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Abstract

Background—Subclinical thyroid dysfunction, defined as thyroid-stimulating hormone (TSH) 

levels outside the reference range with normal free thyroxine levels in asymptomatic patients, is 

associated with alterations in cardiac hemodynamics. We used Mendelian randomization to assess 

the role of thyroid dysfunction for cardiovascular disease.

Methods—Single-nucleotide polymorphisms associated with thyroid function were identified 

from a genome-wide association meta-analysis in up to 72 167 individuals. Data for genetic 

associations with cardiovascular disease were obtained from meta-analyses of genome-wide 

association studies of atrial fibrillation (n=537 409 individuals), coronary artery disease (n=184 

305 individuals), and ischemic stroke (n=438 847) as well as from the UK Biobank (n=367 703 

individuals).

Results—Genetically predicted TSH levels and hyperthyroidism were statistically significantly 

associated with atrial fibrillation but no other cardiovascular diseases at the Bonferroni-corrected 

level of significance (P <7.8×10-4). The odds ratios of atrial fibrillation were 1.15 (95% 

confidence interval 1.11-1.19, P=2.4×10-14) per genetically predicted one standard deviation 

decrease in TSH levels and 1.05 (95% confidence interval 1.03-1.08, P=5.4×10-5) for genetic 

predisposition to hyperthyroidism. Genetically predicted free thyroxin levels were not statistically 

significantly associated with any cardiovascular disease.

Conclusions—This Mendelian randomization study supports evidence for a causal association 

of decreased TSH levels in the direction of a mild form of hyperthyroidism with increased risk of 

atrial fibrillation but no other cardiovascular diseases.
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Subclinical thyroid dysfunction, defined as serum thyroid-stimulating hormone (TSH) levels 

below (hyperthyroidism) or above (hypothyroidism) the reference interval with normal free 

thyroxine (FT4) levels in asymptomatic patients,1 is a common condition and is particularly 

prevalent in older women.2–6 Subclinical thyroid dysfunction is associated with alterations 

in cardiac hemodynamics, such as impaired cardiac contractility, increased heart rate, 

systolic hypertension, increased left ventricular mass, and diastolic dysfunction.1,7–12

Data from observational prospective studies on subclinical thyroid dysfunction in relation to 

risk of cardiovascular disease (CVD) are inconclusive. Subclinical hyperthyroidism was 

reported to be positively associated with risk of atrial fibrillation (AF),4,13–18 coronary 

heart disease,18,19 overall stroke,20 and heart failure5 in several studies. Subclinical 

hypothyroidism has been found to be associated with increased risk of coronary heart 

disease,3,21,22 heart failure5 and cardiac mortality3,21,22 but not with risk of AF or stroke.

21 However, residual confounding or reverse causality may have affected those associations 

and may also explain the inconsistent results.

Genetic variants with an explicit association with a potential risk factor (e.g., TSH levels) 

can be used as unbiased proxies for the risk factor to determine causality.23,24 This method, 

known as Mendelian randomization (MR), builds on Mendel’s second law and the fact that 

genetic variants are randomly distributed at conception and thus unlikely related to possible 

confounders. In addition, reverse causality is avoided because disease cannot affect 

genotype.

Given the controversy regarding the role of thyroid dysfunction for CVD, we used the MR 

design to determine the associations of TSH levels and hyper- and hypothyroidism with 

CVD. Our primary aim was to assess the associations of TSH levels and hyper- and 

hypothyroidism with AF, coronary artery disease (CAD), and ischemic stroke using data 

from meta-analyses of genome-wide association studies (GWAS) of these outcomes25–27 

and data from the UK Biobank.28 In secondary analyses, we investigated the associations of 

TSH levels and hyper- and hypothyroidism with other CVD outcomes in UK Biobank. 

Finally, we examined whether there is an association between FT4 levels and any CVD 

outcome.

Methods

The methods are available as supplemental material. This study is based on publicly 

available summary-level data, which are available in the supplemental material. All studies 
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included in the analyses received ethics approval from a relevant institutional review board, 

and all participants had provided informed consent.

Results

Genetic Consortia

Analyses using data from three large-scale genetic consortia (Atrial Fibrillation Consortium 

[AFGen] 2018 GWAS dataset, Coronary ARtery DIsease Genome-wide Replication and 

Meta-analysis plus The Coronary Artery Disease consortium’s 1000 Genomes-based GWAS 

[CARDIoGRAMplusC4D], and MEGASTROKE) revealed a statistical significant 

association between genetically decreased TSH levels and higher odds of AF (odds ratio 

[OR] 1.15, 95% confidence interval [CI] 1.11-1.19, P=2.4×10-14) but not CAD or ischemic 

stroke as a whole (Figure 1). Among ischemic stroke subtypes, genetically decreased TSH 

levels were associated with higher odds of cardioembolic stroke (OR 1.11, 95% CI 

1.02-1.22, P=0.02) (Figure 1) but the association did not achieve statistical significance at 

the Bonferroni-corrected threshold. Hyperthyroidism was associated with higher odds of AF 

(OR 1.05, 95% CI 1.03-1.08, P=5.4×10-5), whereas hypothyroidism was associated with 

lower odds of AF (OR 0.95, 95% CI 0.92-0.98, P=8.0×10-4) (Figure 1). Genetically higher 

FT4 levels were not associated with any outcome (Figure 1).

Results for AF were similar when using data from the AFGen 2017 GWAS dataset. In these 

analyses, the ORs were 1.16 (95% CI 1.10-1.23, P=7.1×10-7) per one SD decrease of TSH 

levels, 1.05 (95% CI 1.01-1.09, P=0.02) for hyperthyroidism, 0.94 (95% CI 0.89-0.99, 

P=0.01) for hypothyroidism, and 1.00 (95% CI 0.92-1.09, P=0.93) per one SD increase of 

FT4 levels.

UK Biobank

In the UK Biobank, genetically decreased TSH levels were statistically significantly 

associated with higher odds of AF (OR 1.20, 95% CI 1.13-1.27, P=1.4×10-9) but not the 

other outcomes (Table 1). There was suggestive evidence of associations between 

hyperthyroidism and higher odds of AF and lower odds of thoracic aortic aneurysm; 

hypothyroidism and higher odds CAD and hypertension; and increased FT4 levels and 

higher odds of peripheral arterial disease (Table 1).

Sensitivity Analyses

The associations of TSH and FT4 levels with the outcomes were robust when limiting the 

analysis to the lead SNP of each locus (Table S5). When excluding the three loci associated 

with both hyper- and hypothyroidism, the ORs of AF (using data from 2018 AFGen GWAS) 

were 1.07 (95% CI 1.04-1.11, P=3.6×10-5) for hyperthyroidism and 0.99 (95% CI 0.95-1.03, 

P=0.59) for hypothyroidism. The results for TSH levels using the weighted median and MR-

Egger approaches were similar to those of the primary analysis (inverse-variance weighted 

method), but the precision of the estimates was as expected lower (Table S6). The MR-Egger 

analysis provided no evidence of directional pleiotropy (Table S6). The MR-PRESSO 

analysis identified no outlying single-nucleotide polymorphisms (SNPs) in the analysis of 

TSH levels and AF. However, there was one outlying SNP in the analyses of TSH levels in 
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relation to CAD and aortic valve stenosis and three outlying SNPs in the analyses of TSH 

and hypertension (Table S7). Exclusion of those SNPs did not change the results appreciably 

(Table S7). Likewise, inclusion of the pleiotropic SNP in the ABO gene did not change the 

interpretation of the results for TSH levels and any CVD outcome (Table S8).

Discussion

For the first time, this study uses a MR approach to systematically investigate the 

relationship of thyroid function and dysfunction with a wide range of CVD outcomes. Our 

results showed that genetically decreased TSH levels and hyperthyroidism were robustly 

associated with higher odds of AF. We found no statistically significant and consistent 

associations of TSH levels, hyper- or hypothyroidism, or FT4 levels with the other CVD 

outcomes, though there was suggestive evidence of possible associations between decreased 

TSH levels and higher odds of cardioembolic stroke, hyperthyroidism and lower odds of 

thoracic aortic aneurysm, hypothyroidism and higher odds AF, CAD and hypertension, and 

increased FT4 levels and higher odds of peripheral arterial disease. However, those 

suggestive associations were only observed in one dataset (one of the genetic consortia or 

UK Biobank) or were not consistent in sensitivity analyses.

Our findings support prior observational studies associating decreased TSH levels and 

hyperthyroidism to increased risk of AF4,13–17 as well as results from two recent MR 

studies associating genetically higher TSH levels to decreased risk of AF.29,30 However, an 

individual patient data analysis of 30 085 participants (including 2574 AF cases) from 11 

cohorts showed only a suggestive association of lower TSH levels within the reference range 

with increased risk of AF (P for linear trend = 0.054).31 That analysis further showed that 

FT4 levels were positively associated with AF risk in euthyroid individuals.31 A positive 

association between genetically higher FT4 levels and AF was not detected in the present 

MR analysis, but we were unable to simultaneously control for TSH levels. In addition, 

these MR results reflect the association between lifelong higher FT4 levels on AF risk and it 

is unknown whether high FT4 levels during different periods in the life course differently 

affect the risk of developing AF.

An association between decreased TSH levels and increased risk of AF may in part be 

mediated by increased left ventricular mass8,10–12 and diastolic dysfunction,7 both of 

which are associated with an increased risk of AF,32,33 though the causal relationships 

remain unclear. Findings from an experimental study in mice showed that hyperthyroidism, 

with suppression of circulating TSH levels, leads to impaired Pitx2>Wnt>microRNA 

signaling,34 thus providing a molecular link between hyperthyroidism and AF since PITX2 
is one of the strongest genetic locus related to AF.25

A chief strength of this study is the MR approach, which reduces systematic biases (e.g., 

confounding and reverse causality) that can distort the results of conventional observational 

studies. Another major strength is that we examined the associations of thyroid function and 

dysfunction with AF, CAD and ischemic stroke using data from large-scale genetic 

consortia, which included a large number of cases. Hence, we had high statistical power to 

detect weak associations of the examined exposures and those outcomes. However, the 
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power was low in the analyses of several CVD outcomes measured in UK Biobank, in 

particular intracerebral and subarachnoid hemorrhage, abdominal and thoracic aortic 

aneurysm, and aortic valve stenosis. We thus cannot rule out that the lack of association with 

those outcomes are due to insufficient power. We could restrict the study populations (except 

in the CARDIoGRAMplusC4D consortium) to individuals of European ancestry, a 

constraint that reduced bias from population stratification. A limitation of any MR analysis 

is that pleiotropy cannot be ruled out as an explanation for an observed association. 

Nevertheless, we found no evidence that directional pleiotropy may have influenced the 

results. A further shortcoming is that we could not examine U-shaped associations or effects 

of very low or high TSH and FT4 levels or different combinations of TSH and FT4 levels on 

CVD risk.

Conclusions

This MR study supports evidence for a causal association between decreased TSH levels in 

the direction of a mild form of hyperthyroidism and increased risk of AF. Suggestive 

evidence of possible associations was found between thyroid dysfunction and some other 

CVD outcomes, including cardioembolic stroke. These findings may have clinical 

implications because they suggest that treatment of subclinical hyperthyroidism may be a 

complement to other possible prevention strategies for AF, such as reducing excessive 

alcohol consumption, tobacco control, reducing blood pressure, blood glucose, and body 

mass, and therapy for myocardial infarction and heart failure.35

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Associations of genetically decreased TSH levels, hyperthyroidism, hypothyroidism and 

increased FT4 levels with odds ratio of AF, CAD, and ischemic stroke and its subtypes 

based on data from the AFGen, CARDIoGRAMplusC4D and MEGASTROKE consortia. 

Odds ratios are expressed per one SD decrease of TSH levels, per one unit higher log-odds 

of hyperthyroidism and hypothyroidism and per one SD increase of FT4 levels. 

Hyperthyroidism = TSH levels below the reference range in the population; hypothyroidism 

= TSH levels above the reference range in the population.
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