestingly and in agreement with the idea that its expression limits vascular 

fibrosis, Ssh1 mRNA expression was considerably increased in wild type animals after Ang 

II treatment (Supplemental Figure 4). In contrast, AngII-induced ColIa1 mRNA and protein 

deposition were comparable between genotypes (Figure 8A and B). Consistent with the fact 

that collagen I expression is a major contributor to aortic stiffness (49), the mechanical 

properties of the SSH1 deficient aortas were unchanged in the two-week experimental 

period when compared to wild type animals (Supplemental Figure 5).

SSH1 Deficiency Amplifies TGFβ1-induced Fibrotic Gene Expression

The fact that Ssh1−/− mice preserve vascular integrity and their arteries have similar 

mechanical properties than wild type animals suggested to us that SSH1 deficiency is 

unlikely to affect the strain within the vessel wall and that the exacerbation of Ang II-

induced fibrotic gene expression may be the consequence of an intrinsic differential 

response to Ang II-initiated signaling.

The fibrotic response observed in the aortas of Ssh1−/− animals resembles the activation of 

the TGFβ pathway. Indeed, the increase circulating Ang II levels induced the expression of 

TGFβ1 mRNA (Figure 9A) and protein levels (Figure 9B). However, this response was not 

different between wild type and SSH1 deficient animals. Additionally, TGFβR2 protein 

levels did not significantly differ between the two genotypes. These data indicated that SSH1 

deficiency affected the signaling pathway downstream of TGFβ1. In order to test this 

hypothesis and gain insight into the mechanism by which SSH1 deficiency exacerbates 

aortic fibrosis, we used 13 dpc embryos to prepare mouse embryonic fibroblasts (MEFs) and 

performed in vitro experiments.

After confirmed loss of SSH1 (Supplemental Figure 6A) expression and increase in the 

phosphorylated (inactive) form of its substrate cofilin (Supplemental Figure 6B), cells were 

exposed to TGFβ1. We confirmed that MEFs from Ssh1+/+ and Ssh1−/− mice expressed 

comparable levels of TGFβR2 (Supplemental Figure 6C), but SSH1 deficient cells produced 

significantly higher amount of OPN when compared to wild type cells (Figure 10A). 

Interestingly, this exacerbated response to TGFβ1 does not encompass contractile proteins 

(Figure 10B) and seems to be specific to fibrotic responses. This result demonstrates that 

SSH1 deficiency increases TGFβ1 signaling and suggests that vascular fibrosis is the result 

of exacerbated response to TGFβ1 in Ssh1−/− mice.

Discussion

Hypertension is characterized in part by humoral factors and chronically elevated strain on 

the cellular components of the arterial wall. These factors induce pathogenic vascular 

remodeling in which the actin cytoskeleton of vascular smooth muscle cells is thought to 

play a role (47, 48, 50, 51). Specifically, we investigated the contribution of the actin 

cytoskeleton regulating protein, SSH1 to the progression of Ang II-induced hypertension 

and vascular remodeling. Here, using a unique mouse model deficient in SSH1, we provide 

the first report about the role of this phosphatase in fibrotic vascular disease. Basally, SSH1 

depletion increased aortic cofilin phosphorylation and inactivation. The loss of SSH1 and 

cofilin activity corresponded with an increase in basal Opn and Fn1 mRNA expression in the 
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aorta. However, these subtle baseline changes caused no overt phenotypic changes in the 

animal and vascular structure as well as blood pressure was largely unaltered by depletion of 

the phosphatase.

Under pathophysiological conditions, the Ang II pressor response did not significantly differ 

between wild type and knockout animals; however, SSH1 deletion potentiated Ang II-

induced fibrotic gene expression. Specifically, loss of SSH1 increased Ang II-dependent 

fibrotic matrix deposition as measured by Mason’s Trichrome stain, in the medial layer of 

the aorta. These changes were linked to increased Ang II-induced transcription of Fn1 and 

Opn. Interestingly, we also observed an increase in SSH1 expression in response to Ang II 

infusion suggesting that the low basal expression and activity of the phosphatase may 

explain the absence of a basal vascular phenotype induced by the loss of Ssh1 gene. 

Additionally, these data support the idea that SSH1 upregulation may restrain further 

induction of fibrotic genes in the wild type animals.

Previous work from our group has established that SSH1 activation occurs downstream of 

ROS produced by NADPH oxidases (25, 30, 31). Furthermore, Nox1-based NADPH 

oxidase-derived ROS participates in Ang II-induced signaling and intimal hyperplasia in 
vivo (52). In agreement with these reports, in our study Ang II treatment induced the 

expression SSH1 in wild type animals. Since SSH1 expression restrains vascular 

hyperplasia, it is possible that Ang II-induced ROS participate in both: pro- and anti-fibrotic 

signaling pathways. Strategies designed to specifically increase SSH1 activity may have a 

protective role in the pathological vascular remodeling.

The stiffness of the vasculature has been linked with increased collagen deposition over time 

(49). Though in our study fibrosis of the vessel wall was exacerbated, we did not observe 

increased collagen deposition in the SSH1 deficient animals within the designated study 

period which may explain the preservation of the mechanical properties of the vessels.

The blood vessel wall is exposed to radial, axial and circumferential strain generated by 

pulse pressure as blood flows from the heart. Under normal conditions, VSMCs respond to 

this mechanical strain, by orienting themselves towards the direction of minimal biological 

perturbation by dramatically reorganizing their cytoskeleton (25, 53–55). However, in the 

presence of excessive hemodynamic forces as seen in systemic hypertension the mechanical 

stress is to great and VSMCs switch their phenotype from contractile to synthetic (56–59). 

This switch is associated with increased proliferation and production of extracellular matrix 

proteins (60, 61). Interestingly, the multifunctional protein OPN and the extracellular matrix 

protein FN1 are induced in vascular smooth muscle cells in response to stretch and Ang II 

stimulation (12, 13, 60, 62–65). Here we demonstrate that Ssh1−/− mice have increased Opn 
and Fn1 mRNA expression basally when compared to wild type littermates and that the loss 

of SSH1 further potentiates the Ang II-dependent increase in aortic Opn and Fn1 mRNA. 

Importantly, the increases in Ang II-mediated OPN and FN1 occur without overt changes in 

blood pressure between the wild type and knock-out groups. This observation suggests that 

SSH1 may play a role in transducing mechanical forces into chemical signals. Specifically, 

we found that SSH1 modulates TGFβ1 signaling. Interestingly, this modulation seems 
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specific to certain fibrotic proteins and did not extend to the regulation of differentiation 

markers such as CNN1 or SM22.

Based on our current and previous findings we propose that the actin regulator SSH1 

normally acts to block fibrotic gene expression in response to the increased mechanical and 

humoral stress imposed by angiotensin II induced hypertension.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Confirmation of SSH1 Knockout by Real-Time PCR and Western Blot.
(A) The aortas of Ssh1+/+ and Ssh1−/− mice were harvested for mRNA. SSH1 and SSH2 

mRNA was measured by quantitative Real-time PCR and corrected by housekeeping gene 

PGK. Values are represented as fold change vs. Ssh1+/+ (* p< 0.0001, n=4 mice per group). 

Protein was harvested from the aortas of Ssh1+/+ and −/− mice, analyzed by western blot and 

probed with antibodies to (B) SSH1 and actin (representative blot n= 2) or (C) p-Cofilin, and 

Cofilin. Measurable changes in protein expression were quantified using densiometric 

analysis (*p< 0.006, n=5–8 mice per group).
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Figure 2: SSH1 Deficiency does not Alter Aortic Structure.
(A) The aortas of Ssh1+/+ and −/− mice were excised, fixed, paraffin-embedded and stained 

with hematoxylin and eosin. Images were scanned using a 40x objective and a 10x image is 

provided. (B) Lumen area, medial area, total vessel area and, media to lumen ratio were 

calculated after histological evaluation of aortas excised from Ssh1+/+ and −/− mice.
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Figure 3: SSH1 Depletion does not Affect Aortic Contractile Sensitivity to KCl or PE and Aortic 
Stiffness is Unaltered by the Loss of SSH1.
Aortic rings from wild type and Ssh1 null mice were isometrically mounted and 

concentration response curves were generated to (A) KCl and (B) phenylephrine. Graphs 

show the dose-response to KCl and PE normalized to maximum force (n = 8–15 mice per 

group). To evaluate (C) aortic stiffness, aortic segments were incrementally elongated, and 

the corresponding force was measured (n= 8–15 mice per group).
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Figure 4: SSH1 deletion does not significantly alter mean arterial blood pressure, heart rate, or 
activity levels in mice.
Ssh1+/+ and −/− animals were implanted with telemetry devices and data regarding (A) blood 

pressure, (B) heart rate, and (c) activity level were recorded over a 24-hr period (n= 4–6 

mice per group).
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Figure 5: Loss of SSH1 Exacerbates Angiotensin II-induced Increases in Aortic Wall Thickness 
and Fibrotic Matrix Deposition.
Mice were treated with Ang II or saline for 14 days. Aortas were harvested, embedded in 

paraffin, cut into 5 μm sections and stained with Mason’s Trichrome. (A) Images were 

scanned using a 40x objective and a 10x image is provided. Ang II media changes in aortic 

structure were evaluated by measuring changes in the (B) media to lumen ratio of Ssh1+/+ 

and −/− mice using Image J software. (*p =0.04, n=3–5; **p<0.001, n=3–6 mice per group; 

*** p<0.001, n=3–6 mice per group). (C) Medial fibrotic matrix deposition (*p<0.001, n=3–

4; **p<0.001, n=3–5 mouse per group; ***p<0.001, n=3–5 mice per group) was quantified 

by Image J.
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Figure 6: SSH1 Depletion Potentiates Angiotensin II-dependent Aortic Fibronectin Expression.
Ssh1+/+ and Ssh1−/− mice implanted with osmotic minipumps containing Ang II or saline for 

10 days. Aortas from these mice were harvested for mRNA and (A) Fn1 expression was 

evaluated by Real-time PCR (*p=0.0009, n=4–10 mice per group, **p=0.0437, n=8–10 

mice per group, ***p=0.0183, n=4–6 mice per group, ****p=0.0120, n=6–8 mice per 

group). Aortic sections from Ssh1+/+ and Ssh1−/− mice treated with Ang II for 14 days were 

stained with a FN1 antibody. (B) Confocal images were acquired using a 20x air objective 
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lens and immunofluorescent staining was quantified using Image J software. (*p=0.0132, 

n=3–6 mice per group; **p=0.0208, n=4–6 mice per group).
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Figure 7: Loss of SSH1 Exacerbates Angiotensin II-induced Aortic Osteopontin Expression.
Ssh1+/+ and Ssh1−/− mice implanted with osmotic minipumps containing Ang II or saline for 

10 days. Aortas were harvested for mRNA and (A) Opn expression was evaluated by Real-

time PCR (*p=0.0038, n=7–9 mice per group, **p=0.0074, n=5–9 mice per group, 

***p<0.0001, n= 3–7 mice per group, ****p<0.0001, n=3–5 mice per group). Protein was 

harvested from the aortas of Ssh1+/+ and −/− mice treated with Ang II, analyzed by western 

blot and probed with antibodies to (B) OPN. Band intensity was measured using ImageJ 

(#p=0.0206, n=3–6 mice per group). Aortic sections from Ssh1+/+ and Ssh1−/− mice treated 
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with Ang II were stained with an OPN antibody. (C) Confocal images were acquired using a 

63x oil objective lens (representative micrographs n=3 mice per group).
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Figure 8: Ssh1 Deletion does not Alter Angiotensin II- mediated Collagen I Expression in the 
Aorta.
Ssh1+/+ and Ssh1−/− mice implanted with osmotic minipumps containing Ang II or saline for 

10 days. mRNA was harvested from each aorta and (A) ColIa1 expression was evaluated by 

Real-time PCR (*p<0.0001, n=6–10 mice per group, **p=0.0011, n=4–6 mice per group). 

Aortic sections from Ssh1+/+ and Ssh1−/− mice treated with Ang II for 14 days were stained 

with a (B) collagen I antibody (representative micrographs n=3–5 mice per group).
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Figure 9: Angiotensin II induces aortic TGFβ in both Ssh1+/+ and Ssh1−/− mice.
Ssh1+/+ and Ssh1−/− mice implanted with osmotic minipumps containing Ang II or saline for 

10 days. The aortas from these mice were harvested for mRNA and (A) TGFβ1 expression 

was evaluated by Real-time PCR (*p<0.0001 n=5–6 mice per group, **p=0.0087, n=3 mice 

per group). Additionally, protein was harvested from the aortas of Ssh1+/+ and −/− mice 

treated with Ang II, analyzed by western blot and probed with antibodies to (B) TGFβ 
(representative blot n=2–3 animals per group) and (C) TGFβRII (representative blot n=2–3 

animals per group).
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Figure 10: TGFβ-induced osteopontin expression is exacerbated in Ssh1−/− mouse embryonic 
fibroblasts.
Mouse embryonic fibroblast were generated from Ssh1+/+ and −/− embryos and treated with 

2ng/ml TGFβ for 24hrs. Ssh1+/+ and −/− MEFs were harvested for protein and lysates were 

analyzed by SDS-PAGE and western blot. Membranes were immunoblotted for (A) OPN 

(*p<0.0001 n=6 independent experiments, **p< 0.0001 n=6 independent experiments, 

***p<0.0001 n=6 independent experiments) (B) CNN1 and SM22 (representative blot, n=3 

independent experiments).
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