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Frozen-hydrated chromatin from metaphase
chromosomes has an interdigitated
multilayer structure
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Abstract

Cryo-electron tomography and small-angle X-ray scattering were
used to investigate the chromatin folding in metaphase chromo-
somes. The tomographic 3D reconstructions show that frozen-
hydrated chromatin emanated from chromosomes is planar and
forms multilayered plates. The layer thickness was measured
accounting for the contrast transfer function fringes at the plate
edges, yielding a width of ~ 7.5 nm, which is compatible with the
dimensions of a monolayer of nucleosomes slightly tilted with
respect to the layer surface. Individual nucleosomes are visible
decorating distorted plates, but typical plates are very dense and
nucleosomes are not identifiable as individual units, indicating
that they are tightly packed. Two layers in contact are ~ 13 nm
thick, which is thinner than the sum of two independent layers,
suggesting that nucleosomes in the layers interdigitate. X-ray scat-
tering of whole chromosomes shows a main scattering peak at
~ 6 nm, which can be correlated with the distance between layers
and between interdigitating nucleosomes interacting through their
faces. These observations support a model where compact chro-
mosomes are composed of many chromatin layers stacked along
the chromosome axis.
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Introduction

During mitosis in eukaryotic cells, the enormously long genomic

DNA molecules are densely packed within metaphase chromosomes

(Daban, 2003). Nucleosomes are the basic building blocks of chro-

matin and constitute the first level of DNA compaction in the cell

nucleus. The nucleosome core is a flat cylindrical particle formed by

1.7 superhelical turns of DNA (146 bp) wrapped around the core

histone octamer (Luger et al, 1997). In the chromatin filament,

nucleosome cores are connected by variable lengths of linker DNA

associated with histone H1. In vitro experiments showed that the

compaction degree of the chromatin filament is extremely dependent

on ionic conditions (Daban, 2011; Collepardo-Guevara & Schlick,

2012; Grigoryev & Woodcock, 2012; Luger et al, 2012; Rippe, 2012;

Boulé et al, 2015). The 30-nm chromatin fiber is generally consid-

ered to be the second level of DNA compaction and, in particular, it

is assumed that this fiber is the fundamental structural element for

the packaging of DNA into chromosomes (Alberts et al, 2014).

Several structural models have been proposed for the organization of

chromatin in metaphase chromosomes. From early transmission

electron microscopy (TEM) images obtained with histone-depleted

chromosomes, it was proposed that chromatin fibers form loops that

are bound to a central protein scaffold (Paulson & Laemmli, 1977).

However, subsequent chromosome stretching experiments in the

presence of nucleases showed that chromosomes do not contain a

continuous protein scaffold and it was suggested that chromatin

fibers form an irregular network (Poirier & Marko, 2002). The analy-

sis of chromosomes in different condensation stages indicated a

hierarchical folding of fibers having diameters from 30 to 250 nm

(Kireeva et al, 2004), and studies of chromosome conformation

capture suggested that mitotic chromosomes are formed by a

compact array of chromatin loops (Gibcus et al, 2018). In contrast to

these models, the study of chromosome cryo-sections and small-

angle X-ray scattering (SAXS) experiments showed that condensed

chromosomes in 5 mM Mg2+ do not have periodic structures larger
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than 11 nm (Eltsov et al, 2008; Nishino et al, 2012), indicating that

chromatin is not folded as a 30-nm fiber. Instead, the authors

suggested that chromatin filaments in metaphase chromosomes are

highly disordered and behave like a polymer melt.

Surprisingly, it was observed using conventional TEM that the

incubation of metaphase chromosomes at 37°C produced the emana-

tion of many multilayered plates (Caravaca et al, 2005; Gállego

et al, 2009). This planar structure was confirmed with electron

tomography (ET) of glutaraldehyde-crosslinked metaphase chro-

matin adsorbed to the carbon substrate of typical TEM grids (Castro-

Hartmann et al, 2010), and with atomic force microscopy (AFM) of

uncrosslinked chromatin in aqueous solution adsorbed to mica

(Gállego et al, 2009). Although chromatin plates are very thin [each

steep in a multilayered plate has an apparent thickness of 5–6 nm

(Daban, 2011)], AFM-based nanotribology and force spectroscopy

showed that they are flexible and have good mechanical properties

in the presence of structuring concentrations of Mg2+ (Gállego et al,

2009, 2010). However, incubation with solutions containing EDTA

produced plate unfolding and emanation of chromatin fibers from

plate edges (Gállego et al, 2009). Furthermore, it was found that

fragments of chromatin fibers obtained from metaphase chromo-

somes digested with micrococcal nuclease associate spontaneously,

forming multilaminar plates that have indistinguishable structure to

plates emanated from chromosomes (Milla & Daban, 2012). These

observations led to the proposal of the thin-plate model, in which

metaphase chromosomes are formed by many layers stacked along

the chromosome axis (Gállego et al, 2009; Castro-Hartmann et al,

2010). In this work, we used cryo-electron tomography (cryo-ET) to

study the 3D structure of the plates from human metaphase chromo-

somes. In contrast to other microscopy techniques, the plates in

these experiments were not oriented by adsorption to flat substrate

surfaces; the uncrosslinked and unstained sample suspended in

aqueous media containing 5 mM Mg2+ was immobilized in vitreous

ice and imaged under cryogenic conditions. In order to achieve the

maximum imaging resolution and contrast (Fernandez-Leiro &

Scheres, 2016), tomograms were acquired with a direct electron

detector and a Volta phase plate (Danev et al, 2014). Furthermore,

to study the internal structure of highly compacted chromosomes in

the presence of the cation concentrations corresponding to meta-

phase [17 mM Mg2+ (Strick et al, 2001)], we took advantage of the

high photon fluxes of third-generation synchrotron radiation sources

(Garcı́a-Gutiérrez & Rueda, 2009) to obtain SAXS data directly from

whole chromosomes. Our cryo-ET and SAXS results strengthen

previous evidence indicating that chromatin in metaphase chromo-

somes is organized as stacked mononucleosome layers that are

interdigitated with each other.

Results

Cryo-tomograms of chromatin emanated from
metaphase chromosomes

Chromosomes purified by centrifugation on sucrose step gradients

in 5 mM Mg2+ (Fig 1A) were unfolded using the soft treatments

described in the Materials and Methods. The resulting sample was

deposited on EM grids coated with perforated carbon film, rapidly

frozen and imaged using cryo-ET. 2D slices through the 3D

reconstructed tomographic volumes showed numerous lines of dif-

ferent shapes and orientations (Fig 1B). These lines in the x-y plane

persist along the z-axis (Fig 1C), indicating that they correspond to

slices of planar structures (see the inset in Fig 1B). Although we

observed planar structures adopting a variety of orientations within

the ice, the tomographic missing-wedge causes anisotropic resolu-

tion (Lucic et al, 2005); planar structures approximately parallel to

the x-y plane are not well resolved, whereas those that are roughly

perpendicular to the x-y plane can be easily analyzed following the

successive slices of the tomograms. Segmentation revealed the 3D

architecture of the planar structures, which had a variety of dimen-

sions and shapes (Fig 1C–G). We observed large plates spanning

> 1 lm in the x-y plane. The height (in the z-axis) of many plates

was 0.2–0.4 lm, which corresponds to the ice thickness in our

preparations. In comparison with their large surface area, plates are

very thin (~ 7.5 nm, see below), suggesting that the different sizes

and shapes observed for 3D reconstructed plates are due to break-

ages and deformations produced during the preparation and deposi-

tion procedures. Thin plates emanated from chromosomes were

observed previously using conventional TEM and AFM (Caravaca

et al, 2005; Gállego et al, 2009; Castro-Hartmann et al, 2010). Note

that in these previous experiments, samples were deposited on

carbon films and mica surfaces. In contrast, in our cryo-ET experi-

ments, the frozen-hydrated chromatin plates were not adsorbed to a

flat surface, but rather suspended in vitreous ice. Therefore, the

cryo-ET results show that chromatin emanated from chromosomes

has an intrinsic planar geometry.

In addition to plates, we observed irregular aggregates and occa-

sionally circular structures that have a diameter of ~ 30 nm (indi-

cated with S in Fig 2A; see also the bottom-left insets). As shown in

previous studies performed with chromatin fragments (Bartolomé

et al, 1994, 1995; Bermúdez et al, 1998; Daban & Bermúdez, 1998)

and nucleosome arrays (Robinson et al, 2006), these circular struc-

tures likely correspond to cross-sections of 30-nm chromatin fibers

folded as highly compact solenoids in which nucleosomes are

tightly packed and cannot be distinguished as separate units.

According to these studies, the dense annular zone of these struc-

tures is formed by nucleosomes of adjacent helical turns that are

interdigitated (Daban & Bermúdez, 1998; Robinson et al, 2006). In

our cryo-tomograms, these fibers are short (their length in the z-axis

is 22–30 nm) and are probably formed by the helical folding of short

chromatin fragments produced by mechanical breakage of the chro-

matin filament during the emanation of plates from soft-denatured

chromosomes. We did not observe long chromatin fibers in the

tomograms.

Tight nucleosome packaging within the plates

Some chromatin plates were decorated by numerous small particles

(indicated with N in Fig 2A; see also the upper-right insets in Fig 2A

and the slices and segmentations of plates decorated with many

small particles shown in Fig 2B–E). The size of these particles

(diameter ~ 9 nm; see Materials and Methods) suggests that they

are nucleosomes. We performed reference-free subtomogram aver-

aging (Briggs, 2013) with classification for a set of 902 decorative

particles; different views of the most relevant class (315 particles)

are shown in Fig 2F (see also Fig EV1). The lower part of the recon-

structed map is the link of the particle to the plate. Although the
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resolution of the average is low, likely due to both the small number

of particles and the variety of orientations relative to the plate (see

Materials and Methods), we observe that the dimensions of the aver-

age are consistent with the molecular structure of the nucleosome

core particle. These results suggest that the particles decorating the

plates shown in Fig 2 correspond to irregularly oriented nucleo-

somes, which were probably extruded from distorted plates.

The distorted plates (P1 in Fig 2A; see also the upper-right

insets) are relaxed and have less contrast than the typical compact

plates observed in the cryo-tomograms (P2 in Fig 2A; see also Figs 1

and 4), indicating that compact plates may have a higher nucleo-

some concentration. The thickness of these compact plates was

~ 7.5 nm (Table 1), measured directly from the tomographic slices

while accounting for the contrast transfer function (CTF) fringes that

border each plate (see Fig EV2). Compact plates do not show nucle-

osomes visible as separate units but, considering the dimensions of

the nucleosome core particle (cylinder of 5.7 nm height and 11 nm

diameter; Luger et al, 1997), the observed thickness suggests that

each plate consists of a monolayer of nucleosomes aligned slightly

tilted relative to the plate surface. These results indicate that

compact plates are likely composed of tightly packed nucleosomes,

which may have preferred orientations within the plate. In contrast,

the relaxed plates have no well-defined surfaces (compare P1 and

P2 in Fig 2A), so they may contain loosely organized nucleosomes

with more variable orientations.

Plates with many stacked layers

In the cryo-tomograms, there are regions containing many parallel

lines (see examples in Fig 3A and B). Each line persists in many

consecutive slices along the z-axis, indicating that these structures

correspond to stacked plates oriented perpendicular to the x-y plane.

Our measurements of several structures containing parallel lines

indicated lengths in the z-axis ranging from 70 nm up to values

approaching the ice thickness. The layers in the stacks have a thick-

ness of ~ 7 nm (see Materials and Methods), which is equivalent to

that observed for monolayer plates (Table 1).

Figure 3C shows a slice from a tomographic volume that contains

a particularly large structure formed by many stacked layers.

Figure EV3 shows additional examples of large multilayer struc-

tures. According to the thin-plate model (Gállego et al, 2009; Castro-

Hartmann et al, 2010), chromosomes are formed by many stacked

D

F

EC

G

B*A

Figure 1. Examples of cryo-tomograms containing plates emanated from metaphase chromosomes.

A Whole chromosomes imaged by conventional TEM.
B Slice from a large tomographic volume; part of the carbon film surrounding a hole with vitrified ice containing the plates is indicated with an asterisk; the inset

illustrates that the slice of a plate corresponds to a line in the x-y plane (perpendicular to the direction of the electron beam).
C–G Slices from different tomograms and the corresponding 3D segmentations showing plates with different sizes and shapes. In addition to a typical slice through the

x-y plane (yellow), two slices through the x-z (red) and y-z (green) planes (orthogonal to the x-y plane) are shown in (C).

Data information: Scale bars: 1 µm (A); 200 nm (B, D), 100 nm (E–G), 50 nm (C).
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Figure 2. Cryo-tomograms of compact plates and distorted plates decorated with nucleosomes.

A Nucleosomes (N) decorating a relaxed plate (P1); insets in the upper right show additional examples. Nucleosomes are not visible as individual units in typical
compact plates (P2). Short compact interdigitated solenoids are shown in the main image (S) and in the bottom-left insets.

B–E Slice (B) and segmentations in three different orientations (C) of a large relaxed plate decorated with many nucleosomes on its right side. Slice (D) and
segmentation (E) of a relaxed plate forming a tube decorated with nucleosomes.

F Structure of the decorative particles (like those shown in N, panel A) after subtomogram averaging. The final density map was filtered to 25 Å and fitted with the
molecular structure of the nucleosome core particle (Protein Data Bank code 2CV5).

Data information: Scale bars: 50 nm (A, including the insets, B–E); 5 nm (F).
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layers of chromatin oriented perpendicular to the axes of the chro-

matids (inset in Fig 3C); each chromatid of a human metaphase

chromosome has a diameter of ~ 0.6 lm (Daban, 2014). Therefore,

the dimensions of the structures in Fig EV3 suggest that they could

be fragmented parts of chromatids. In the particular case of the

multilayered structures in Fig 3C, since the left and right regions are

apparently in contact, it is tempting to speculate that these two

regions could correspond to stacked layers of two sister chromatids

that broke apart during the preparation and deposition procedures.

In the tomographic slice shown in this figure, parts of the layers can

be seen separated from each other. However, in other slices of the

same tomographic volume, the layers are much closer together and

cannot be distinguished as separate units. For example, in the slices

presented in Fig 3D and E (which correspond, respectively, to the

left and right parts of the structure shown in Fig 3C), the layers are

Table 1. Plate thickness.

Plate Microscopea
Phase
plate Binning Thicknessb (nm)

Monolayer Polara � No 7.2 � 1.4 (n = 87)

Polara � 4× 8.8 � 2.0 (n = 85)

Krios + 4× 7.2 � 1.0 (n = 366)

Krios � 4× 7.3 � 0.9 (n = 39)

Two layers
in contact

Polara � No 13.0 � 2.0 (n = 26)

Krios + 4× 12.4 � 1.7 (n = 126)

Krios � 4× 13.0 � 1.1 (n = 13)

aTecnai Polara (27,500×); Titan Krios (33,000×).
bThickness measurements account for CTF fringes as described in Fig EV2.
Values shown are means � SD of the indicated number (n) of independent
measurements.

A B

C

D E

Figure 3. Slices from tomographic volumes containing multilayered plates.

A, B Plates with several layers that are not closely appressed.
C–E Large multilayer plates having the size of human metaphase chromatids [� 0.6 µm diameter (Daban, 2014)] (C); the inset schematically shows the perpendicular

orientation of chromatin layers with respect to the chromatid axes proposed in the thin-plate model (Gállego et al, 2009; Castro-Hartmann et al, 2010). In other
slices (D, E), the multilayer structures shown in (C) are more compact and the individual layers are not visible as separate elements.

Data information: Scale bars: 50 nm.
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closely associated and, even at the high magnification used in these

images, the structure is so compact that it is very difficult to distin-

guish individual layers.

Layer interdigitation

In compact multilayered structures such as those presented in

Fig 3D and E, it is not possible to analyze the structural details of

the interaction between layers. Fortunately, in many tomographic

volumes there are plates that interact with other plates in local

regions that can be more readily analyzed. Figure 4A–C shows

several examples of plates that make two-layer contacts. Taking into

account that the thickness of a monolayer plate is ~ 7.5 nm

(Table 1), the expected thickness of two stacked layers should be

~ 15 nm. However, our measurements indicate that the thickness of

two layers in close contact is ~ 13 nm (Table 1). These differences

could be explained by a certain degree of interdigitation (~ 2 nm)

between the two contacting layers. This structural solution was

suggested previously from TEM and ET observations of dehydrated

metaphase chromatin (Gállego et al, 2009; Castro-Hartmann et al,

2010). Density profiles across interacting layers (Fig EV4) show that

the layers are in such close contact that there is no empty space

between them. Interdigitation would allow face-to-face interactions

between nucleosomes in adjacent layers (see below).

In addition to lateral associations, plates can also interact

through their edges to form closed structures. For instance, there

are circular densities in the tomographic slices shown in Fig 4A–C.

The 3D segmentation presented in Fig 4D shows that the observed

circles correspond to slices of plates that form cylindrical structures.

Additionally, Fig 2D and E shows a plate forming a tube decorated

with nucleosomes. According to previous modeling studies (Daban,

2014), the lateral interaction between plates (inter-layer associa-

tion), as well as the edge-to-edge intra-layer associations, can be

interpreted considering that chromatin structures with nucleosomes

exposed to the aqueous medium are less stable than structures in

which there are more nucleosome-nucleosome interactions. Both

inter- and intra-layer associations occur because there is a stabiliza-

tion of the resulting structures due to the reduction of the number

nucleosomes exposed to the medium.

SAXS analysis of condensed metaphase chromosomes

Whole metaphase chromosomes are large structures that are too

dense and thick to observe chromatin organization using standard

TEM (Fig 1A). To circumvent this problem, we analyzed the struc-

ture of thin chromatin plates emanated from soft-denatured meta-

phase chromosomes using cryo-ET (see the preceding sections), and

we applied synchrotron SAXS to investigate the chromatin structure

within whole intact chromosomes (Fig 5). The scattering study was

performed using different divalent and trivalent cations that produce

chromosome condensation (Strick et al, 2001; Poirier et al, 2002;

Caravaca et al, 2005; Daban, 2011; Allahverdi et al, 2015; Maeshima

et al, 2018). The peaks at ~ 3.7 and ~ 2.7 nm corresponding to the

internal nucleosome structure (Widom & Klug, 1985) were observed

in all samples with different intensities. The peak at ~ 30 nm, which

is characteristic of side-by-side packaging of 30-nm fibers (Widom,

1986), was only observed in the case of chromosomes prepared

under relatively low Mg2+ concentration (Fig 5C). Nishino et al

(2012) obtained a similar SAXS profile with metaphase chromo-

somes in 5 mM Mg2+, and these authors demonstrated that the

30-nm peak can be eliminated by further chromosome purification.

According to Strick et al (2001), in addition to physiological

A B

C D

Figure 4. Cryo-tomograms of plates showing two-layer contacts and edge-to-edge interactions.

A–C Slices showing lateral association between two plates and the corresponding 3D segmentations.
D Edge-to-edge interactions form cylindrical structures.

Data information: Scale bars: 50 nm.
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concentrations of K+ and Na+, metaphase chromosomes contain

~ 17 mM Mg2+ distributed homogeneously throughout the whole

chromosome. Using these ionic conditions (Fig 5B), we observed

that the 30-nm peak was completely absent and the peak at ~ 6 nm

was dominant. Similar results were obtained using the trivalent

cation hexamminecobalt (Fig 5A).

As can be seen in Fig 5A–C, in all the examined structuring

conditions, the scattering intensity at ~ 11 nm is small compared to

the prominent peak centered at ~ 6 nm. According to the X-ray

diffraction patterns observed for associated nucleosome cores that

form columns (Mangenot et al, 2003; Bertin et al, 2007; Berezhnoy

et al, 2016), the 6-nm peak corresponds to the distance between

nucleosome cores interacting face-to-face within the columns, and

the 11-nm peak is related to the distance between parallel columns

(i.e., the distance corresponding to edge-to-edge nucleosome

contacts). Narrow diffraction peaks were found in crystalline aggre-

gates of nucleosome columns (Mangenot et al, 2003; Berezhnoy

et al, 2016). Aggregates of nucleosome columns lacking the long-

range order of crystalline structures produce broad peaks (Mangenot

et al, 2003). Therefore, in chromosomes formed by many stacked

layers, the large number of face-to-face contacts that can be

produced between nucleosomes in interdigitated layers can justify

the broad peak at ~ 6 nm. Furthermore, this peak could also be

related to the distance between stacked layers in condensed chromo-

somes (~ 6 nm; see Fig 6). This repeated distance strengthens the

scattering peak at ~ 6 nm, and this can explain why the expected

peak at ~ 11 nm corresponding to edge-to-edge contacts between

nucleosomes in the compact multilayered structures has a low

intensity in comparison with the 6-nm peak. The scheme in Fig 6

integrates both the SAXS results and the main results obtained in

the cryo-ET experiments.

Discussion

Our tomographic 3D reconstructions show that the chromatin fila-

ment in metaphase chromosomes is organized as a planar structure

that forms many layers. This chromatin folding is completely dif-

ferent from the 30-nm fiber proposed by many authors as the funda-

mental structural element of metaphase chromosomes. The

chromatin emanated from soft-denatured chromosomes forms

monolayer plates (Fig 1B–G), plates containing two layers in close

contact (Fig 4A–C), and multilayered plates (Figs 3 and EV3). Eltsov

et al (2008) reported that 30-nm fibers were not present in the cryo-

sections of chromosomes within mitotic cells. In principle, this

observation is in agreement with our results, but these authors did

not observe any higher-order structure in their vitreous sections and

concluded that the chromatin filament in metaphase chromosomes

is completely disordered. Nevertheless, there is an alternative inter-

pretation of these observations that is consistent with our findings:

Chromatin plates cannot be distinguished as differentiated structural

units in condensed chromosome cryo-sections because, as can be

0.0 0.2 0.4 0.6

lo
g 

(I·
S2

) (
A

U
)

S (nm-1)

1 mM Co(NH3)6
3+

0.0 0.2 0.4 0.6
S (nm-1)

5 mM Mg2+

10 mM Na+

0.0 0.2 0.4 0.6
S (nm-1)

17 mM Mg2+

20 mM Na+

120 mM K+

11 nm

6 nm

3.7 nm

2.7 nm

30nm

A B C
30nm

11 nm

6 nm
3.7 nm

2.7 nm

30   
nm

11 nm

6 nm

3.7 nm

2.7 nm

Figure 5. SAXS profiles of metaphase chromosomes under different conditions.

A–C The cation concentrations used are indicated for each experiment; AU, arbitrary units.
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seen in our cryo-tomograms (Fig 3D and E), the individual layers

are not visible in the interdigitated multilaminar plates. In these

densely packed structures, space is completely filled by nucleo-

somes and consequently there is no visible higher-order organiza-

tion in the cryo-sections of whole native chromosomes. Chromatin

layers are only clearly visible in regions where chromosomes are

distorted (Fig 3A–C).

Our SAXS results (Fig 5B) show that chromosomes prepared

using the cation concentrations corresponding to metaphase condi-

tions are not formed by densely packed 30-nm fibers; this conclu-

sion is in agreement with a previous SAXS study by Nishino et al

(2012) with chromosomes in 5 mM Mg2+. The intense scattering at

~ 6 nm observed for native chromosomes under all the conditions

analyzed (Fig 5A–C and Nishino et al, 2012) indicates that face-to-

face association between nucleosomes (Fig 6) is a fundamental

structural element of metaphase chromosomes. This is not surpris-

ing because face-to-face interactions with different degrees of over-

lap between nucleosomes were observed previously in different

chromatin samples (purified nucleosome cores, chromatin fibers,

and nucleosome arrays) using physicochemical methods (Tatchell &

Van Holde, 1978), TEM (Finch et al, 1977; Dubochet & Noll, 1978;

Bartolomé et al, 1994; Daban & Bermúdez, 1998; Robinson et al,

2006), cryo-EM (Leforestier et al, 1999; Robinson et al, 2006;

Scheffer et al, 2012; Song et al, 2014; Bilokapic et al, 2018), and

X-ray scattering (Mangenot et al, 2003; Bertin et al, 2007;

Berezhnoy et al, 2016) and crystallography (Uberbacher & Bunick,

1985; Luger et al, 1997; Harp et al, 2000; White et al, 2001; Schalch

et al, 2005; Ekundayo et al, 2017; Zhou et al, 2018); this interaction

was also described in modeling studies (Stehr et al, 2010; Fan et al,

2013; Korolev et al, 2016, 2018; Saurabh et al, 2016; Ishida & Kono,

2017). The lateral association between two nucleosome cores

involves an acidic surface formed by histones H2A and H2B and

basic residues of the N-terminal tail of histone H4 (Luger et al,

1997; Harp et al, 2000; White et al, 2001; Schalch et al, 2005). The

diversity of nucleosome orientations observed in these lateral inter-

actions (Mangenot et al, 2003; Ekundayo et al, 2017; Ishida & Kono,

2017; Bilokapic et al, 2018; Korolev et al, 2018; Zhou et al, 2018)

may facilitate the association of nucleosomes in adjacent layers of

chromatin plates.

The dense packaging observed in multilayered structures

(Fig 3D and E), and the measurements (Table 1) showing that the

thickness of two layers in close contact is smaller than the sum of

two independent layers suggest that there is interdigitation between

the stacked layers. This interdigitation allows face-to-face interac-

tions of nucleosomes in adjacent layers (Fig 6). In vitro experi-

ments and modeling studies demonstrated previously that

interdigitation facilitates face-to-face nucleosome interactions that

stabilize folded fibers with different conformations (Bartolomé

et al, 1994; Daban & Bermúdez, 1998; Robinson et al, 2006; Wong

et al, 2007; Depken & Schiessel, 2009; Rippe, 2012; Wu et al,

2016). The degree of interdigitation of the successive turns of

compact solenoids is dependent on the orientation of the nucleo-

somes (Daban & Bermúdez, 1998). In agreement with this observa-

tion, our interpretation that nucleosomes are only slightly tilted

within the plates explains why the observed degree of interdigita-

tion in the multilayer plates is relatively low. Grigoryev (2004) and

other authors (Eltsov et al, 2008; Castro-Hartmann et al, 2010;

Daban, 2011; Grigoryev & Woodcock, 2012; Luger et al, 2012;

Collepardo-Guevara & Schlick, 2014; Grigoryev et al, 2016;

Maeshima et al, 2016; Bascom & Schlick, 2017) suggested that the

lateral interdigitation of fibers can produce inter-fiber associations.

In vitro experiments performed with diluted chromatin fragments

or nucleosome arrays in the presence of low cation concentrations

showed that only intra-fiber interactions between close neighbor

nucleosomes can form (Eltsov et al, 2008; Daban, 2011); under

these conditions, fibers folded as compact interdigitated solenoids

(Daban & Bermúdez, 1998; Robinson et al, 2006) are the most

complex structures that can be produced. In contrast, the high

concentrations of chromatin (Daban, 2000) and cations (Strick

et al, 2001) within condensed metaphase chromosomes allow the

interaction between nucleosomes that are very distant in the single

DNA molecule that is packed within each chromatid. All these

observations strengthen the hypothesis that interdigitation

combined with face-to-face interactions between nucleosomes in

the successive layers stabilizes the multilaminar organization of

planar chromatin in metaphase chromosomes.

We have performed an in vitro study using conditions that

approach as much as possible the structuring ionic concentrations

of metaphase cells, but future in vivo research will be required to

validate the observed multilayered organization of chromatin.

However, the functional role of this chromatin organization can be

inferred from its structural and physical properties. The mechanical

~7.5~13
nm

layer 1

layer 2

interdigitated
region

~6
~6

Figure 6. Schematic drawing showing the main structural elements of two layers in close contact.

Only a few nucleosomes are shown to illustrate themain dimensions and the interdigitation of two layers. Our results suggest that the two turns of the nucleosomal DNA are
oriented slightly tilted with respect to the axis normal to the plate surface, but they may have diverse orientations (not represented in this scheme) with respect to the other
two axes of the plate. The thickness of single- and double-layer plates (~ 7.5 and ~ 13 nm, respectively) obtained from cryo-tomograms (Table 1) is indicated in blue. The
main scattering peak at ~ 6 nm observed in SAXS experiments with condensed chromosomes under metaphase ionic conditions (Fig 5B) is probably due to the repetitive
distances between nucleosomes (face-to-face interactions) and between stacked layers; these distances (~ 6 nm) are indicated in red.
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strength of planar chromatin (Gállego et al, 2010) and the stability

of the stacked chromatin layers in metaphase chromosomes (see

above) suggest that its primary biological role is the maintenance

of the integrity of genomic DNA during mitosis. Furthermore, it

was shown that this chromatin organization avoids topological

entanglements of the chromatin filament (Milla & Daban, 2012)

and can justify the elongated cylindrical structure of chromosomes

as well as their outstanding mechanical properties (Poirier et al,

2000; Daban, 2014). It was also shown that if chromosomes consist

of many stacked layers of planar chromatin, it is possible to explain

many cytogenetic observations that were not previously understood

(Daban, 2015). Presumably, the typical chromosome bands are

produced by the preferential staining of several chromatin layers

with different dyes, and the observed transverse orientation of the

bands is due to the perpendicular orientation of the chromatin

layers with respect to the chromosome axis. This also explains the

splitting of broad bands (formed by several layers) observed in

chromosome stretching experiments (Hliscs et al, 1997), and the

maintenance of the orthogonal orientation of the split bands.

According to the local concentration of DNA in metaphase chromo-

somes (~ 170 Mb/lm3; Daban, 2000, 2014), each chromatin layer

of a human chromosome is formed by ~ 0.5 Mb of DNA, which

justifies the existence of very thin bands containing < 1 Mb (Inter-

national Human Genome Sequencing Consortium, 2001). The

multilayered structure of chromatin in metaphase chromosomes is

also compatible with the orthogonal orientation and planar struc-

ture of the connection surfaces seen in sister chromatid exchanges,

and in the translocations observed in cancer cells. It has been

argued (Daban, 2015) that the fibrillar models proposed by other

authors (Paulson & Laemmli, 1977; Poirier & Marko, 2002; Kireeva

et al, 2004; Eltsov et al, 2008; Naumova et al, 2013) require large

quantities of DNA to cover the chromosome cross-section and

cannot justify the existence of very thin orthogonal bands and the

orthogonal orientation of the connection surfaces in chromosome

rearrangements.

There are several chromosome conformation capture methods

capable of identifying contacts between distant regions of the chro-

matin filament via chemical crosslinking (Sajan & Hawkins, 2012;

Bonev & Cavalli, 2016). In the genome-wide Hi-C method, the cross-

linked contacting regions are identified by high-throughput sequenc-

ing (Lieberman-Aiden et al, 2009). Recently, Hi-C results obtained

with mitotic cells were modeled using polymer-based simulations of

chromatin structure, and it was proposed that chromatin in mitotic

chromosomes is folded as a compact array of many loops having

different sizes during mitosis (Gibcus et al, 2018). In the model

proposed by these authors, the final compact chromosomes are

formed by loops of ~ 0.5 Mb (consisting of ~ 400-kb outer loops and

~ 80-kb inner loops) and have a linear density of ~60 Mb/lm. For

chromatids with a radius of ~ 0.36 lm (Gibcus et al, 2018), this linear

density corresponds to ~ 150 Mb/lm3. This local DNA concentration

is similar to the value considered above for multilayered chromo-

somes (~ 170 Mb/lm3; Daban, 2000, 2014) and is compatible with

the high chromatin density observed for metaphase chromosomes by

other authors (Eltsov et al, 2008; Ou et al, 2017). Obviously, to

achieve this high density, the long chromatin filament in each 0.5-Mb

loop cannot be extended and must be tightly packed. We propose that

the chromatin in the loops detected in the Hi-C studies could be

compacted into the multilayered plates observed in this work.

Materials and Methods

Preparation of metaphase chromosomes and chromatin plates

Chromosomes from HeLa cells blocked in metaphase with colcemid

were prepared in TE buffer (15 mM triethanolamine-HCl, pH 7.4,

2 mM EDTA, 0.5 mM EGTA, 20 mM NaCl, 80 mM KCl, 0.2 mM

spermine, 0.5 mM spermidine, and 0.5% Triton X-100) as described

previously (Caravaca et al, 2005; Gállego et al, 2009); for SAXS

experiments in the presence of 5 mM Mg2+, chromosomes were

prepared in 10 mM PIPES (pH 7.2), 10 mM NaCl, 5 mM Mg2+, and

0.5% Triton X-100. Chromosome suspensions were centrifuged at

4,000 g for 5 min. The resulting pellets were washed twice at 4°C

with 10 mM PIPES (pH 7.2), 40% glycerol, and the concentrations

of cations indicated in Fig 5. Finally, the samples were transferred

to plastic capillaries (2 mm diameter, MiTeGen) and stored at

�80°C for further SAXS measurements. For the preparation of chro-

matin plates, chromosomes in TE buffer (containing 1 mg/ml digi-

tonin instead of Triton X-100) were purified on a sucrose step

gradient, with four layers (30, 40, 50, and 60% sucrose) containing

5 mM PIPES (pH 7.2), 5 mM NaCl, and 5 mM MgCl2 (PM buffer).

Chromosomes were collected from the 40–50% and 50–60% sucrose

interfaces; TEM images of these chromosomes were obtained

following previously described procedures (Castro-Hartmann et al,

2010). The chromosome suspension was diluted with four volumes

of PM buffer without sucrose, passed several times through a 22-

gauge syringe needle, and finally dialyzed for 2.5 h at 37°C against

the same buffer without sucrose. Each one of these treatments

applied separately favors the emanation of chromatin plates from

chromosomes (Gállego et al, 2009; Castro-Hartmann et al, 2010),

but we applied the three methods to obtain a high yield of plates.

Note that in order to preserve the native chromatin structure as

much as possible, the concentration of Mg2+ was maintained

throughout these treatments. This sample was stored for 24 h in an

ice bath and then used for the cryo-preparations.

Cryo-ET and image analysis

Perforated carbon films (Quantifoil R2/1) on 200-mesh molybde-

num grids were made hydrophilic by glow discharge before sample

deposition. 200 ll of sample was pipetted onto the grid (placed in

the cap of an inverted tube) and centrifuged at 1,500 g for 10 min.

The grid was placed in a Vitrobot Mark III (set to 22°C and 95%

humidity; blot offset �3 mm), 2 ll of gold particles (Aurion BSA

tracers) in PM buffer were added, and the grid was blotted for 6 s

from the reverse side and immediately plunged into a liquid

ethane/propane mixture at liquid nitrogen temperature. Frozen-

hydrated preparations were stored in liquid nitrogen until used.

Two sets of tomograms were obtained at the Instruct cryo-ET plat-

form at Max-Planck-Institute of Biochemistry (Martinsried). The

first set (seven tomograms) was obtained with a Tecnai G2 Polara

(FEI) microscope and the second set (25 tomograms) with a Titan

Krios (FEI) microscope. Both instruments were equipped with field-

emission guns operated at 300 kV, post-column energy filters (GIF

2002, Gatan), and K2 Summit (Gatan) direct electron-detection

cameras; in addition, in the case of Titan Krios most of the tomo-

grams were obtained using a FEI Volta phase plate (Danev et al,

2014). Tilt series (range �60°; increments of 2°) were collected
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under low-dose conditions (total dose ~ 110 e�/Å2) using SerialEM

software (Mastronarde, 2005) with �5 to �6 lm defocus at 27,500×

magnification (image pixel size of 4.27 Å) in the Polara, and with

�0.5 lm defocus at 33,000× magnification (image pixel size of

4.21 Å) in Titan Krios equipped with the phase plate. Image frames

from the K2 direct detector were aligned using in-house developed

software based on the algorithm described in Li et al (2013). Align-

ment of the images of each tilt series was performed with IMOD

software (Kremer et al, 1996) using fiducial gold particles, and

tomographic 3D reconstruction was performed using the weighted

back projection. Generally, to enhance contrast, tomograms were 4×

binned, but in some cases (see Table 1) unbinned images were used

for 3D reconstructions. Segmentations and the measurements of

plate thickness and nucleosome dimensions were performed with

Fiji-ImageJ (NIH). These measurements accounted for the CTF

fringes bordering the plates (caused by defocus and other modulat-

ing effects), as described in Fig EV2. The thickness of monolayers

and two layers in close contact is presented in Table 1. The thickness

of single layers in multilayered structures is 6.6 � 1.5 (n = 205),

and the diameter of nucleosomes decorating distorted plates is

8.7 � 1.3 nm (n = 206). Unless otherwise indicated, measurements

were made using slices from 4× binned tomograms obtained with

the Titan Krios microscope, equipped with the phase plate. The

slices from tomographic volumes are shown in reverse contrast.

Subtomogram averaging and classification

For a detailed analysis of the decorative particles (N in Fig 2A), a

set of 902 particles was manually picked and extracted using the

EMAN package (Tang et al, 2007). The subtomogram average was

generated from data acquired on the Titan Krios microscope using

the Volta phase plate and 0.5-lm defocus. The 3D alignment and

classification were performed using algorithms based on maximum

likelihood (Scheres et al, 2009) included in the Xmipp package (de

la Rosa-Trevı́n et al, 2013). We did not apply a focused mask, only

a standard spherical mask about the same size as the box to prevent

hard box edges from influencing the alignment. We processed four

classes (155, 192, 315, and 240 particles) using a 50 pixel box size

and 15 iterations. Classes 1, 2, and 4 resulted in noisy versions of

class 3, which was filtered to 25 Å (Fig 2F). The method is refer-

ence-free; the process was started from a weighted average structure

obtained from random orientations of all particles. Figure EV1

shows the evolution of the averaged subvolume at each iteration

without filtering. Two parts can be distinguished in the recon-

structed volume: the top region that has the size of a nucleosome

core particle and the lower region corresponding to the link of the

particle to the plate. Due to the large box size, part of the plate asso-

ciated with decorative nucleosomes is also included in the subtomo-

gram average. The limited number of particles available in cryo-ET

experiments did not allow to obtain a high-resolution structure; the

resolution estimated using the local resolution algorithm MonoRes

(Vilas et al, 2018) is around 3 nm.

SAXS experiments

X-ray scattering of condensed chromosomes was recorded at room

temperature at the non-crystalline diffraction (NCD) beamline of the

ALBA Synchrotron (Cerdanyola del Vallès, Barcelona) using a SAXS

Quantum 210r CCD detector from ADSC. Different zones of the

chromosome pellets were exposed to X-rays for 60 s. The wave-

length k was 1.29 Å and the sample-to-detector distance was

2.61 m. SAXS data are shown as plots of log (I�S2) versus S, where I

is the average intensity obtained after subtracting the buffer scatter-

ing and S = 2sinh/k is the scattering vector; 2h is the scattering

angle.

Data availability

The subtomogram average of nucleosome particles decorating

unstructured plates and a cryo-electron tomogram of chromatin

plates emanated from metaphase chromosomes have been deposited

in the Electron Microscopy Data Bank (EMDB; http://www.emda

tabank.org) with accession numbers EMD-0117 and EMD-0119,

respectively.

Expanded View for this article is available online.
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