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Abstract

We present a novel framework for the automatic discovery and recognition of motion primi-

tives in videos of human activities. Given the 3D pose of a human in a video, human motion

primitives are discovered by optimizing the ‘motion flux’, a quantity which captures the

motion variation of a group of skeletal joints. A normalization of the primitives is proposed in

order to make them invariant with respect to a subject anatomical variations and data sam-

pling rate. The discovered primitives are unknown and unlabeled and are unsupervisedly

collected into classes via a hierarchical non-parametric Bayes mixture model. Once classes

are determined and labeled they are further analyzed for establishing models for recognizing

discovered primitives. Each primitive model is defined by a set of learned parameters. Given

new video data and given the estimated pose of the subject appearing on the video, the

motion is segmented into primitives, which are recognized with a probability given according

to the parameters of the learned models. Using our framework we build a publicly available

dataset of human motion primitives, using sequences taken from well-known motion capture

datasets. We expect that our framework, by providing an objective way for discovering and

categorizing human motion, will be a useful tool in numerous research fields including video

analysis, human inspired motion generation, learning by demonstration, intuitive human-

robot interaction, and human behavior analysis.

1 Introduction

Activity recognition is widely acknowledged as a core topic in computer vision, witness the

huge amount of research done in recent years spanning a wide number of applications from

sport to cinema, from human robot interaction to security and rehabilitation.

Activity recognition has evolved from earlier focus on action recognition and gesture recog-

nition. The main difference being that activity recognition is completely general as it concerns

any kind of human activity, which can last few seconds or minutes or hours, from daily activi-

ties such as cooking, self-care, talking at the phone, cleaning a room, up to sports or recreation

such as playing basketball or fishing. Nowadays there are a number of publicly available data-

sets dedicated to the collection of any kind of human activity, likewise a number of challenges

(see for example the ActivityNet challenge [1]).
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On the other hand, the interest in motion primitives is due to the fact that they are essential

for deploying an activity. Think about sport activities, or cooking, or performing arts, which

require to purposefully select a specific sequences of movements. Likewise daily activities such

as cleaning, or cooking, or washing the dishes or preparing the table require precise motion

sequences to accomplish the task. Indeed, the compositional nature of human activities, under

body and kinematics constraints, has attracted the interest of many research areas such as in

computer vision [2, 3], in neurophysiology [4, 5], in sports and rehabilitation [6], and in bio-

mechanics [7] and in robotics [8, 9, 10].

The goal of this work is to automatically discover the start and end points where primitives

of 6 identified body parts occur throughout the course of an activity, and recognize each of the

occurred primitives. The idea is that these primitives sort out a non-complete set of human

movements, which combined together can form a wide range of human activities, in so pro-

viding a compositional approach to the analysis of human activities.

The steps of the proposed method are as follows. Given a video of a human activity both the

2D pose and 3D pose of the human are estimated (see [11], and also [12]). Once the 3D poses

of the joints of interest are determined, we compute the motion flux. The motion flux method

provides a model from first principles for human motion primitives, and it effectively discov-

ers where primitives begin and end on human activity motion trajectories.

Motion primitives discovered by the motion flux are unknown: they are segments of

motion about which only the involved specific body part is known. These primitives are col-

lected into classes by a non-parametric Bayes model, namely the Dirichlet process mixture

model (DPM), which gives the freedom to not choose the number of mixture components. By

suitably eliminating very small clusters it turns out that discovered primitives can be collected

into 69 classes (see Fig 12). For each of them the mixture model returns a parameter set identi-

fying the precise primitive class. We label the computed parameters with terms taken from the

biomechanics of human motion, by inspecting only a representative primitive for each discov-

ered class. Out of these generated classes we form a new layer of the hierarchical model, to gen-

erate the parameters for each class, further used for primitives recognition. Under this last

models each primitive category is approximated by a DPM with a number of components mir-

roring the inner idiosyncratic behavior of each primitive class.

Motion primitives classification is finalized by providing a label for each primitive. Namely,

given an activity (possibly unknown) and an unknown primitive discovered by motion flux,

we find the model the primitive belongs to, hence the primitive is labeled by that model.

Experiments show that the motion flux is a good model for segmenting the motion of body

parts. Likewise, the unsupervised non-parametric model provides both a good classification of

similar motion primitives and a good estimation of primitive labels, as shown in the results

(see Section 6). The approach therefore is quite general and it turns out to be very useful to any

researcher who would like to explore the compositional nature of any activity, using both the

proposed method and the motion primitives dataset provided.

To the best of our knowledge just few works, among which we recall [2, 3], have faced the

problem of discovering motion primitives in video activities or motion capture (MoCap)

sequences, quantitatively evaluating the ability to recognize them.

Despite the lack of works on motion primitives we show that they are quite an expressive

language for ascertaining specific human behaviors. To prove that, in a final application for

video surveillance, described in Section 7, we show that motion primitives can play a compel-

ling role in detecting distinct classes of dangerous activities. In particular, we show that dan-

gerous activities can be detected with off-the- shelf classifiers, once motion primitives have

been extracted in the videos. Comparisons with state of the art results prove the relevance of
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motion primitives in discovering specific behaviors, since motion primitives embed significant

time-space features easily usable for classification.

The contributions of the work, schematically shown in Fig 1 are the followings:

1. We introduce the motion flux method to discover motion primitives, relying on the varia-

tion of the velocity of a group of joints.

2. We introduce a hierarchical model for the classification and recognition of the unlabeled

primitives, discovered by the motion flux.

3. We show a relevant application of human motion primitives for video surveillance.

4. We created a new dataset of human motion primitives from three public MoCap datasets

([13], [14], [15]).

2 Related work

Human motion primitives are investigated in several research areas, from neurophysiology to

vision to robotics and biomechanics. Clearly, any methodology has to deal with the vision pro-

cess, and many of the earliest more relevant approaches to human motion highlighted that

understanding human motion requires view independent representations [16, 17] and that a

fine grained analysis of the motion field is paramount to identify primitives of motion. In early

days this required a massive effort in visual analysis [18] to obtain the poses, the low level fea-

tures, and segmentation. Nowadays, scientific and technological advances have made it possi-

ble to exploit several methods to measure human motion, such as the availability of a number

of MoCap databases [13, 15, 19], see for a review [20]. Furthermore recent findings result in

Fig 1. The above schema presents the proposed framework and the process to obtain from video sequences the discovered motion primitives.

https://doi.org/10.1371/journal.pone.0214499.g001
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methods that can deliver 3D human poses from videos if not even from single frames [21, 11,

22, 12]. Since then 3D MoCap data have been widely used to study and understand human

motion, see for example [23, 24, 25] in which Gaussian Process Latent Variable Models or

Dirichlet processes are used to classify actions, or [26] in which a non-parametric Bayesian

approach is used to generate behaviors for body parts and classify actions based on these

behaviors. In [27] temporal segmentation of collaborative activities is examined, or in [28] dif-

ferent descriptors are exploited to achieve arm-hand action recognition.

Neurophysiology

Neurophysiology studies on motion primitives [29, 4, 30, 31, 32, 33] are based on the idea that

kinetic energy and muscular activity are optimized in order to conserve energy. In these works

it has been observed that curvature and velocity of joint motion are related. Earliest works

such as Lacquaniti et al. [34] proposed a relation between curvature and angular velocity. In

particular, using their notation, letting C be the curvature and A the angular velocity, they

called the equation A ¼ KC2
3 the Two-Thirds Power law, valid for certain class of two-dimen-

sional movements. Viviani and Schneider [35] formulated an extension of this law, relating the

radius of curvature R at any point s along the trajectory with the corresponding tangential

velocity V, in their notation:

VðsÞ ¼ KðsÞ
RðsÞ

1þ aRðsÞ

� �b

ð1Þ

where the constants α� 0, K(s)� 0 and β has a value close to¼ 1

3
. An equivalent Power law

for trajectories in 3D space is introduced by [36] and it is called the curvature-torsion power

law and is defined as ν = ακβ|τ|γ, where κ is the curvature of the trajectory, τ the torsion, ν the

spatial movement speed, β and γ are constants.

Computer vision

The interpretation of motion primitives as simple individual actions or gestures is often pur-

ported, in any case they are related to segmentation of videos and 3D motion capture data.

Many approaches explore video sequences segmentation to align similar action behaviors [37]

or for spatio-temporal annotation as in [38]. Lu et al. [39] propose to use a hierarchical Markov

Random Field model to automatically segment human action boundaries in videos. Similarly,

[40] develop a motion capture segmentation method. Besides these works, only [41, 2, 3, 42]

have targeted motion primitives, to the best of our knowledge. [41] focuses on 2D primitives

for drawing, on the other hand [2] does not consider 3D data and generate the motion field

considering Lukas-Kanade optical flow for which Gaussian mixture models are learned. None

of these approaches provide quantitative results for motion primitives, but only for action

primitives, which makes their method not directly comparable with ours. [3, 42] use 3D data

and explicitly mention motion primitives, providing quantitative results. The authors account

for the velocity field via optical flow basing the recognition of motion primitives on harmonic

motion context descriptors. Since [3] deal only with upper torso gestures we compare with

them only the primitives they mention. In [42] the authors achieve motion primitives segmen-

tation from wrist trajectories of sign language gestures, obtaining unsupervised segmentation

with Bayesian Binning. Again here no comparison for motion primitives discovery or recogni-

tion is possible as original data are not available.
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Robotics

In robotics the paradigm of transferring human motion primitives to robot movements is par-

amount for imitation learning and, more recently to implement human-robot collaboration

[43]. A good amount of research in robotics has approached primitives in terms of Dynamic

Movement Primitives (DMP) [43] to model elementary motor behaviors as attractor systems,

representing them with differential equations. Typical applications are learning by imitation

or learning from demonstration [44, 45, 46, 47], learning task specifications [48], modeling

interaction primitives [8]. Motion primitives are represented either via Hidden Markov mod-

els or Gaussian Mixture Models (GMM). [49] present an approach based on HMM for imita-

tion learning of arm movements, and [50] model arm motion primitives via GMM.

It is apparent that in most of the approaches motion primitives are only observed and mod-

eled, instead we are able to learn and model them using respectively the motion flux quantity

and a hierarchical model. The main contribution of our work is indeed the introduction of a

new ability for a robot to automatically discover motion primitives observing 3D joints raw

pose data. The outcome of our approach is also a motion primitives dataset not requiring

human manual operation.

Our view of motion primitive shares the hypothesis of energy minimality during motion,

fostered by neurophysiology, likewise the idea to characterize movements using the proper

geometric properties of the skeleton joints space motion. However, for primitive discovery, we

go beyond these approaches capturing the variation of the velocity of a group of joints using

this as the baseline for computing the change in motion by maximizing the motion flux.

3 Preliminaries

The 3D pose of a subject, as she appears in each frame of a video presenting a human activity,

is inferred according to the method introduced in [11]. Other methods for inferring the 3D

pose of a subject are available, we refer in particular, to the method introduced by [12], which

improves [11] in accuracy.

3D pose data for a single subject are given by the joints configuration. Joints are associated

with the subject skeleton as shown in Fig 2 and are expressed via transformation matrices T in

SE(3):

T ¼
R d

01�3 1

" #

ð2Þ

Here R 2 SO(3) is the rotation matrix, and d 2 R3
is the translation vector. T 2 SEð3Þ has 6

DOF and it is used to describe the pose of the moving body with respect to the world inertial

frame. SO(3) and SE(3) are Lie groups and their identity elements are the 3 × 3 and 4 × 4 iden-

tity matrices, respectively. We consider an ordered listJ ¼ fj1
1
; j1

2
; . . . ; jmK� 1

; jmKg of K = 18

joints forming the skeleton hierarchy, as shown in Fig 2, with m = 1, . . ., 6 being the groups

each joint belongs to. The 6 groups G1, . . ., G6 we consider here correspond to head, torso,

right and left arm, right and left leg.

Each joint jmi , i = 1, . . ., 18, belonging to a group Gm, m = 1, . . ., 6, has one parent joint jm;?i ,

which is the joint of the group closest to the root joint root ¼ j2
4
2J , according to the skele-

ton hierarchy, namely it is the fourth joint in the ordered listJ and it belongs to the group

G2, the torso. Parent joints for each group are illustrated in yellow on the woman body in the

left of Fig 2, they are in the order ðj1
3
; j2

4
; j3

7
; j4

10
; j5

13
; j6

16
Þ.

A MoCap sequence of length N is formed by a sequence of frames of poses. Each frame of

poses is defined by a set of transformations fT k
i;m 2 SEð3Þ : k ¼ 1; . . . ;N;m ¼ 1; . . . ; 6g

Discovery and recognition of motion primitives in human activities
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involving all joints jmi 2J , i = 1, . . ., 18, according to the skeleton hierarchy. Given a MoCap

sequence of length N, for each frame k the pose of each joint is root-sequence normalized, to

ensure pose invariance with respect to a common reference system of the whole skeleton. Let

T k
i;m be the pose of the joint jmi , according to the skeleton hierarchy, at frame k in the sequence,

and let jm;?i be the parent node of jmi , then the root-sequence normalization is defined as follows:

T̂ k
i;m ¼ ððT

1

root;2Þ
� 1T 1

jm;?i ;mÞððT
k
jm;?i ;mÞ

� 1T k
i;mÞ: ð3Þ

Here ðT root;2Þ is the transformation of the root node, which is the joint j2
4

belonging to the

group G2, the torso. Eq (3) says that the pose T k
i;m of joint jmi 2 Gm at frame k is root-sequence

normalized if obtained by a sequence of transformations seeing first a transformation with

respect to its parent node ðT k
jm;?i ;mÞ

� 1
, at frame k, and then with respect to the transformation of

the parent node with respect to the root node, taken at the initial frame of the sequence. In Fig

3 are shown joints position data for each skeleton group after sequence-root normalization for

all sequences in the dataset. More details on the skeleton structure and its transformations can

be found in [26, 11].

Fig 2. The six groups partitioning the human body with respect to motion primitives are shown, together with the joints specifying each group

and the skeleton hierarchy inside each group: Joints in yellow are the parent joints in the skeleton hierarchy.

https://doi.org/10.1371/journal.pone.0214499.g002
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Fig 3. Sequences of joint positions, for each skeleton group, after the root-sequence normalization described in

Section 3. Position data are in cm. The green points show the most internal group joint data (e.g. the hip for the leg);

the yellow points show the intermediate group joint data (e.g. the knee for the leg); the red points show the most

external group joint data (e.g. the ankle for the leg). The joints data are collected from the datasets described in

Section 6.

https://doi.org/10.1371/journal.pone.0214499.g003
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4 Motion primitive discovery

We are considering now the problem of discovering and recognizing motion primitives within

a motion sequence displaying an activity in a video. An overview is shown in Fig 4. We begin

by providing the definition of a joint trajectory on which the temporal analysis is performed.

Definition 4.1 (Joint Trajectory). The trajectory of a joint j is given by the path followed by

the skeletal joint j in a given interval of time I = [t1, t2]. Formally:

xj : I � R 7!R3
; ð4Þ

Based on the definition above, motion primitives correspond to segments of the joint trajec-

tories of a group G. We identify motion primitives as trajectory segments where the variation

of the velocity of the joints is maximal and where the endpoints of the segment correspond to

stationary poses of the subject [51].

Preprocessing

To overcome problems related to the finite sampling frequency of the poses in the data, we

compute smooth versions of the joint trajectories by cubic spline interpolation. This interpola-

tion provides a continuous-time trajectory for all the joints of the group with smooth velocity

and continuous acceleration, satisfying natural constraints of human motion.

Motion flux

The motion flux captures the variation of the velocity of a group with respect to its rest pose.

The total variation of the joint group velocity is evaluated along a direction g that corresponds

to stationary poses of the group. For groups 1, 3 and 4 this direction is defined by the segment

connecting the ‘lowerneck’ and ‘upperneck’ joints while for groups 2, 5 and 6 by the segment

connecting the ‘root’ with the ‘lowerback’ joints.

Definition 4.2 (Motion Flux). Let G = {j1, . . ., jK} be a group consisting of K joints and vj

the velocity of joint j 2 G. The motion flux with respect to the time interval I = [t1, t2] is defined

as

Fðt2; t1Þ¼
: X

j2G

Z t2

t1

j _v jðtÞ � gj dt: ð5Þ

Discovery

In order to discover a motion primitive, we identify a time interval between two time instances

(endpoints) where the group velocity is minimal while the motion flux within the interval is

maximal. This is done by performing an optimization based on the motion flux of a group G,

as defined in Eq (5). More specifically, the time interval of a motion primitive is identified by

maximizing the following energy-like function:

Pðr; t0Þ¼
:
Fðr; t0Þ �

bv

2

X

j2G

kvjðrÞk
2 þ kvjðt0Þk

2

� �
þ bs

X

j2G

ðsjðrÞ � sjðt0ÞÞ; ð6Þ

where sjðtÞ ¼
R t

0
k _x jðtÞk dt is the arc length function of ξj. The last term of Eq (6) is a regular-

izer based on the length of the trajectory segment, introduced in order to avoid excessively

long primitives. The hyper-parameter βv acts as penalizer associated to the soft-constraint on

the stationarity of the poses at the start and end of the primitive, while βs controls the strength

Discovery and recognition of motion primitives in human activities
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Fig 4. Overview of motion primitive discovery and recognition framework. Primitives of the group ‘Arm’ from six

different categories are shown on the left. Primitives are discovered by maximizing the motion flux energy function,

presented here on the left side of the colored bar, though deprived of velocity and length components. These sets of

primitives are used to train the hierarchical models for each category. Primitives are then recognized according to the

learned models. The recognized motion primitive categories are depicted with different colors. On the right, the group

motion in the corresponding interval is shown.

https://doi.org/10.1371/journal.pone.0214499.g004
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of the regularization on the primitive length. Both βv and βs depend on the scaling of the data

and the sampling rate of the joint trajectories.

Given a starting time instant t0, a motion primitive is extracted by identifying the time

instant ρ, which corresponds to a local maximum of (6). The optimality condition of (6) gives:

X

j2G

j _v jðrÞ � gj � bv

_v jðrÞ

kvjðrÞk
� bs k

_x jðrÞk

 !

¼ 0: ð7Þ

Given the one-dimensional nature of the problem, finding the zeros of (7) and verifying

whether they correspond to local maxima of (6) is trivial.

Based on the previous we provide a formal definition of a motion primitive.

Definition 4.3 (Motion Primitive). A motion primitive of a group of joints G is defined

by the trajectory segments of all joints j 2 G corresponding to a common temporal interval

I ¼ ½tstart; tend� � R such that P(tstart;tend)> P(ρ;tstart) 8ρ 2 (tstart, tend). Namely

gI
G ¼ fxj1

ðtÞ; . . . ; xjK
ðtÞg for t 2 ½tstart; tend�: ð8Þ

Primitive discovery in an activity

A set of primitives is extracted from an entire sequence of an activity B by sequentially finding

the time instances which maximize (6).

Let t0 and tseq denote the starting and ending instances of the sequence, respectively. Let

also

tn ¼ arg max
r2½tn� 1 ;tseq �

Pðr; tn� 1Þ; ð9Þ

and I B ¼ f½tn� 1; tn� j n 2 N and tn � tseqg the set of time intervals defining successive motion

primitives in the sequence. The set of motion primitives discovered in the entire sequence B

is given by

GB

G ¼ fg
I
G j I 2 I Bg : ð10Þ

As noted in the introduction, and also shown in Fig 5, there is a significant motion variation

across subjects, activities and sampling rates. For example, for the upper limbs it is known that

the range of motion varies from person to person and is influenced by gait speed [52]. This is

in turn influenced by the specific task, and determining ranges of motion is still a research

topic [53] (for a review on range of motions for upper limbs, see [52]). This makes analysis

and recognition of motion primitives taken from different datasets, activities and subjects

problematic. To induce invariance with respect to these factors we apply anatomical

normalization.

More specifically, the main source of variation of the primitives is due to the anatomical dif-

ferences among the subjects. To remove the influence of these differences on the primitives we

consider a scaling factor kG based on the length ℓG of the limb defined by group G, namely

kG = 1/ℓG. Hence, given a primitive gI
G we scale the trajectory of each joint by the constant kG.

By applying the anatomical normalization to the entire collection of motion primitives for

group G discovered across all sequences of a datasetD we obtain the set of motion primitive of

the group, namely

GG ¼ fG
B

G j B 2 Dg: ð11Þ

Discovery and recognition of motion primitives in human activities
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In Section 6 we provide a quantitative evaluation of the normalization effectiveness,

together with a comparison with additional normalization candidates.

5 Motion primitive recognition

In the previous section we have shown that for each group of joints Gm, m = 1, . . ., 6, the

motion flux obtains the interval I = [tstart, tend] matching the joint trajectory of a sequence in so

determining a primitive as a path gI
Gm

: I � R 7!R9, given a video sequence of a human activ-

ity. Here R9
is due to the path being related to the 3 joints of each group Gm, as indicated in

Fig 2. We have also seen that the path is normalized by the link length of a limb, to limit varia-

tions due to bodies dissimilarities. For clarity from now on we shall denote each primitive with

γ unless the context requires to add superscripts and subscripts, and in general subscripts and

superscripts are local to this section, also we shall refer to the group a primitive or trajectory

belongs to both with Gm and more in general with G.

We expect that the following facts will be true of the discovered motion primitives:

1. Each primitive of motion is independent of the gender, (adult) age, and body structure,

under normalization.

Fig 5. Left: Motion flux of three motion primitives of group G3 labeled as ‘Elbow Flexion’, discovered from video

sequences taken from the ActivityNet dataset. Right: Motion primitives before and after the normalization, for clarity

only the curve of the out most joint is shown.

https://doi.org/10.1371/journal.pone.0214499.g005
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2. Each primitive of motion can be characterized independently of the specific activity, hence

the same primitive can occur in several activities (see Section 6 for a distribution of discov-

ered primitives in a set of activities).

3. The motion flux ensures that each unknown segmented primitive belongs to a class such

that: the number of classes is finite and the set of classes can be mapped onto a subset of

motion primitives defined in biomechanics (see e.g table 1.1 of [54]).

To show experimentally the above results we shall introduce a hierarchical classification.

The hierarchical classification first partitions the primitives of each group into classes. Once

the classes are generated a class representative is chosen and inspected to assign a label to the

class. We show that the classes correspond to a significant subset of the motion primitives

defined in biomechanics, thus ensuring a proper partition. Each class is then further parti-

tioned into subclasses to comply with the inner diversification of each class of primitives. This

last classification is further used for recognition of unknown discovered primitives.

Primitive recognition is used to both test experimentally the three above results of the intro-

duced motion flux method and for applications where discovering and recognition of primi-

tives of human motion is relevant (see for example [55]).

5.1 Solving primitive classes

We describe in the following the method leading to the generation of all the primitive classes

illustrated in Fig 12.

We consider three MoCap datasets [15, 13, 14] guaranteeing the ground truth for the

human pose and segment the activities according to the motion flux method, described in the

previous section. Let ΓG be the set of primitives collected for group G according to Eq (11). Let

γν 2 ΓG, ν = 1, . . ., S, with S the number of primitives in ΓG, gn ¼ ðx
n

j1
; x

n

j2
; x

n

j3
Þ is formed by the

trajectories of the joints in G. Out of these trajectories we choose the one of the most external

joint (see Fig 2) that we indicate with x
n

E. We order these trajectories, each designating a primi-

tive in group G, with an enumeration hGGnxEi
S
n¼1

, S the number of discovered primitives for

group G. Note that we can arbitrarily enumerate the primitives of a group, restricted to a single

joint, though they are unlabeled and unknown, and this is what the first model should solve.

At this step, model generation amounts to find the classes of primitives for each group G,

taking the trajectories x
n

E in the enumeration hGGnxEi
S
n¼1

as observations.

Feature vectors. Given a trajectory x
n

E, with ν the index in the enumeration hGGnxEi
S
n¼1

, a

feature vector is obtained by first computing curvature κ(s(t)) and torsion τ(s(t)) on the trajec-

tory x
n

E, where s(t) indicates the arc length as already defined in Section 4 for trajectories. Then

we take three contiguous points (xi−1, yi−1, zi−1), . . ., (xi+1, yi+1, zi+1) on the trajectory x̂nE deci-

mated by a factor of 5 [56], keeping the curvature and torsion of the sampled points, after deci-

mation. We choose curvature and torsion as they suffice to specify a 3D curve up to a rigid

transformation. The formed feature vector is indicated by F i, where the index i is the index of

the middle point (xi, yi, zi), it is of size 17 × 1 and it is defined as follows:

The last two elements n; njF i j
2 R of F i are indicators. Namely, the indicator ν is the index,

in the enumeration hGGnxEi
S
n¼1

, identifying the trajectory the 3 points belong to, the three

points are the first 6 element of the feature vector. On the other hand, the indicator njF i j
speci-

fies the number of features vectors the decimated trajectory x̂nE is decomposed into, here |�|

indicates the cardinality; These two indicators, allow to recover the path a feature vector

belongs to, and are normalized and denormalized as follows. Let FxG be the set of all feature

vectors for the trajectories in hGGnxEi
S
n¼1

, and let their number be W. Accordingly, let
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njF j ¼ ðnjF1 j
; . . . ; njFW j

Þ, then the normalization and denormalization for the element njF i j

(and similarly for ν) is defined as follows, with g indicating the denormalization:

n̂ jF i j
¼

njF i j
� minðnjF jÞ

maxðnjF jÞ � minðnjF jÞ

gðn̂ jF ij
Þ ¼ n̂ jF i j

ðmaxðnjF jÞ � minðnjF jÞÞ þminðnjF jÞ

ð12Þ

Generation of the primitives classes. Given the feature vectors for each trajectory in the

enumeration hGGnxEi
S
n¼1

, the goal is to cluster them and return a cluster for each class of primi-

tives. Since we do not even know the number of classes the primitives should be partitioned

into, a good generative model to approximate the distribution of the observations is the

Dirichlet process mixture (DPM) [57, 58]. The Dirichlet process assigns probability measures

to the set of measurable partitions of the data space. This induces in the limit a finite mixture

since, by the discreteness of the distributions sampled from the process, parameters have posi-

tive probability to take the same value, in so realizing components of the mixture. Here we

assume that feature vectors in the data space are realizations of normal distributions with a

conjugate prior. Namely the variables have precision priors following the Wishart distribution

and location parameters prior following the normal distribution. The Dirichlet mixture model

is based on the definition of a Dirichlet process P(�, �) with P* DP(H, α) (D being the

Dirichlet distribution), where H is the base distribution and α the precision parameter of the

process (see [59]). In the Dirichlet process mixture the value of the precision α of the underly-

ing Dirichlet process influences the number of classes generated by the model.

For determining the number of classes for each group G we estimate the posterior P(α|G),

of the precision parameter α according to a mixture of two gamma distributions, as described

in [60], choosing the best value. This is a rather complex simulation process since it requires

different initializations of the parameters of the gamma distribution for α within the estima-

tion of the parameters of the DPM, for each group G. Here the parameters of the DPM are

estimated according to [61]. Distributions of α for the groups G1, G2 and G3, according to dif-

ferent simulation processes, are given in Fig 6 where the number of components k for the max-

imum values of each distribution, are indicated. Finally the DPM returns the parameters of the

Fig 6. Number k of components for groups G1, G2 and G3. Values of k are computed adjusting α so as to maximize

the posterior p(α, Gm), given the data, namely the sampled primitives in the groups.

https://doi.org/10.1371/journal.pone.0214499.g006
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components (for each group G) given the feature vector F i, as:

YG ¼ hk; fYw j Yw ¼ ðpw; mw;SwÞ;w ¼ 1; . . . ; kgi; k � 1:

pðF ijYGÞ ¼
Pk

w¼1
pwN ðF ijmw;SwÞ:

ð13Þ

Note that the number of components k is unknown and estimated by the DPM, hence it is one

of the parameters for each group. The parameters μw and Sw are the mean vector and covari-

ance matrix of the w-th Gaussian component of the mixture, indicated byN , and πw is the w-

th weight of the mixture, with ∑w πw = 1. Hence, pðF ijYGÞ is the probability of the feature vec-

tor F i, given the parameters ΘG.

We expect that each Θw 2 ΘG indicates the parameters of a component CG
w, collecting prim-

itives of the same type, in group G. In other words, we expect that two feature vectors, say

F p;F q, of group G, belong to the same component if their likelihood are both maximized by

the same parameters Θw 2ΘG.

Assigning primitives to classes. The classification returns, for each group Gm, the num-

ber k of components indicated in Fig 12, say k = 10 for G1, G5, G6, k = 7 for G2 and k = 16 for

G3, G4, also thanks to the specification of the α parameter, as highlighted above (see Fig 6).

Components are formed by features vectors. To retrieve the trajectories and generate a corre-

sponding class of primitives, ready to be labeled, we use the normalized indicators placed in

position 16th and 17th of the feature vector (Fig 7) and the denormalization function g. Let

CGm
w be a component of the mixture of the group Gm, identified by parameters Yw 2 YGm

.

Algorithm 1 shows how to compute the class of primitives:

Algorithm 1: Obtaining classes of primitives from DPM components. Here |�| indicates

cardinality.
Input: Component CGm

w of DPM
Output: Class L Gm

w of primitives
Initialize Un

xE
¼ ;, ν = 1, . . ., S, S number of primitives in GGm

foreach Feature vector F i in CGm
w do

compute g(ν) and associate it with the trajectory x
n

E;
Un
xE
¼ fF ig [ Un

xE
;

compute gðnjFjÞ, number of feature vectors the trajectory x
n

E is decom-
posed into;
end
if jUn

xE
j � 0:8gðnjFjÞ then

find the primitive gn 2 GGm
designated by x

n

E

assign the pair (γν, Θw) to L Gm
w

end
return Class L Gm

w .

At this point we have generated the classesL Gm
w , w = 1, . . ., k, k 2 {7, 10, 16} of primitive for

each group Gm. To label the classes we proceed as follows. Let

pðgnjYwÞ ¼ 1=gðnjF jÞ
P

ipðF ijYwÞdðF iÞ, where dðF iÞ ¼ 1 if F i 2 Un
xE

and 0 otherwise. For

each classL Gm
w the class representative is the primitive maximizing p(γν|Θw). The representa-

tive primitive is observed and labeled by inspection, according to the nomenclature given in

Fig 7. Transposed feature vector of 3 contiguous sampled points on the decimated trajectory.

https://doi.org/10.1371/journal.pone.0214499.g007
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biomechanics, see [54]. The same label is assigned to the classL Gm
w , without need to inspect all

other primitives assigned to the class.

Average Hausdorff distances between each primitive in a class and its class representative,

for each class in group G2, are given in Table 1. Note that in Table 1 Rw is the class representa-

tive, so Rw 2 L
Gm
w , w = 1, . . ., 7; 8xEnRw

abbreviates 8xE 2 L
G2
w ; xE 6¼ Rw. Finally,L w abbrevi-

atesL G2
w . Note that distances with elements of other classes are obviously not considered,

hence the dashes in other classes columns.

5.2 Models for recognition

The recognition problem is stated as follows. Given an unlabeled primitive γu, for group Gm

obtained by segmenting an activity (from any dataset) with the motion flux method, γu is

labeled by the label of classL Gm
w , if:

pðgujYwÞ > pðgujYiÞ; 8i; i 6¼ w ð14Þ

We found experimentally that relying on the same parameters used for finding the classes

of primitives, described in the previous sub-section, does not lead to optimal results. In fact,

recomputing a DPM model for each class and introducing a loss function on the set of hypoth-

eses, computed by thresholding the best classes, leads to an improvement up to the 20% in the

recognition of an unknown primitive.

To this end we compute a DPM for each classL Gm
w using as observations the primitives col-

lected in the class, by Algorithm 1. Therefore the generated DPM modelM w for each class

L Gm
w is made by a number of components with parametersYw ¼ fYw1

; . . . ;Ywr
g, with ρ vary-

ing according to the components generated for classL Gm
w . The number of components mir-

rors the idiosyncratic behavior of each class of primitives, therefore ρ varies for each class

L Gm
w . To generate these DPM models we use all the three trajectories of the primitives

g 2 L Gm
w , and for each of them we use the same decimation and feature vector as shown in

Fig 7.

Given the refined classification, the recognition problem, at this point, is stated as follows.

Let gu ¼ ðxu1
; xu2

; xu3
Þ be an unknown primitive, of a specific group G, and let fF u1

; . . . ;F uq
g

be the set of features the three trajectories are decomposed into. Then gu 2 L
Gm
w , hence is

labeled by the label of this class, if:

pðF u1
; . . . ;F uq

jYwÞ ¼
Xr

j¼1

pj

Yq

n¼1

pðF un
jYwj
Þ > pðF u1

; . . . ;F uq
jYhÞ ¼

Xr
0

j¼1

p0j

Yq

n¼1

pðF un
jYhj
Þ ð15Þ

for any parameter set Θh associated with a classL Gm
h of the group Gm. Here πj and p0j are the

Table 1. Average Hausdorff distance to each class representative in G2.

R1 R2 R3 R4 R5 R6 R7

8xEnR1
2 L 1 0.121 - - - - - -

8xEnR2
2 L 2 - 0.173 - - - - -

8xEnR3
2 L 3 - - 0.144 - - - -

8xEnR4
2 L 4 - - - 0.112 - - -

8xEnR5
2 L 5 - - - - 0.081 - -

8xEnR6
2 L 6 - - - - - 0.142 -

8xEnR7
2 L 7 - - - - - - 0.114

https://doi.org/10.1371/journal.pone.0214499.t001
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mixture weights, with ∑j πj = 1 and ρ, ρ0 indicate the number of components of the chosen

models. For example, the model of classL G2
w , with w = 1, will have a set of parameters

Yw ¼ fYw1
; . . . ;Ywr

g, while the model of classL G2

w0 , with w0 = 3, will have a set of parameters

Yw0 ¼ fYw0
1
; . . . ;Yw0

r0
g, with wr 6¼ w0

r0
.

This formulation is much more flexible than (14), also because it computes the class label

by considering all the components and therefore it does not care whether the features are scat-

tered amid components, and does not need to reconstruct the whole trajectories as was done

for generating the classes of primitives. Furthermore, under this refined classification we can

improve (15) considering a geometric measure to reinforce the statistics measure in the choice

of the class label for γu.

More precisely, let us form a set of hypotheses for an unknown primitive with feature set

fF u1
; . . . ;F uq

g as follows (we are still assuming a specific group Gm):

H ¼ fhCwj
;Ywj
ij
Yq

n¼1

pðF un
jYwj
Þ > Z; hCwj

;Ywj
i 2M w;w ¼ 1; . . . ; kg ð16Þ

Namely Cwj
is a component of the DPMM w, with w = 1, . . ., k, k the number of classes in

group Gm, and j = 1, . . ., ρ, such that the associated parameter Ywj
makes the joint probability

of the features, the primitive is decomposed into, greater than a threshold η. This means that

we are collecting inH those components coming from all the models of group Gm, whose joint

probability of the feature set of the unknown primitives γu forms an hypotheses set, or a set

from which we can select the correct label to assign to γu.

The advantage of the hypotheses set is that we delay the decision of choosing the labeled

class for the unknown primitive to further evidence, which we collect by using geometric mea-

sures. The role of these geometric measures is essentially to evaluate the similarity between the

curve segments coming out from the features of γu and those coming from the observations

which are indexed in the components inH. In the following we succinctly describe the new

geometric features, which are computed as follows, both for the features of the unknown prim-

itive γu and for the features coming from the observations indexed in Cwj
. Let us consider any

pair hCwj
;Ywj
i 2 H, by definition (16), Cwj

indexes features fF n1
; . . . ;F ns

g, s varying accord-

ing to the specific component Cwj
. For each of these features we consider the points of the tra-

jectory ξν, recovered from the decimated trajectory x̂n, between (xi−1, yi−1, zi−1) and (xi+1, yi+1,

zi+1). Let us consider these curve segments, which we combine whenever they occur in

sequence in Cwj
and call any of these curve segments y. In particular, the collection of these seg-

ments in Cwj
is called the manifold of Cwj

, denoted manðCwj
Þ, and the collection of segments

generated from the features of γu is denoted man(γu), examples are given in Fig 8.

We compute for each y both in manðCwj
Þ and in man(γu) the tangent t, normal n and

binormal b vectors. Based on these vectors, we compute the ruled surfaceR ¼ n�n0
kn�n0k, where n0

is the derivative of n. The ruled surface forms a ribbon of tangent planes to the curve segment

y. In particular, let us distinguish the curve segments in man(γu) denoting them yu. We com-

pute the distances between any curve segment y 2 manðCwj
Þ and yu 2man(γu) as the distance

between the projection yπ of y on the ruled surface tangent to y, and the closest point q of yu to

yπ. We denote this distance δ(yu, y). We consider also the distance between the Frenet frames

at closest points q of yu and point q0 of yπ denoted FR and computed as follows: FR(q, q0) =

trace((I − Rq,q0)(I − Rq,q0)
>), with I the identity matrix and Rq,q0 the rotation, in the direction

from q to q0. Then the cost of a component Cwj
inH, given an unknown primitive γu, with
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feature set fF u1
; . . . ;F uq

g, is defined as:

CostðCwj
2 HjguÞ ¼ maxfdðyu; yÞ þ FRðq; q0Þjyu 2 manðguÞ and y 2 manðCwj

Þg ð17Þ

Note that both δ(yu, y) and FR(q, q0) were both computed looking at the minimum distance

between a considered curve segment and the projection on the ruled surface of the other curve

segment. Hence the component minimizing the above cost and maximizing the probability in

(15) will indicate the class label, since its related parameter indicates exactly a component of

one of the classesL Gm
w . Note that if in (15) η is taken to be equal to maxð

Qq
n¼1

pðF un
jYwj
ÞÞ

thenH would have only a single element hCwj
;Ywj
i. Hence to find the correct label for γu we

push η as high as possible using the above cost. More precisely, the component of the class

L Gm
w which should label the unknown primitive γu is computed as follows:

C? ¼ arg min
Cwj

sup
Z

fCostðCwj
2 HjguÞj

Yq

n¼1

pðF un
jYwj
Þ > Zg ð18Þ

To conclude this section we can note that the computation of the hierarchical model that

first generates the primitive classes and then uses these generated sets to estimate model

parameters to be used in the recognition of an unknown primitive, has an exponential cost, in

the dimension of the features and in the size of the observations. However using the computed

models to recognize an unknown primitive is Oðn2log nÞ where n is the size of γu, since all the

curve segments in the models can be precomputed together with the models. Results on both

the primitive generation and on recognition are given in the next section.

6 Experiments

In this section we evaluate the proposed framework for discover and classification of human

motion primitives. For all the evaluations we consider three reference MoCap public datasets

[15, 13, 14].

First we evaluate the accuracy of the motion primitives discovered using the motion flux,

further we evaluate the accuracy of the classification and recognition. Additionally, we exam-

ine the distribution of recognized primitives with respect to the type of performed activity on

Fig 8. Manifold generated by a component of the DPM model for Elbow flexion on the left and from a component

of Shoulder abduction on the right.

https://doi.org/10.1371/journal.pone.0214499.g008
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the ActivityNet dataset [1]. Finally, we address the dataset of human motion primitives we

have created, which consists of the primitives discovered on the three reference MoCap data-

sets using the motion flux, and the DPM models established for each primitive category.

6.1 Reference datasets

The datasets we consider for the evaluation of the motion flux are the Human3.6M dataset

(H3.6M) [13], the CMU Graphics Lab MoCap database (CMU) [14] and the KIT Whole-Body

Human Motion Database (KIT-WB) [15]. The sampling rates used in these datasets are 50Hz

for H3.6M, 60/120Hz for CMU and 100Hz for KIT-WB. In order to have the same sampling

rate for all sequences we have transformed all of them to 50Hz. The pose of the joints specified

in Fig 2 are extracted for each frame of the sequences as described in the preliminaries, consid-

ering the ground-truth 3D poses. For KIT-WB the trajectories of the joints are computed from

the marker positions taken from the C3D files. We considered 40 activities from the three ref-

erence datasets. Fig 9 shows the total number of motion primitives discovered for the five

most general activities according to the ActivityNet taxonomy based on the motion flux for

each group Gm. Table 2 shows the total number of motion primitives discovered from the

three datasets.

6.2 Motion primitive discovery

To evaluate the accuracy of primitive discovery based on the motion flux, we created a baseline

relying on a synthetic dataset of motion primitives. This was necessary to mitigate the difficulty

in measuring accuracy, due to the lack of a ground truth.

The synthetic dataset of motion primitives we created is formed by animations of 3D

human models for each of the 69 primitive classes discovered in Sec. 5. The human models

were downloaded from the dataset provided by [62] or acquired from [63, 64]. To obtain fur-

ther characters the shapes of the human models were randomly modified taking care of

human height and limb length limits.

Animations of the characters were produced moving the skeleton joints belonging to the

3D human models from a start pose to an end pose representing the primitives. Specifically,

for each primitive of each skeleton group the animation was generated in Maya or Blender

(depending on the 3D human model format) moving the group joints according to angles, gait

speed and limbs proportions as described in [52, 53, 54, 55].

The dataset reference skeleton, see Fig 2 is matched with the 3D human mesh models by fit-

ting the joint poses of the synthetic data to the reference skeleton, basing on MoSh [65, 66].

Examples of synthetic motion primitives, namely the primitives Shoulder abduction and

Elbow flexion for the right arm, and Hip abduction and Knee flexion for the left leg, are illus-

trated in Fig 10, where for each primitive four representative poses extracted from the anima-

tions are shown.

The baseline for evaluating accuracy was created generating 4500 random length sequences

of synthetic motion primitives placing them one after another in a random order. Between

two consecutive primitives a transition phase from the end pose of the preceding one to the

beginning pose of the subsequent one was added.

With this procedure we know precisely the endpoints of each primitive.

Then we applied the ‘motion flux’ method described in Sec. 4 to the 3D joints trajectories

extracted from the automatically generated sequences and collected the end points of the dis-

covered primitives.

We use the Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) metrics to

assess the accuracy of the collected endpoints with respect to the known end points in the
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Fig 9. Total number of discovered primitives for each group for the five most general categories of the ActivityNet

dataset. Clock-wise from top-left: Eating and drinking Activities; Sports, Exercise, and Recreation; Socializing, Relaxing,
and Leisure; Personal Care; Household Activities. Each color corresponds to a different group following the convention

of Fig 12. Note: Axes scale is shared among the plots.

https://doi.org/10.1371/journal.pone.0214499.g009

Table 2. Total number of unlabeled primitives discovered for each group using the motion flux on the reference

datasets.

G1 G2 G3 G4 G5 G6

Total 1665 759 1773 1703 1152 1015

https://doi.org/10.1371/journal.pone.0214499.t002
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generated sequences. Let S be the total number of generated sequences. Let fêi;sg
NðsÞG
i¼1

be the i-th

automatically discovered endpoint based on the motion flux for the generated sequence s =

{1, . . ., S}, with NðsÞG the number of primitives for Group G and sequence s. Denoting f�ei;sg
NðsÞG
i¼1

the i-th endpoint in the generated sequence s, the MAE and RMSE metrics are defined as fol-

lows:

MAE ¼
1

S

XS

s¼1

PNðsÞG
i¼1 j�ei;s � êi;sj

NðsÞG

;RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

S

XS

s¼1

PNðsÞG
i¼1 ð�ei;s � êi;sÞ

2

NðsÞG

v
u
u
t

:

Results shown in Table 3 prove that the proposed method discovers motion primitives

quite accurately, since the endpoints are close to those of the automatically generated

sequences.

Fig 10. Example of synthetic motion primitive, specifically right arm Shoulder abduction (first row) and Elbow

flexion (second row), left leg Hip abduction (third row) and Knee flexion (fourth row). For each synthetic motion

primitive the four imaged poses match four representative poses extracted from the animation of the aforementioned

primitive.

https://doi.org/10.1371/journal.pone.0214499.g010
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Furthermore, to evaluate the effects of the normalization in Fig 11 we show the arc length

distribution of motion primitives with and without normalization, as well as considering dif-

ferent normalization constants.

For comparison we consider alternative normalization constants based on anatomical

properties and execution style. Specifically, we consider normalization based on the average

velocity along γ 2 ΓG, denoted as k �v k, and based on the area AG covered by group G during

its motion. The first is related to the execution speed of the motion and the sampling rate of

the data, while the latter is considering anatomical differences among the subjects.

In Fig 11 the first box in each plot corresponds to the original distribution and the following

boxes correspond to the distributions resulting by scaling the original one with k�v k, k�v k =AG,

1/ℓG, and 1/AG, respectively. We note that normalizing the primitives based on the inverse of

the limb length, i.e. ℓG, consistently results to an arc length distribution closer to the normal,

minimizing the number of outliers indicated by red crosses in the figure. This result is consis-

tent across different activities and groups justifying the choice of kG = 1/ℓG for anatomical

normalization.

6.3 Motion primitive classification and recognition

As discussed in Section 5, the set of primitive categories for each group is generated by a DPM

model given the collection of discovered primitives as observations. In this way a total of 69

types of primitives were identified, each described by the distribution parameters. By inspect-

ing a representative primitives for each category, we observed that they correspond to a subset

of motion primitives defined in biomechanics. Therefore we generated new DPM models to

obtain parameters and corresponding labels for each category. The labeled collection of

motion primitives is depicted in Fig 12.

To evaluate the coherence of the generated classes we performed 10 cycles of random sam-

pling, with a rate of 10% at each cycle, of the primitives in each class and verified the class

Table 3. Accuracy of discovered primitive endpoints (in number of frames).

G1 G2 G3 G4 G5 G6 Overall

MAE 2.8 3.2 2.9 3.4 3.6 4.1 3.3

RMSE 3.7 4.2 4.1 4.6 4.8 5.2 4.4

https://doi.org/10.1371/journal.pone.0214499.t003

Fig 11. Arc length distribution of original and scaled primitives of a specific category for group G1 (left) and G4

(right). The first box in each box plot, corresponds to the original arc length distribution, the next four are the arc

length distributions obtained scaling the primitives original data using the detailed scaling factors. Each box indicates

the inner 50th percentile of the trajectory data, top and bottom of the box are the 25th and 75th percentiles, the

whiskers extend to the most extreme data points not considered outliers, crosses are the outliers.

https://doi.org/10.1371/journal.pone.0214499.g011

Discovery and recognition of motion primitives in human activities

PLOS ONE | https://doi.org/10.1371/journal.pone.0214499 April 1, 2019 21 / 39

https://doi.org/10.1371/journal.pone.0214499.t003
https://doi.org/10.1371/journal.pone.0214499.g011
https://doi.org/10.1371/journal.pone.0214499


consistency. Only *2% of the primitives were not correctly classified, according to the label

assigned to the class.

For the recognition we adopted the protocol P2 used for pose estimation (see [11, 67])

using one specific subject for testing. Table 4 presents the average accuracy of the recognition

for each group, as well as an ablation study with respect to the components of the cost function

used in Eq (18). Fig 13 shows the corresponding confusion matrices. The results suggest that

Table 4. Primitive recognition accuracy and ablation study.

Group Projection on tangent plane Frenet frame rotation Torsion Curvature All

G1 0.82 0.80 0.70 0.72 0.84 (0.82)

G2 0.85 0.82 0.75 0.75 0.86 (0.84)

G3 0.80 0.80 0.73 0.74 0.82 (0.78)

G4 0.80 0.79 0.75 0.77 0.83 (0.76)

G5 0.87 0.86 0.72 0.72 0.88 (0.81)

G6 0.86 0.86 0.71 0.73 0.88 (0.82)

Average 0.83 0.82 0.73 0.76 0.85 (0.81)

https://doi.org/10.1371/journal.pone.0214499.t004

Fig 12. Diagram showing the motion primitives of each group. Abbreviation ext stands for external, int for internal, rot for rotation, exten for

extension, and flex for flexion.

https://doi.org/10.1371/journal.pone.0214499.g012
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the DPM classification together with the proposed recognition method capture the main char-

acteristics of each motion primitive category.

Finally, we evaluate the recognition accuracy by considering the same sequences though

computing the subject’s pose directly from the video frames using [11]. The corresponding

results are shown in parentheses in the last column of Table 4. We note that the recognition

accuracy decreases in average just by 4% by using the estimated pose.

6.4 Primitives in activities

We examine the distribution of discovered motion primitives with respect to the activities

been performed by the subjects. We perform our analysis on the sequences of the ActivityNet

Fig 13. Confusion matrices for motion primitive recognition. The matrices for G1 and G2 are shown at the top, G3

and G4 at the middle, while G5 and G6 are shown at the bottom.

https://doi.org/10.1371/journal.pone.0214499.g013
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dataset. More specifically we use the 3D pose estimation algorithm of [11] on the video

sequences of ActivityNet. We then extract motion primitives using the motion flux and

perform recognition based on the extracted poses. We consider only the segments of the vid-

eos labeled with a corresponding activity. Additionally, we use only the segments were a

single subject is detected and at least the upper body is visible. Fig 14 display the distribution

of the motion primitives for the five most general activities according to the ActivityNet

taxonomy.

Fig 14. Distribution of the 69 primitives for the five most general categories of the ActivityNet dataset. Clock-wise

from top-left: Eating and drinking Activities; Sports, Exercise, and Recreation; Socializing, Relaxing, and Leisure;

Personal Care; Household Activities. Each color corresponds to a different group following the convention of Fig 12.

https://doi.org/10.1371/journal.pone.0214499.g014

Discovery and recognition of motion primitives in human activities

PLOS ONE | https://doi.org/10.1371/journal.pone.0214499 April 1, 2019 24 / 39

https://doi.org/10.1371/journal.pone.0214499.g014
https://doi.org/10.1371/journal.pone.0214499


6.5 Motion primitives dataset

The dataset of annotated motion primitives extracted from the MoCap sequences of H3.6M

[13], CMU [14] and KIT-WB [15] has been made publicly available at https://github.com/

MotionPrimitives/MotionPrimitives. The dataset provides the start and end frames of each

motion primitive together with the corresponding label as well as a reference to the MoCap

sequence from which the motion primitive has been extracted.

6.6 Comparisons with state of the art on motion primitive recognition

We consider here the results of [3], so far the only work providing quantitative results on

human motion primitives, as far as we know. Here performance is evaluated for 4 actions of

the arms (gestures), namely Point right, Raise arm, Clap and Wave. The authors perform two

tests, one without noise in the start and end frames of the primitives and one where the primi-

tives are affected by noise. In the noise-free case their overall accuracy is 94.4% while in the

presence of noise the accuracy is 86.9%. Our results are not immediately comparable with the

ones of [3] since we use public datasets (see above §6.1, while they have built their own dataset,

which is not publicly available. Furthermore, we have obtained by our classification process 16

primitives for each arm which are in accordance with biomechanics primitives. This notwith-

standing, we mapped their 22 primitives, denoted by the letters A, . . ., V to our defined primi-

tives of the groups of Left arm and Right arm (see Table 5). To maintain the use of public

datasets we have extracted videos from our reference datasets (see above §6.1) to obtain the 4

above mentioned gestures from 10 different subjects. Hence, we have computed the motion

primitives recognition accuracy on these video sets, to compare with [3]. The results are

shown in Table 5.

In Table 5 the capital letters in the first column indicate the primitives in the language of

[3]. In the second column are listed the actions formed by the primitives indicated in the first

column. In the first row are indicated the primitive taken from our biomechanics language,

which we mapped on the [3] primitives. Results are on the diagonal, in gray the results of [3].

We have indicated in parentheses the values illustrated in the confusion matrices. While the

values in the confusion matrices were mean precision averages over all experiments for all

actions in all the considered datasets, here the results are with respect to an amount of videos

Table 5. Comparison with the 22 motion primitives of [3].

Shoulder

abd.

Shoulder

add.

Elbow

ext.

Elbow

flex.

Shoulder Int. Rot. and

elbow flex.

Shoulder Ext. Rot. and

elbow ext.

Elbow Upper

med. flex.

Elbow Upper

med ext.

A,B,C Point

right

92.3 96.8

D,E,F (89.6) (93.5)

82.5

G,H,I Raise

arm

84.5 77.5

J,K,L (81.4) (73.6)

87.5

M,N,O Clap 91.7 89.2

P,Q,R (87.6) (85.9)

90.0

S,T Wave 85.4 87.7

U,V (81.3) (82.9)

87.5

https://doi.org/10.1371/journal.pone.0214499.t005
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comparable to the experiments of [3], hence they are significantly better for the indicated

primitives. Despite the results are not quite comparable since we have measured our results on

public databases, and in 3D, we can observe that our approach outperforms in all but one case

the results in [3].

6.7 Discussion

The results show that our framework discovers and recognizes motion primitives with high

accuracy with respect to the manually defined baseline while providing competitive results

with respect to [3], the only work, to the best of our knowledge, providing quantitative results

on similarly defined motion primitives.

Additionally, given the importance of studying human motion in a wide spectrum of

research fields, ranging from robotics to bioscience, we believe that the human motion primi-

tives dataset will be particularly useful in exploring new ideas and for enriching knowledge in

these areas.

7 An application of the motion primitives model to surveillance

videos

In this section we show how to set up an experiment by using motion primitives. In particular,

the application we have chosen is the detection in surveillance videos of dangerous human

behaviors. To set up the experiment we consider videos of anomalous and dangerous behav-

iors, and prove that idiosyncratic primitives, among those identified in Fig 12, appear to char-

acterize these behaviors. The application is quite interesting because it highlights how the

combination of primitives allows to detect specific human behaviors. On the one side the

motion primitives are used for detection and on the other side they can be used also for charac-

terizing classes of actions or classes of activities.

7.1 Related works and datasets on abnormal behaviors

There is a significant amount of literature on abnormality detection in surveillance videos.

Only few of them, though, are concerned with dangerous behaviors. These methods can be

further divided into those detecting dangerous crowd behaviors, in which the individual

motion is superseded by large flows as in [68, 69, 70, 71], and those detecting closer dangerous

human behaviors.

Among the latter there are methods focusing on fights [72], methods specialized on vio-

lence [73, 74, 75, 76], on aggressive behaviors [77], and on crime [78]. A review on methods

for detecting abnormal behaviors, taking into account some of the above mentioned ones, and

also discussing available datasets, is provided in [79].

In the last years, also due to the above studies, a number of datasets have been created from

real surveillance videos, or from movies repositories. The most used ones are UCSD Anomaly
[80], Avenue Dataset [81], the Behave [82] dataset, the Violent Flows dataset [71], the Hockey
Fight Dataset [83], the Movies Fight Dataset from [83] too and, finally, the recent UCF-crime
introduced by [78]. To these datasets some authors, studying abnormal behaviors in surveil-

lance videos, have added specific activities from UCF101 [84].

To detect dangerous behaviors we considered four of the above datasets most suitable for

the task of analyzing human behaviors with small groups of subjects. The first dataset is the

Hockey Fight Dataset provided by [83], which is formed by 1000 clips of actions from hockey

games of the National Hockey League (NHL). A second dataset, also introduced by [83] is the

Movies Fight dataset, which is composed of 200 video clips obtained from action movies, 100
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of which show a fight. Videos in both these datasets are untrimmed but divided in those where

there are fights and those where there are no fights. The third dataset is the UCF-Crime dataset
introduced by [78]. This dataset is formed by 1900 untrimmed surveillance videos of 13 real-

world anomalies, including abuse, arrest, arson, assault, road accident, burglary, explosion,
fighting, robbery, shooting, stealing, shoplifting, and vandalism, and normal videos. These vid-

eos have varying length from 30 sec. up to several minutes. In a number of these videos, like

explosion and road accident, no human behavior is observable. Among the others there are a

number of videos not including human behaviors. Therefore we have chosen a subset of all the

UCF-crime dataset for both training and testing. In particular, we have chosen abuse, arrest,

assault, burglary, fighting, robbery, shooting, stealing, and vandalism. Finally we have taken

videos from UCF101 dataset, which includes 101 human activities.

Given the above selected datasets we aim at showing that once the primitives are computed

an off-the-shelf classifier can be used to detect specific behaviors, in this case the dangerous

ones.

The method we propose requires to compute the primitives on a selected training set, sepa-

rating the untrimmed videos with dangerous behaviors from the normal ones, as described

below, and then training a non-linear kernel SVM on the two datasets, as illustrated in §7.3.

The trained classifier is then tested on the test sets and results are reported in §7.4, comparing

with state of the art approaches.

The main idea we want to convey here is that once primitives are computed all the relevant

features for distinguishing a behavior are embedded in the primitive category of the specific

group (see §7.4) and therefore the classifier has to deal just with them and not with other fea-

tures such as poses, images, time and tracking, in so alleviating the classifier burden and allow-

ing to deal with state of the art classifiers. Furthermore, the primitive parameters, used to

estimate the primitive classes, are no more needed for the further classification of behaviors.

This is the main advantage of human motion primitives modeling, namely their effectiveness

in characterizing specific behaviors.

7.2 Primitives computation

For primitives computation we collected all the videos from hokey and fight-movie datasets,

we collected from the UCF-crime dataset the videos from abuse, arrest, assault, burglary, fight-
ing, robbery, shooting, stealing, and vandalism. Finally, from UCF101 we collected 276 videos

from the datasets Punch and SumoWrestling and further 276 videos from other sports, ran-

domly chosen as in [72]. The total number of videos collected is 3050 for primitive computa-

tion, as illustrated in Table 6.

To compute the primitives for each subject from a small group of people appearing in a

frame of a video, we have fitted 3D poses basing on the SMPL model [62] of human mesh
recovery (HMR) [85]. HMR recovers together with joints and pose also a full 3D mesh from a

single image (see Figs 15 and 16), and it is accurate enough to estimate multiple subject poses

in a single frame.

Having more than a subject requires to track each subject pose across frames, in order to

compute the motion primitives for each of them. To this end we used the joints given by

SMPL model in world frame, for the following body joints (see the preliminary Section 3): left

and right hip, left and right clavicle (called shoulder in HMR), and the head. These joints

are well suited for tracking since they have slower motion with respect to other body parts.

Tracking amounts to find the rotations and translations amid all the bodies appearing in two

consecutive frames, and identifying the rotation and translation pertaining to each subject
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across the two frames. Consider two consecutive frames indexed by t and t+1, and let

J ðtÞ ¼ fjðtÞ1 ; . . . ; jðtÞ5 g andJ 0ðtþ1Þ
¼ fj0ðtþ1Þ

1
; . . . ; j0ðtþ1Þ

5
g be the joints in world frame of the

above mentioned body components, where joint subscripts indicate in the order left and right

hip, left and right clavicle and head. We first find the translation d and rotation R between any

Table 6. Datasets for primitive computation in dangerous behaviors detection.

Hockey Fight-Movies UCF-crime UCF101

Danger. Normal Danger. Normal Danger. Normal Danger. Normal

Video sets 500 500 100 100 650 650 276 276

Training 70% 70% 70% 70% 70% 70% 100% 70%

Test 30% 30% 30% 30% 30% 30% 0% 30%

https://doi.org/10.1371/journal.pone.0214499.t006

Fig 15. Results of the proposed method on videos from UCF-crime dataset. From top: Abuse, Fighting. Colored

window shows ground truth anomalous region.

https://doi.org/10.1371/journal.pone.0214499.g015
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two set of joints appearing in the frames t and t+1 (see also Section 3):

ðR; dÞ ¼ arg min
R2SOð3Þ;d2R3

X5

i¼1

wikðR jðtÞi þ dÞ � j0ðtþ1Þ

i k2
ð19Þ

With wi> 0 weights for each pair of joints in (t) and (t + 1). Let Ĵ ¼ ð
P5

i¼1
wijiÞ=

P5

i¼1
wi be

the weighted centroids of the set of jointsJ . The minimization in (19) is solved by computing

the singular value decomposition USV> of the covariance matrix �J ðtÞWð �J 0 ðtþ1ÞÞ
>

of the nor-

malized joints �J ðtÞ; �J 0ðtþ1Þ, obtained by subtracting the weighted centroid to each joints set.

Here W is the diagonal matrix of the weights wi. Let H be the diagonal matrix diag(1, det

Fig 16. Results of the proposed method on videos from UCF-crime dataset. From top: Shooting, Normal. Colored

window shows ground truth anomalous region.

https://doi.org/10.1371/journal.pone.0214499.g016

Discovery and recognition of motion primitives in human activities

PLOS ONE | https://doi.org/10.1371/journal.pone.0214499 April 1, 2019 29 / 39

https://doi.org/10.1371/journal.pone.0214499.g016
https://doi.org/10.1371/journal.pone.0214499


(VU>)), then the rotations and translations between sets of joints are found as:

R ¼ VHU> and d ¼ Ĵ 0 ðtþ1Þ � RĴ ðtÞ ð20Þ

Finally, once we have obtained the rotation matrices and the translation vectors between

the sets of considered joints of all the fitted skeletons, from frame t to frame t + 1, we can track

each individual skeleton Sk. A skeleton Sðtþ1Þ

k belongs to the same subject fitted by skeleton SðtÞk ,

at frame t, if the rotation Rk and translation dk, obtained according to Eq (20) between the cho-

sen jointsJ ðtÞ of SðtÞk andJ 0ðtþ1Þ
of Sðtþ1Þ

k , satisfy

ðRk; dkÞ ¼ arg min
Rk2SOð3Þ;dk2R3 ;k¼1:s

kJ 0ðtþ1Þ
� ððJ ðtÞRkÞ

>
þ dkÞ

>
kF ð21Þ

With k�kF the Frobenious norm and s = NS!/((NS − 2)!2!), with NS the common number of fit-

ted skeletons S in both frame t and t + 1.

Once the skeletons are tracked we can compute the unknown primitives from the flux (see

Section 4) as paths gT
Gm

: I � R 7!R9, for each group Gm, with I the time interval, specified by

the frame sequence, and scale it as described in Section 4. We can then use the parameters Θ
learned with the recognition model, detailed in §5.2, to assign a labelL Gm

w to each primitive

segmented by the motion flux as precised in Eq (18). Namely, we find the model identified by

the parameter Θw, which maximizes the probability of the primitive under consideration. We

recall that for each group Gm, m = 1, . . ., 6 there are q models with q 2 {7, 10, 16} (see the prim-

itives representation in Fig 12).

Our model of motion primitives relies significantly on the accuracy of the 3D pose estima-

tion. We have chosen the model HMR [85] based on SMPL [62], in place of [26, 12], since it is

most recent and highly accurate. Still not all the videos chosen obtain a reasonable fitting,

therefore after skeleton fitting and tracking a number of videos from UCF-crime have been

removed from the considered set.

7.3 Training a non-linear binary classifier

All the computed primitives are labeled by their name (e.g. Elbow flex), according to the recog-

nition model, as specified above. A set of primitives for a given video is formed as follows.

Primitive names are embedded into real numbers r* Unif(0, 1), such that for each primitive

name there is a precise real number. Given frame t for each skeleton appearing in the frame we

form a vector of dimension 6 × 1, where the 6 elements are the corresponding embedded prim-

itive names occurring at frame t. Let g
ðtÞ
Gm

denote the primitive of the body group Gm, and u the

mapping of the primitive name to the real number:

xðtÞj ¼ ðuðg
ðtÞ
G1
Þ; uðgðtÞG2

Þ; . . . ; uðgðtÞG6
ÞÞ
>

ð22Þ

Where j indicates the j-th skeleton appearing in frame t. Note that t and j are actually indicated

just for forming the training set, to select from all the gathered vectors x those that have chang-

ing primitives. Namely, for training, from the set of all vectors in each frame, we have retained

only those vectors in which at least one primitive changes, for each recorded skeleton.

For training we have selected videos for both dangerous behaviors and normal behaviors,

thus labeling them with 1 for dangerous and −1 for normal behaviors, as follows. We selected

70% of fighting and 70% of not fighting from both hockey and fight movies; from UCF101 we

have selected all videos in Punch and SumoWrestling, getting 276 videos and further 276 videos

randomly from sport activities. For UCF-crime we proceeded as follows. We have selected the

videos from all the crime activities specified above with time length less than 60sec. and
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cropped the first and last 10sec., in order to do a weak supervised training, namely, as in [78]

we have not trimmed the video. Thus we obtained 173 videos for abnormal activities and we

selected 173 videos from the normal activities. The total number of videos for training is 1634

videos. All the remaining video with computed primitives have been used for testing.

The resulting data structure is:

fðx1; y1Þ; . . . ; ðxn; ynÞg with x 2 R6
; y 2 f� 1; 1j � 1 if normal; 1 if dangerousg ð23Þ

The SVM [86] is a popular classification method computing, for two non-separable classes,

the classifier:

f ðxÞ ¼ ð
Pn

i¼1
yiaiKðxi; xÞ þ bÞ

ŷ ¼ sgnðf ðxÞÞ
ð24Þ

where K is the kernel function φ(xi)
> φ(xj) with φ the feature map, here we considered the

RBF kernel exp ð� Z kxi � xj k
2
‘2
Þ, with η a tunable parameter. Classification is obtained by

solving the constrained optimization problem:

max
a

1

2
a>Oa � e>a subject to y>a ¼ 0; 0 � ai � l ð25Þ

HereO is a square n × n positive semidefinite matrix, withoi;j ¼ yiyjKðxi; xjÞ, e is a vector of

ones, the non zero αi define the support vectors, and λ is the regularization parameter of the pri-

mal optimization problem minw;b;x
1

2
ww> þ l

Pn
i¼1
xi [87]. To obtain posterior probabilities we

applied the Platt scaling [88], proposing a sigmoid model to fit a posterior on the SVM output:

Pðy ¼ 1jf ðxÞÞ ¼
1

1þ exp ðAf ðxÞ þ BÞ ð26Þ

Here the parameters A and B are fitted by solving the maximum likelihood problem:

minz¼ðA;BÞFðzÞ ¼ �
Xn

i¼1

ðti log ðpiÞ þ ð1 � tiÞ log ð1 � piÞÞ ð27Þ

Using as prior the number of positive N+ and negative N− examples in the training data, with pi

= P(y = 1|f(xi)), ti = (N+ + 1)/(N+ + 2) if yi = 1 and 1/(N− + 2) if yi = −1. See also [89] for an

improved algorithm with respect to [88].

To obtain the probability that at a given frame t a dangerous event occurs we compute the

average response to the primitives of each subject which has been detected. More precisely, let

s be the number of subjects in frame t for which the primitives are computed, then the observa-

tion xðtÞ ¼ ðxðtÞ1 ; . . . ; xðtÞs Þ. Given x(t), and assuming that the SVM scores for each xðtÞi are inde-

pendent, we can define the probability that a dangerous event Y is occurring at t, in a

surveillance video, as the expectation:

PðYjxðtÞÞ ¼
Xs

i¼1

pðŷðtÞi jx
ðtÞ
i ÞPðyi ¼ 1jf ðxðtÞi ÞÞ ð28Þ

Here pðŷðtÞjxðtÞÞ is computed by remapping the scores to [0, 1] such that
Ps

i¼1
pðŷðtÞi jx

ðtÞ
i Þ ¼ 1.

Testing has been done on the videos on which the primitives have been precomputed, and the

results are shown together with comparisons with the state of the art in §7.4. Note that the

method is not yet suitable for online detection of dangerous behaviors, still it can be advanced

to online detection, by lifting the computation of the flux with motion anticipation.
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7.4 Results and comparisons with the state of the art

We discuss now the results achieved by our method for abnormal behavior detection based on

human motion primitives. Fig 15 shows some qualitative results of dangerous behaviors detec-

tion in four videos. Three videos correspond to crime activities, namely Abuse, Fighting and

Shooting, while the last displays a normal activity. The curve plotted in the graphs provides for

each frame the probability that a dangerous event is occurring, according to Eq (28). The

highlighted region corresponds to the interval where a crime activity occurs. From this graphs

it is evident that the crime activity detection follows closely the ground truth. For each example

we also show two representative frames overlaid with the human meshes identified by HMR.

Similarly, Fig 17 shows some representative examples of fitted human meshes for videos taken

from Hockey and Movie Fights datasets.

Additionally, in Fig 18 we present the frequency graphs of primitive occurrences for groups

G2 and G3, for the crime activities Abuse, Fighting, Robbery, and Shooting. The graphs show

that each type of activity manifests itself by a different combination of idiosyncratic motions of

the limbs. This fact can be used to achieve finer grained categorization of the crime activities,

however, we do not examine further this possibility in this work.

Fig 19 presents the ROC curves of the proposed method for the four datasets considered,

namely UCF-Crime, UCF101, Hockey Fights and Movie Fights. The corresponding values of

the area under curve (AUC) are 76.15%, 91.92%, 98.44% and 98.77%, respectively. Table 7

Fig 17. Instances of videos with human meshes fitted using HMR from Hockey and Movies datasets [83].

https://doi.org/10.1371/journal.pone.0214499.g017
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Fig 18. Frequency graphs of the occurrences of primitives for groups G2 (torso) and G3 (right arm) in the videos of

Abuse, Fighting, Robbery, and Shooting of the dataset UCF-crime.

https://doi.org/10.1371/journal.pone.0214499.g018

Fig 19. ROC curves of the proposed method for UFC-crime, UFC101, Hockey and Movies datasets.

https://doi.org/10.1371/journal.pone.0214499.g019
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presents the mean accuracy, its standard deviation and the area under the receiver-operating-

characteristic (ROC) curve of our method in comparison with other state-of-the-art methods.

The results of the other methods are taken from [72]. We observe that our method achieves

better performance on the Hockey Fights and Movies Fights datasets while it has very similar

performance with the best performing method on the UCF101 dataset.

Finally, Table 8 gives a comparison of the results achieved by our method on the UCF-

Crime dataset in comparison with results from other state-of-the-art methods as reported in

[78]. In this case we have to highlight that our results are not directly comparable with the

ones reported in [78] as we restrict our analysis on videos where human subjects are visible.

Nevertheless, the results indicate that also on this database the proposed method is able to

achieve state-of-the-art performance on crime activity detection.

8 Conclusions

We presented a framework for automatically discovering and recognizing human motion

primitives from video sequences based on the motion of groups of joints of a subject. To this

end the motion flux is introduced which captures the variation of the velocity of the joints

Table 7. Comparison with state-of-the-art methods on the datasets Movies, UCF101 and Hockey.

Method Classifier Datasets

Movies Hockey UCF101

BoW (STIP) SVM 82.3±0.9/0.88 88.5±0.2/0.95 72.5±1.5/0.74

AdaBoost 75.3±0.83/0.83 87.1±0.2/0.93 63.1±1.9/0.68

RF 97.7±0.5/0.99 96.5±0.2/0.99 87.3±0.8/0.94

BoW (MoSIFT) SVM 63.4±1.6/0.72 83.9±0.6/0.93 81.3± 1/0.86

AdaBoost 65.3±2.1/0.72 86.9±1.6/0.96 52.8±3.6/0.62

RF 75.1±1.6/0.81 96.7±0.7/0.99 86.3±0.8/0.93

ViF SVM 96.7±0.3/0.98 82.3±0.2/0.91 77.7±2.16/0.87

AdaBoost 92.8±0.4/0.97 82.2±0.4/0.91 78.4±1.7/0.86

RF 88.9±1.2/0.97 82.4±0.6/0.9 77±1.2/0.85

LMP SVM 84.4±0.8/0.92 75.9±0.3/0.84 65.9±1.5/0.74

AdaBoost 81.5±2.1/0.86 76.5±0.9/0.82 67.1±1/0.71

RF 92±1/0.96 77.7±0.6/0.85 71.4±1.6/0.78

[75] SVM 85.4±9.3/0.74 90.1±0/0.95 93.4±6.1/0.94

AdaBoost 98.9±0.22/0.99 90.1±0/0.90 92.8±6.2/0.94

RF 90.4±3.1/0.99 61.5±6.8/0.96 64.8±15.9/0.93

[72] v1 SVM 87.9±1/0.97 70.8±0.4/0.75 72.1±0.9/0.78

AdaBoost 81.8±0.5/0.82 70.7±0.2/0.7 71.7±0.9/0.72

RF 97.7±0.4/0.98 79.3±0.5/0.88 74.8±1.5/0.83

[72] v2 SVM 87.2±0.7/0.97 72.5±0.5/0.76 71.2±0.7/0.78

AdaBoost 81.7±0.2/0.82 71.7±0.3/0.72 71±0.8/0.72

RF 97.8±0.4/0.97 82.4±0.6/0.9 79.5±0.9/0.85

Ours SVM 99.1±0.3/0.99 97.2±0.8/0.98 93.3±2.1/0.92

https://doi.org/10.1371/journal.pone.0214499.t007

Table 8. AUC comparison with state-of-the-art methods on the UCF-crime dataset.

Method Binary classifier Hasan et al. [90] Lu et al. [91] [78] [78] w. constraints Ours

AUC 50.0 50.6 65.51 74.44 75.41 76.15

https://doi.org/10.1371/journal.pone.0214499.t008
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within a specific interval. Motion primitives are discovered by identifying intervals between

rest instances that maximize the motion flux. The unlabeled discovered primitives have been

separated into different categories using a non-parametric Bayesian mixture model.

We experimentally show that each primitive category naturally corresponds to movements

described using biomechanical terms. Models of each primitive category are built which are

then used for primitive recognition in new sequences. The results show that the proposed

method is able to robustly discover and recognize motion primitives from videos, by using

state-of-the-art methods for estimating the 3D pose of the subject of interest. Additionally, the

results suggest that the motion primitives categories are highly discriminative for characteriz-

ing the activity been performed by the subject.

Finally, a dataset of motion primitives is made publicly available to further encourage result

reproducibility and benchmarking of methods dealing with the discovery and recognition of

human motion primitives.
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