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Abstract

Single-cell expression profiling (scRNA-seq) is a rich resource of cellular heterogeneity. While 

profiling every sample under study would be advantageous, it is time-consuming and costly. Here 

we introduce Cell Population Mapping (CPM), a deconvolution algorithm in which the 

composition of cell types and states is inferred from the bulk transcriptome using reference 

scRNA-seq profiles ('scBio' CRAN R-package). Analysis of individual variations in lungs of 

influenza virus-infected mice, using CPM, revealed that the relationship between cell abundance 

and clinical symptoms is a cell-state-specific property that varies gradually along the continuum of 
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cell-activation states. The gradual change was confirmed in subsequent experiments and was 

further explained by a mathematical model in which clinical outcomes relate to cell-state 

dynamics along the activation process. Our results demonstrate the power of CPM in 

reconstructing the continuous spectrum of cell states within heterogeneous tissues.

Introduction

Single-cell RNA sequencing (scRNA-seq) provides a powerful approach to understanding 

the composition of different cell identities within a complex tissue, including discrete cell 

types, cell states that arise transiently during the progression of time-dependent processes, 

and continuous dynamic transitions within the space of possible cell states1,2. The 

frequency of cell types and cell states may vary between genetically distinct individuals, 

environments, chemical perturbations, or disease states. To investigate this variation at high 

resolution, it is possible to generate scRNA-seq profiles for each sample of interest and then 

use it to evaluate the frequency of the different cell types and states3–5. However, such 

studies are costly and time-consuming, and have therefore been performed only on a limited 

scale.

An alternative strategy would be to construct a comprehensive collection of reference 

scRNA-seq profiles representing various cell types and cell states. Deconvolution algorithms 

can then utilize those reference profiles to computationally predict the abundance of 

different cell types and states within a given sample, based on only the bulk expression data 

from that sample2,6–8. This strategy should in principle avoid the scaling issues associated 

with multiple scRNA-seq experiments, but in practice, using a large number of reference 

profiles typically results in reduced prediction accuracy9. A standard solution is to cluster 

the single-cell reference profiles into a relatively small number of cell-groups reference 

profiles10–12. However, while this clustering-based approach may provide a rough 

quantification of discrete cell types and states, the continuous cell-state space remains sparse 

and fragmented. Therefore, there is a substantial need for a deconvolution methodology that 

can exploit the rich spectrum of single-cell reference profiles.

Here we propose the Cell Population Mapping (CPM) method, which provides an 

advantageous alternative to existing deconvolution approaches, particularly in providing a 

fine-resolution mapping. Similarly to recent studies10–12, CPM constructs its reference 

collection from scRNA-seq profiles derived from one or a few relevant samples, and then 

exploits this collection to infer cell composition within additional, bulk-profiled samples. 

However, instead of focusing on quantifying a few dozens of discrete cell subtypes, CPM 

analyses thousands of single-cell profiles scattered across the wide landscape of cell states. 

Using synthetic data, we demonstrate that deconvolution with CPM significantly improves 

the quantification of both gradual and abrupt changes in cell abundance over the continuous 

space of cell types and states. Furthermore, by analyzing complex changes in lung tissues, 

across influenza virus-infected mice of various genetic backgrounds, we demonstrated the 

effectiveness of CPM in probing phenotypic diversity in large cohorts.
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Results

Overview of CPM

We developed CPM, a method based on computational deconvolution for identifying a cell 

population map from bulk gene expression data of a heterogeneous sample. In our 

framework, the cell population map is the abundance of cells over a cell-state space. 

Whereas the biological definition of a cell type refers to the core characteristics of a cell, a 

cell state can be thought of as the current phenotype in which a given cell type can be found 

(e.g., various proliferation, activation and differentiation states)1. The cell-state space 

specifies each cell state as a point in a multi-dimensional space; as cells undergo changes 

from one state to another, they travel through the space along a trajectory between these two 

states13. Unlike existing computational methods that are focused on reconstruction of the 

cell-state space from scRNA-seq data1, CPM takes as its input the previously-reconstructed 

cell state space of a certain scRNA-seq data, and then relies on this input to infer the 

abundance of each point in this space within a given bulk cell population.

Formally, CPM relies on two input types (Fig. 1A): first, a bulk expression profile of the 

heterogeneous cell population, and second, scRNA-seq profiles of individual single cells 

derived from one or a few representative samples ('reference data'). We assume that the cell-

state space of the reference cells is given as input and that the particular position of each 

reference single cell within this space is known. The cell-state space is typically obtained by 

dimension-reduction (such as t-SNE14) that capture the essence of gene-regulation variation 

among the reference single cells (exemplified in Fig. 1B top). It is also possible to use a 

well-defined trajectory within this space as an alternative "one-dimensional space"; such 

trajectory can explicitly describe the progression of cells through a biological process 

(exemplified in Fig. 1B bottom).

CPM consists of two steps (Fig. 1A and Online Methods): (i) Applying a deconvolution 

approach [here, support vector regression (SVR) approach], which combines the bulk profile 

of a complex tissue with a collection of reference scRNA-seq profiles to infer the 

composition of cells within the complex tissue input. The output of this step is the 

abundance of cells at the sub-region of each reference single cell. Such prediction poses two 

substantial challenges: first, an accuracy problem in deconvolving a very large number of 

reference profiles (typically, the analysis may involve thousands of single cells15), and 

secondly, a potential bias owing to the non-uniform distribution of reference cells over the 

cell-state space. To address these challenges, CPM applies deconvolution using a relatively 

small subset of reference profiles, which are obtained by an unbiased random sampling to 

ensure that every region in the cell space has an equal chance of being sampled (Fig. 1C). 

The sampling and deconvolution procedures are repeated N times (here, N = 1,500), and the 

results are aggregated and averaged into a single inferred abundance for each reference 

single cell. (ii) From the inferred cell abundance in each particular reference coordinate, 

CPM extrapolates the cell abundance in any other cell-state coordinate (Fig. 1D). In this 

extrapolation it is assumed that the shape of the cell distribution over the cell-state space is 

continuous and smooth. We refer to this smoothed continuous output as the 'cell population 

map'. Notably, CPM may use input bulk data either as a relative profile (i.e., response 
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between two samples) or as an absolute (single-sample) profile, thereby predicting relative 

or absolute cell-state abundance, respectively.

Performance analysis

We used a simulation framework to measure the ability of CPM to predict the cell 

population map at fine resolution. The simulation was based on a collection of 1860 

reference scRNA-seq profiles16 taken from murine lungs during influenza virus infection 

and encompassing nine major immune and non-immune cell types: fibroblasts, epithelial 

cells, blood and lymphatic endothelial cells, T cells, B cells, NK cells, granulocytes, and 

cells of the mononuclear phagocyte system (MPS), encompassing monocytes (MO), 

macrophages (MΦs) and dendritic cells. In this reference dataset, one well-characterized 

trajectory is the gradual transition of cell states (within each cell type) from resting (naive)-

like cells into active cells that respond to the influenza virus infection16. Synthetic bulk 

profiles of a complex tissue were created by mixing these single-cell profiles according to 

predetermined biologically-relevant functions over the cell-state space, introducing noise in 

the expression of genes and in the coordinates of single cells (denoted 'expression noise' and 

'cell space noise', respectively). The quality of this strategy is demonstrated in 

Supplementary Fig. 1A and further discussed in Supplementary Note 1. CPM was compared 

to three alternative deconvolution methods - DCQ17, Cibersort18 and standard SVR19 - 

whose reference collection was the "averaged" profiles of single-cell groups (the larger the 

number of such single-cell groups, the higher the 'granularity' analyzed by the alternative 

methods; Online Methods). The 'accuracy' of predictions was evaluated by comparing the 

ground-truth cell abundance to the predicted abundance of each reference single cell.

To analyze performance, we focused on three fundamental types of simulations: (i) The 

'cell-type simulation', in which cell abundance varies from one cell type to another, but 

within each cell type, the abundance is uniformly distributed over the cell-state space; (ii) 

the 'cell-subtype simulation', consisting of a modified abundance of a subpopulation of cell 

states within selected cell types; and (iii) the 'gradual-change simulation', representing 

continuous alterations of cell abundance along the trajectory of cell activation states (within 

selected cell types) (Fig. 2A). Overall, whereas the cell-type simulation is focused on inter-

cell-type variation, the cell-subtype and gradual-change simulations are focused on intra-

cell-type variation, which arises from differences among cell states within the same cell 

type.

Consistent with previous observations, changes in discrete cell types were accurately 

modelled by the alternative deconvolution methods (Fig. 2B, Supplementary Fig. 1B). 

However, in the case of intra-cell-type changes in the composition of cell states (the 'cell-

subtype' and 'gradual-change' simulations), CPM showed consistent improvement in 

prediction accuracy compared to existing deconvolution methods (relative bulk data: Fig. 

2CD and Supplementary Fig. 2AB; absolute bulk data: Supplementary Fig. 3AB) within a 

reasonable running time (Supplementary Fig. 2CD). Unsurprisingly, CPM was able to 

capture the continuous nature of the input tissue, unlike the alternative deconvolution 

methods that could provide only a discrete approximation with lower accuracy 

(Supplementary Figs. 2E, 3C). Furthermore, CPM outperformed the existing methods in its 
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ability to handle a high cell-state complexity and in its 'scalability' to a large number of 

reference profiles (Supplementary Fig. 2FG, detailed in Supplementary Note 1). 

Quantitatively similar results were also observed for varying parameter settings 

(Supplementary Fig. 4), using different cell-state space solutions (Supplementary Fig. 5A), 

and for regions of different local density within the cell-state space (Supplementary Fig. 

5BC). Of note, CPM may lose power with lower sequencing depth (Supplementary Fig. 6, 

discussed in Supplementary Note 1).

Relationships between infection symptoms and cell abundance are a cell-state-specific 
property

We applied CPM to investigate in-vivo influenza virus infection across the Collaborative 

Cross (CC) recombinant inbred strains20, a panel of mouse lines designed to mimic the 

phenotypic and genotypic diversity seen in human populations. To this end, we generated 

bulk transcriptional expression profiles derived from lung tissues of 38 infected and 34 

phosphate-buffered saline (PBS)-treated control mice (typically one or two individuals of 

each CC strain; Supplementary Table 1, Online Methods). We transformed absolute bulk 

profiles into relative bulk profiles using a common control profile as the normalizer, and then 

applied CPM to each of these bulk profiles using the abovementioned single-cell 

measurements of the same experimental setting (lung tissues from influenza virus-infected 

mice16) as the reference data. As the cell-state space, CPM utilized the continuous sequence 

of cell-activation states that were previously defined for each of the nine immune and non-

immune cell types in this reference dataset16. Altogether, CPM calculated a relative cell 

population map consisting of relative cell abundance in each cell state for each individual 

mouse. We found that CPM predictions varied considerably between individuals (see 

examples in Fig. 3A) and that this variation was robust across the N deconvolution repeats 

(Supplementary Fig. 7A).

While the inferred cell population maps demonstrated substantial variation, the extent to 

which these cell-state changes relate to the clinical outcome of disease remained unclear. To 

elucidate this point, we monitored one of the main clinical symptoms of murine infection, 

namely the body weight loss (measured at 2 days post-infection (p.i.); Fig. 3B), and 

calculated the correlation (across individuals) between this outcome and the inferred relative 

abundance of each reference cell (denoted the 'cell-to-phenotype correlation'). By splitting 

the reference cells into consecutive activation-state intervals (within each cell type) we could 

assess the variation in cell-to-phenotype correlations over the activation trajectory 

(illustrated in Supplementary Fig.7B). Intriguingly, cell-to-phenotype correlations across 

infected mice clearly manifested a gradual increase over the trajectory of cell-activation 

states, ranging from negative correlations at the lower (naive-like) range toward positive 

correlations at the upper (activated) range (mainly in T cells, MPS and fibroblasts, Fig. 3C). 

In fact, no particular threshold could be found that splits the activation-state trajectory into 

two discrete groups in which cell-to-phenotype correlations did not gradually change. 

Similar conclusions about the gradual change in cell-to-phenotype correlations were 

obtained using a second public dataset of influenza virus infection21 and using additional 

computational analyses (Supplementary Note 1, Supplementary Fig. 7C-H). As expected, 

the use of unrelated (uninfected) reference datasets and alternative deconvolution methods 
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did not yield the same conclusions (Supplementary Note 1, Supplementary Fig. 7IJ). Taken 

together, these findings highlight the advantage of a CPM model that is based on a 

continuous space of cell states, and further emphasize the importance of using reference and 

bulk data derived from a similar experimental setting.

Experimental validation of predictions

To test for the presence of a gradual change in cell-to-phenotype relationships as predicted 

by CPM, we performed flow cytometry analyses of lung cells from influenza-infected CC 

mice at 2 days p.i. We focused on MO/MΦ cell types, which constitute a major fraction of 

the total MPS population. To determine the activation states of MO/MΦs we used flow 

cytometry with two established cell-activation markers, CD64 and Ly6C22. The use of these 

markers enabled us to quantify the distribution of cells over a trajectory of activation states 

ranging from non-inflammatory (CD64lowLy6Clow) to inflammatory (CD64highLy6Chigh) 

MO/MΦs. As expected, the fraction of inflammatory MO/MΦs was higher in infected mice 

than in PBS-treated controls (Fig. 4AB; Supplementary Table 1). Encouraged by this 

observation we then used the flow cytometry measurements to calculate cell-to-phenotype 

correlation, i.e., the correlation between the clinical readout (weight loss at 2 days p.i.) and 

the MO/MΦ cell fractions enumerated by flow cytometry across infected individuals. The 

correlation analysis yielded several lines of evidence that validated the reconstruction by 

CPM: (i) inflammatory MO/MΦs showed a positive cell-to-phenotype correlation (r2 = 0.67, 

Fig. 4C left); (ii) non-inflammatory MO/MΦs had a negative cell-to-phenotype correlation 

(r2=−0.54, Fig. 4C right); (iii) cell-to-phenotype correlations increased with each of the two 

separate activation markers (Fig. 4D); and (iv) flow cytometry analysis confirmed a gradual 

increase in correlation values over the CD64-cell-state continuum for both Ly6Chigh and 

Ly6Clow cell states (Fig. 4E). The lack of cell-to-phenotype correlation obtained when we 

used the total MO/MΦs count (r2=0.1, Supplementary Fig. 8A) further validated the 

contention that cell-to-phenotype relationships depend on particular cell-activation states, 

thus accentuating the importance of fine-resolution deconvolution mapping. Whereas the 

observed association between activated-inflammatory MO/MΦs and severe physiological 

responses (Fig. 4C left) has been previously reported23–25, the opposite trend of naive MO/

MΦs (Fig. 4C right) and the continuous transition between negative and positive correlations 

over the activation process (Fig. 4E) have not been previously described.

Inferring dynamics with a Markov model

Given that the CPM-reconstructed map yielded accurate predictions for MPS cells, we next 

investigated the temporal dynamics over the activation trajectory for these cells. Our results 

showed that the association between cell abundance and weight loss varies in a gradual 

manner along the MPS-activation process (Figs. 3C, 4E), but that the total MPS counts did 

not correlate with the body weight loss (Supplementary Fig. 8A). A parsimonious 

explanation for this observation is that the phenotypic diversity is associated with inter-

individual variation in temporal dynamics along the activation process; for example, inter-

individual variation in onset times, or in cell-state progression rates. Like scRNA-seq 

data26, the CPM-reconstructed data provided valuable information that allowed such 

temporal dynamics to be computationally reconstructed. For instance, we focused here on 

cell-state progression, and since its underlying mechanism is a stochastic process, we 
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assumed a Markov process of naive-to-activation transitions between consecutive cell states 

(Supplementary Fig. 8B, Online Methods). We used this model to predict the probability of 

transition ('transition rate') between sequential states in each individual mouse (see examples 

in Supplementary Fig. 8C). With the assumption that the activation-onset time in all 

individuals is the same, comparison of the inferred transition rates might reveal complex 

transition-rate-to-phenotype relationships (Supplementary Fig. 8D). By calculating transition 

rates based on CPM predictions, we found that weight loss is indeed positively correlated 

with transition rates over a wide range of the MPS activation axis (at its early and 

intermediate parts; Supplementary Fig. 8E). These CPM-predicted transition rates closely 

matched the rates calculated from flow cytometry measurements (Supplementary Fig. 8EF). 

Overall, this theoretical approach suggests a mechanistic model of in-vivo influenza-

outcome diversity and demonstrates a general strategy for uncovering inter-individual 

variation in temporal dynamics.

Discussion

Now that the ability to generate scRNA-seq data of multiple experiments exists, it should 

become possible to gain a detailed understanding of variations in cellular heterogeneity that 

correlate with clinical and molecular factors3. However, such analyses will continue to pose 

substantial challenges: generation of scRNA-seq measurements across multiple experiments 

is time-consuming, costly and requires expertise in single-cell technologies. In addition, 

fine-resolution deconvolution using a large repertoire of cell states is not readily available 

due to a trade-off between tissue-complexity and scalability (Supplementary Fig. 2F). CPM 

tackles this challenge by allowing reconstruction of cellular heterogeneity at fine resolution 

in many bulk-profiled samples, relying on reference single-cell data from only one or a few 

representative samples (Fig. 1). Using synthetic data we showed here that although changes 

in the quantity of a discrete cell population are accurately modelled by existing 

deconvolution methods (Fig. 2B), CPM outperforms these methods in accurately mapping 

the continuous spectrum of cell states within discrete cell types (e.g., Fig. 2CD).

We further demonstrated the power of CPM by using complex clinical and genomics data 

derived from in-vivo infections of genetically-diverse mice. First, CPM successfully 

recapitulated the previously reported23–25 positive cell-to-phenotype correlations in the 

high-activation range (Figs. 3C). In addition, CPM revealed previously unreported negative 

cell-to-phenotype correlations at the low-activation range, as well as gradual changes in the 

relationships between cellular heterogeneity and in-vivo phenotypes along the trajectory of 

cell-activation states (Fig. 3C). Experimental validation of MO/MΦ cells supported these 

gradual changes from negative to positive correlations (Fig. 4C-E), demonstrating that CPM-

inferred cell-state-specific quantities can provide valuable information needed for modelling 

phenotypic diversity in large cohorts.

We believe that CPM is likely to prove useful for additional analysis, such as calculations of 

cell-state-specific expression within complex tissues27, reconstruction of temporal dynamics 

of cell-state progression (Supplementary Figure 8), and studying cellular heterogeneity 

within the massive body of existing bulk genomics data such as TCGA28 and GTeX29. 

Furthermore, as extensive single-cell catalogues (e.g. the Human Cell Atlas30) are currently 
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constructed, it may soon become possible to analyze cellular heterogeneity in bulk 

expression data without requiring expertise in single-cell technologies (discussed in 

Supplementary Note 1).

Online Methods

The CPM algorithm

CPM takes as input both bulk transcriptome and reference data. The input bulk 

transcriptome is represented in a column vector of expression values across all genes. Bulk 

expression values can be either the measured expression values in a single heterogeneous 

tissue or the relative values between two experiments, such as disease vs. healthy 

heterogeneous tissues. The input reference data consists of scRNA-seq profiles, represented 

in a matrix of the format Rij where the ij-th entry is the expression levels of gene j in single 

cell i. A row vector Ri in this matrix is a RNA-seq signature of a certain reference single cell 

i (referred to as a 'reference profile'). We further assume that the main split of cells into 

broad cell type categories is known, and that low quality cells were already removed16. 

Additionally, we assume that each cell type is associated with a pre-determined 

neighborhood structure, denoted the 'cell-state space' structure. The cell-state space is 

represented as a set of coordinates where the i-th entry represents the position of reference 

single cell i within the cell-state space. The cell space should be constructed in a pre-

processing step through various single-cell analysis techniques. For instance, it is possible to 

exploit standard dimension reduction methods that provide cell positions in a low 

dimensionality space (such as t-SNE or using several principle components14). 

Alternatively, it is possible to determine the position of cells along a certain trajectory of cell 

states and utilize this trajectory as a 1-dimensional cell-state space14.

CPM starts with a preprocessing step in which genes carrying many dropout events (here, 

fraction of zero expression values across single cells > 90%) are filtered. Both the reference 

profiles and the input bulk profile are then standardized. Next, the algorithm proceeds in two 

steps: first, infer the level of the reference cells within the complex tissue, and then use this 

information to predict cell abundance over the entire continuous cell-state space.

Step 1 (deconvolution)—To infer the abundance level of the reference cells in a bulk 

expression profile, we solve the following linear regression: U = ∑
i

Ri ⋅ βi, where Ri is the 

expression vector of all genes in reference single cell i, U is the vector of expression levels 

of all genes in the complex tissue, and βi indicates the unknown abundance of single cell i in 

the complex tissue. As in Cibersort18, we achieve robustness by solving this regression 

using linear SVR (the "LiblineaR" R package19) to prevent biases due to outliers. To further 

improve performance in the presence of a large number of reference profiles, we use a 

consensus approach, in which the abovementioned SVR inference is repeated N times for N 
different subsets of the reference profiles (denoted 'reference subsets'), each reference subset 

consists of Ns profiles. Predicted abundance values of the N runs are then averaged for each 

individual reference cell.
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We apply several improvements that make step 1 more robust and accurate. First, we 

perform an unbiased random selection of the reference subset (without replacements) so that 

the selected subset is uniformly distributed over the cell-state space. To address this, each 

reference cell is sampled by random sampling of a 'pivot point' within the cell-state space 

using inverse transform sampling and then choosing an arbitrary reference cell in the 

proximity of this pivot point. A grid was added to the cell-state space so that all reference 

cells that fall in a certain entry of this grid are defined as the proximity group for a pivot that 

falls in this entry. The number of grid-entries, calculated on each cell type separately, is the 

number of reference single cells divided by the cell neighborhood size. N was set to a value 

in which each reference cell would be selected to an average depth of at least Nr repeats. In 

particular, given that cells in high-density grid-entries are less likely to be selected, we 

calculate N based on the highest-density entry by requiring that each cell in this entry would 

be selected to an average depth of Nr repeats.

The second improvement is that each SVR run is applied on a set of genes that is tailored for 

a specific reference subset. The basic idea is to select a gene set that offers the best ability to 

distinguish between the reference profiles. Similarly to Cibersort18, for each gene we 

compare its expression in different scRNA-seq profiles using one-way ANOVA (the Nd 
nearest neighbors of each cells are used to calculate the within-group variance component); 

each gene is then associated with the cell profile in which it attains the highest average 

expression, and the Ng top ANOVA-score genes associated with each cell profile are 

selected. In particular, Ng is defined as the number that minimizes the 'condition number' 

that is calculated with the R 'kappa' function.

Step 2 (extrapolation)—To infer the abundance of a given candidate cell state, CPM 

averages the predicted abundances of its Nd nearest-neighbor reference cells. This leads to a 

smoothed cell abundance over the entire cell-state space. We refer to this solution as the 'cell 

population map'.

Overall, the methodology relies on three parameters: the number of deconvolution repeats 

(determined by Nr), the reference subset size (Ns) and the cell neighborhood size (Nd). Here 

we used Nr=5, Ns=50 and Nd=10 as our default setting. The contribution of CPM is further 

discussed in Supplementary Note 1.

The reference single-cell data

The reference data is a collection of 1860 single cells that were collected from the lungs of a 

C57BL/6 mouse at 2 days after infection with 4.8x103 pfu (in 40 μl phosphate buffered 

saline - PBS) of the PR8 influenza virus (published data16 from GEO accession number 

GSE107947). As previously reported16, this collection already excludes poor-quality cells, 

and the cells were already partitioned into nine cell-type groups (in total, 92 B cells, 135 

blood endothelial cells, 24 epithelial cells, 291 granulocytes (GN), 345 lymphatic 

endothelial cells, 375 fibroblasts, 103 mononuclear phagocyte system (MPS) cells, 117 

natural killers (NK) cells and 378 T cells). Furthermore, it was previously defined, for each 

of the nine immune and non-immune cell type, the progression of cell states through a 

trajectory of an antiviral-activation response16. We refer to this continuum as the 'trajectory' 
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of cell activation states. Briefly, the cell-state trajectory was constructed in two steps: first, a 

group of 101 generic-response genes were defined (consisting of all genes that were 

upregulated in all nine cell types during influenza infection); next, for each single cell, its 

average expression level across these generic genes was used as the activation-state 

trajectory16; in Figs. 3AC, 4DE and Supplementary Figs. 7C-G,I,J, this trajectory was 

further binned into equal intervals. Unless stated otherwise, this reference single-cell 

collection, together with its cell type groups and cell-state trajectory, were utilized as input 

in our analyses. We note that scRNA-seq data from a replicate infected mouse16 was used to 

corroborate the results (Supplementary Figure 7F).

Synthetic data analysis

Synthetic bulk profiles were generated by mimicking the heterogeneity of cells within a 

biological complex tissue. Each synthetic bulk profile was generated as a mixture of 

reference scRNA-seq profiles according to pre-designed fractions of single cells. Our pre-

designed fractions of cells represent prevalent realistic scenarios, including changes in the 

overall level of a certain subpopulation (the cell-type and cell-subtype simulations), as well 

as changes along cellular trajectories such as cell-state shifts (the gradual-change 

simulation). We generated both absolute and relative synthetic bulk profiles and in both 

cases tested the entire range of noise parameter (ranging from an entirely non-informative 

data to an almost-zero noise). The 'accuracy' was calculated as the Pearson correlation 

between the actual and predicted fractions of cells. Technical details about synthetic data 

generation and the accuracy score are available in Supplementary Note 1.

For each synthetic data collection, CPM's performance were compared to alternative state-

of-the-art deconvolution algorithms, including (i) the digital cell quantifier (DCQ) 

algorithm17 that builds on elastic net regression; (ii) Cibersort18 that utilizes a non-iterative 

linear support vector regression; and (iii) a standard linear SVR. SVR was applied using L2-

regularized L2-loss support (primal) vector regression because it provided similar accuracy 

compared to alternative settings but is faster than the alternatives. SVR was applied with the 

optimal setting of its C (the "LiblineaR" R package19) and ε=0.001 (all results were 

maintained with alternative εvalues such as 0.1 and 0.001; Supplementary Fig. 2H). Using 

SVR and Cibersort, in the case of relative data we retained the negative coefficients, as 

previously suggested17. For the CPM algorithm, we further tested the effect of modifying 

the Nr, Ns and Nd parameters. Since the three compared deconvolution methods rely on a 

relatively small number of input reference profiles, the reference data was constructed by 

grouping the scRNA-seq profiles. We generally used K-means clustering of the scRNA-seq 

data16 and then used the averaged profile of each group as a reference profile. 

Supplementary Note 1 further describes alternative reference-construction methods whose 

accuracy levels are presented in Supplementary Fig. 4E). Each of the compared methods was 

analyzed using a variety of K (granularity) values. Finally, we further compared CPM to an 

alternative approach in which cell composition is evaluated through enrichment of each 

individual reference profile (an 'enrichment scheme', as previously described31, detailed in 

Supplementary Note 1).
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To validate that the mixture of single cells fully resembles real-data bulk profiles, we 

generated synthetic bulk expression values as a mixture of scRNA-seq of an uninfected 

C57BL/6J mouse (2075 cells derived from the lung tissue, partitioned into nine cell 

types16), using quantities that were previously measured within the lungs of naive 

C57BL/6J mice (flow cytometry fractions from previous studies22,32). We further measured 

bulk lung profiles of a naive C57BL/6J mouse (Supplementary Table 1) and found a good 

match between measured and computationally-synthesized bulk data (Supplementary Fig. 

1A), supporting the validity of aggregating single cells into synthetic bulk profiles.

Mice

The present study used female mice aged 7-9 weeks from the Tel-Aviv University (TAU) 

collection of Collaborative Cross recombinant inbred mice20 and the C57BL/6J strain. The 

mice were raised at the Animal Facility at the Sackler Faculty of Medicine in TAU. All 

experimental mice and protocols were approved by the Institutional Animal Care and Use 

Committee (IACUC) of TAU, approval numbers 04-14-049, which adheres to Israeli 

guidelines and follows the NIH/USA animal care and use protocols. Mice were housed on 

hardwood chip bedding under 12h light/dark cycle at 21–23°C. Mice given tap water and 

standard rodent chow diet ad libitum since their weaning day until the end of the experiment.

In-vivo influenza virus infection

Mouse-adapted PR8 strain, influenza virus A/Puerto Rico/8/34 (A/PR/8/34, H1N1), was 

persistently grown in hen egg amnion, and its effective titer was quantified. All mice were 

anesthetized with 7mg/mL Ketamine and 1.4 mg/mL Xylazine at 0.1 ml/10 gr body weight, 

I.P. Animals were then infected intranasally with PR8 (4.8·103 pfu in 40 μL PBS), whereas 

mock-treated ('control') animals received only 40 μL of PBS. All mice were monitored daily 

for percentage of body weight loss and clinical disease manifestations, and sacrificed at 48 

hours post treatment. Of note, this experimental setting closely resembles the one of the 

reference scRNA-seq data16 (e.g., the same gender, time point and virus strain, and a similar 

age and virus doses).

RNA isolation, library construction and pre-processing

To test CPM on complex tissues, murine lungs were harvested immediately after the time of 

sacrifice, sliced into small pieces, homogenized using BeadBlaster Microtube Homogenizer 

(90sec, 4000rpm) in the presence of QIAzol, and used for total RNA extraction using the 

miRNeasy Mini Kit (Qiagen, CA). Library quality and concentration was measured using a 

TapeStation System (Agilent Technologies) and a Qubit Fluorometric Quantitation (Life 

Technologies) as described earlier17. mRNA sequencing libraries were constructed as 

previously described17. Absolute bulk profiles were generated through reads alignment and 

transcript quantification as described earlier17 (detailed in Supplementary Note 1). Absolute 

profiles were transformed into "relative" profiles using a common control profile as the 

normalizer, where the control profile was pooled from the PBS-treated mice. Relative 

profiles were calculated using log-transformed infected and control samples. Unless stated 

otherwise, reported are the results of using relative profiles.
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Cell-to-phenotype correlations

CPM was applied on each bulk RNA-seq lung sample by integrating the reference single cell 

collection (a total running time of ~16 minutes for deconvolution of 72 samples, using six 

cores of a Dell Latitude E6430 laptop, containing an Intel i7-3740QM CPU). Our analysis 

builds on the CPM-inferred abundance of each reference single cell in each mouse 

individual. For each reference cell (associated with a particular cell activation state) we 

calculated the Pearson correlation coefficient between the predicted abundance of cells at 

this cell state compared to the in-vivo clinical phenotype at two days post infection over the 

individual mice (illustrated in Supplementary Fig. 7B). The coefficient is referred to as the 

'cell-to-phenotype correlation'. The cell-to-phenotype correlation was calculated using two 

groups of mice: either the infected or the control (PBS-treated) mice. Cell-to-phenotype 

correlations were binned into nine equal intervals along the trajectory of cell activation 

states. Supplementary Note 1 describes several tests that were applied to support the inferred 

gradual-changes over the cell activation bins.

Fluorescence-activated cell sorting and analysis

To validate the performance of CPM we sorted the population of macrophages from the 

lungs of various CC mice (Supplementary Table 1). To address this, the lungs were 

dissociated into single cell suspensions using Miltenyi Biotec lung dissociation kit 

(130-095-927), according to manufacturer’s instructions. Isolated lung cells were then 

enriched for CD45+ cells by a positive selection (CD45 microbeads, Miltenyi Biotec, 

130-052-301), incubated with blocking solution (5% normal mouse serum, 5% normal rat 

serum, and 1% anti-Mouse CD16/CD32) for 30 min on ice, and stained with fluorochrome-

conjugated antibody for CD11b (M1/70), CD64 (X54-5/7.1), I-A/I-E (M5/114.15.2), Ly6G 

(1A8), Ly6C (HK1.4), and CD45 (30-F11, Miltenyi Biotec). All antibodies were from 

Biolegend, unless otherwise mentioned (clone number in parentheses). Data was acquired 

with a SH800 flow cytometer (Sony Biotechnology) and analyzed with FlowJo v.10 

Software. Mononulear phagocyte cells were gated as CD11b+CD45+Ly6G-I-A/I-E+, as 

previously described22, and the expression levels of Ly6C and CD64 were analyzed.

Inferring dynamics with a Markov model

In this analysis we rely on the assumption that cells along the activation trajectory are 

partitioned into D equal intervals. The i-th interval represents a discrete cell state i. In 

addition, we assume that the probability of transition between any two states (per unit time) 

is constant over time. The 'stochastic matrix' QDxD encodes the probabilities of transitions qij 

from state i to state j per unit time (referred to as "transition rates"). Assuming that each cell 

in each state i may remain in the same state or switch into state i+1 (but not to any other cell 

state), it follows that (i) for each i, qii+qi,i+1=1; and (ii) for each j ∉ {i,i + 1}, qij=0. We 

further define a row vector F1XD=(f1, f2,…, fD) where fi is the proportion of cells in state i 
(denoted a 'state proportions vector'). We assume that each cell resides in exactly one of the 

cell states, and therefore ∑
i = 1…D

f i = 1. The state proportions vector before infection and in 

any time t after infection are F(0) and F(t), respectively. Qt encodes the probability of 

transitions after t units of time and therefore F(t)= F(0)Qt. Using known state proportions 
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vectors F(0) and F(t) (either CPM-inferred or FACS-measured, in Supplementary Figs. 8E 

and 8F, respectively), we fit the missing transition rate parameters {qi,i+1 | i = 1,…, D – 1}.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Overview of the CPM algorithm.
A flowchart of the CPM pipeline (A) with illustrations of specific steps (B-D). The prior 

(reference) knowledge consists of single-cell RNA-seq profiles (derived from one or a few 

individuals) together with their associated cell-state space structure (A, top); such space may 

be constructed either through dimension reduction (e.g., a two-dimensional space in B, top) 

or through further identification of a well-defined cell trajectory (e.g., a "one-dimensional 

space" in B, bottom). Given a bulk expression profile of a complex tissue, CPM utilizes a 

deconvolution approach to infer the quantity of each reference cell (A middle, C) and then 

extrapolates these predictions over the entire cell-state space, thereby providing the output 

'cell population map' (A bottom, D). To avoid simultaneous deconvolution with a very large 

number of reference profiles, deconvolution is applied N times on subsets of the reference 

profiles, and the inferred quantities are then aggregated.
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Figure 2. Performance assessed via synthetic data.
(A) Synthetic data were generated either by changes of cell percentage in discrete cell types 

('cell-type simulation', top); by changes of cell percentage in cell subtypes, within cell types 

('cell-subtype simulation', middle); or by gradual changes in cell percentage along a 

trajectory of cell states ('gradual-change simulation', bottom). Illustration and abbreviation 

are as in Fig. 1. (B−D) Accuracy of inferring cell abundance for the three simulation types: 

cell-type simulation (B), cell-subtype simulation (C), and the gradual-change simulation 

(D). Accuracy (y axis) is defined as the Pearson correlation coefficient between predicted 

and true cell abundance and is shown across varying data parameters (x axis) for alternative 

deconvolution methods (colour coded). Results are shown for bulk relative profiles (B left, C 

and D) or absolute profiles (B right). The alternative methods were applied with a reference 

dataset that was generated using granularity of 4 cell groups.
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Figure 3. Cellular heterogeneity during in-vivo influenza virus infection, reconstructed by CPM.
(A) Shown are CPM-inferred relative MPS abundance values (y axis), averaged over cells 

from each activation state bin (bins were ranked with increasing activation states from left to 

right; x axis), for three representative infected individuals (colour coded). n=103 cells; error 

bars, standard deviation. (B) Percentages of measured body weight loss (y axis) of 38 

infected individuals, ranked by disease severity (x axis). Marked individuals are the three 

shown in A. (C) Cell-to-phenotype Pearson correlation coefficients across the 38 infected 

CC mice (y axis), averaged by activation state bins (x axis), presented for MPS cells (top, 

103 cells), T cells (middle, 378 cells) and fibroblasts (bottom, 375 cells). Error bars, 

standard deviations.
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Figure 4. Confirmation of gradual changes in relationships of cells to physiology over a 
trajectory of cell-activation states.
Flow cytometry analyses of lung-derived MO/MΦs, stained for CD64 and Ly6C activation 

markers; cell percentages were calculated relative to the entire population of lung MO/MΦs. 

(A) Shown are representative analyses of control (left) and infected (right) animals (CC line 

5001A). Statistics for the remaining individuals is shown in B. (B) Box plots showing the 

percentages of inflammatory MO/MΦs (CD64+Ly6C+; left) and non-inflammatory MO/

MΦs (CD64-Ly6C- ;right) in 11 infected and 5 control CC animals. Boxes represent the 

25th, 50th and 75th percentiles; whiskers show maxima and minima. P-values are indicated, 

one-sided t-test. (C) Shown are percentages of body weight loss of infected individual mice 

(y axis) as a function of their percentage of inflammatory (left) and non-inflammatory (right) 

MO/MΦs (x axis). (D) Shown are cell-to-phenotype correlation coefficients (calculated 

across the infected mice), binned and ranked according to the levels of the activation 

markers (CD64, y axis; Ly6C, x axis) and colour-coded in each bin. (E) Cross sections of 

the 2-dimensional map in D. Data are mean ± stdev across n=100 bootstrapped samples.
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