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Abstract

When learning a new skill, even if we have been instructed exactly what to do, it is often necessary 

to practice for hours or even weeks before we achieve proficient and fluid performance. Practice 

has a multitude of effects on behavior, including increasing the speed of performance, rendering 

the practiced behavior habitual and reducing the cognitive load required to perform the task. These 

effects are often collectively referred to as automaticity. Here, we argue that these effects can be 

explained as multiple consequences of a single principle: caching of the outcome of frequently 

occuring computations. We further argue that, in the context of more complex task representations, 

caching different intermediate computations can give rise to more nuanced behavioral signatures, 

including dissociation between skill, habit and cognitive load.

Introduction

The multiple effects of practice

Acquiring any new motor skill requires practice. It is not enough to simply be instructed 

how to drive a car or how to play a new video game; many hours of practice are typically 

needed to achieve proficiency and fluidity. What attributes of performance are improved 

through practice? Most obviously, being skilled at a task involves being able to select 

appropriate actions [1,2], and to execute those actions accurately [3–5]. However, a further 

critical aspect of skill relates to the speed at which an appropriate action can be selected. A 

novice driver will know to press the brake pedal to slow down, but an experienced driver will 

be far quicker to hit the brakes in the face of an unexpected hazard.

It has long been recognized that practice not only promotes incremental performance gains, 

but also leads to a qualitative change in how behavior is generated. A given task seems to 

require less and less cognitive effort the more we practice it [6–8]. Driving a car for the first 

time can feel overwhelming but, after sufficient practice, we have no problem talking to a 

passenger or listening to the radio while we drive. This familiar experience occurs in almost 

any skill we practice; as our proficiency increases, the cognitive burden decreases.
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The diminishing cognitive load of a task, has been studied through the use of dual tasks [9]. 

In this approach, participants are asked to perform the practiced task at the same time as a 

cognitively demanding secondary task, such as counting the number of vowels heard in a 

sequence of spoken letters, or counting backwards from 100 in increments of 7. Early in 

learning, performance on either or both tasks suffers when they are attempted concurrently. 

After sufficient practice, however, it usually becomes possible to perform both tasks 

simultaneously just as well as they can be performed in isolation [10–12].

Another important phenomenon associated with practice is that it is associated with the 

formation of habits. Habits are most commonly studied in operant learning tasks in which an 

animal must learn through experience which action to perform to earn a reward (e.g. which 

lever triggers delivery of a food pellet). In this context, habitual behavior is typically defined 

as behavior that is insensitive to changes in the goals of a task [13–15] (and, by definition, 

opposite from goal-directed behavior). If a rat has repeatedly pressed a particular lever to 

earn a food reward, it may continue to press it habitually even when it is not hungry. Such 

habits are often exposed in daily life when the environment changes. For instance, when 

driving abroad, if the steering wheel is on the opposite side of the car, you may find yourself 

habitually reaching towards the door when trying to shift gears or pull the handbrake. The 

habitual nature of skilled typing is similarly unmasked if one tries to type on a foreign 

keyboard, in which certain symbols might be mapped onto different keys. This key-switch 

manipulation is in fact often directly used in experiments in humans to assess whether a 

practiced visuomotor association has become habitual [16–18].

Assessing whether or not behavior is habitual can be complicated by the fact that behavior is 

known to be generated through a combination of habitual and goal-directed processes 

[14,19–21] and a learned habit can be easily masked by more deliberate, goal-directed 

influences on behavior. One way to reveal latent habitual behavior is to limit the amount of 

time available to generate a response to a stimulus. For instance, if participants practice 

distinguishing between different stimuli, or categories of stimuli, by pressing particular 

buttons over multiple days or weeks, habitual errors following a button-switch are relatively 

scarce when participants are allowed to respond under self-paced conditions [16]. But if 

participants are forced to respond very rapidly, habitual errors can be elicited in a majority of 

trials [18]. Similar low-latency expression of habits occurs when using hand movements to 

control an on-screen cursor. If the mapping between hand and cursor is distorted, e.g. 

through a mirror-reversal of the position of the cursor on the screen, participants can quickly 

learn to generate accurate movements when allowed to take their time before moving. 

However, rapid corrective responses to a perturbation applied during the movement betray a 

persistent habitual tendency to generate baseline patterns of correction, even after extensive 

practice [22–24]. Thus, habits are most strikingly revealed when actions must be generated 

very rapidly.

In summary, practice leads to three distinct changes in behavior: First, it improves skill level, 

in including the ability to select actions more rapidly. Second, it permits appropriate actions 

to be selected with less cognitive effort than before. Third, it leads action selection to 

become habitual.

Haith and Krakauer Page 2

Curr Opin Behav Sci. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Cached computation as a theory of automatic action selection

These three effects of practice, skill, habit and reduced cognitive load, are often viewed as 

alternative ways of observing a single underlying change in behavior: that it has become 

automatic [25–27]. It has often been assumed that it is sufficient to study any one of these 

phenomena on its own as a proxy for assessing the assumed underlying property of 

“automaticity”. However, this assumption has remained largely untested; skill, habit and 

cognitive load have rarely been measured together in the same experiment. Aside from the 

fact that they are all altered through practice, why would one expect them to relate to one 

another?

In order to answer this question, it is worthwhile to first consider how an action is selected in 

the first place. It has been argued that motor control, much like any other task we might 

engage in, can be framed as a decision problem [2]. In order to select appropriate actions, we 

need to weigh up the relative costs and benefits of each option in order to determine which is 

best. This process, however, is generally computationally intensive.

In practice, we often tend to encounter the same decisions over and over again. If so, 

repeating the same computations and obtaining the same outcomes each time is needlessly 

timeconsuming. Instead, it should be possible to simply remember which action you ended 

up selecting last time you encountered the same choice. This trick of storing the outcome of 

frequently occuring computations for rapid use later is often referred to as caching, by 

analogy with a computer cache - a memory reserve that is dedicated for high-speed retrieval.

Dispensing with time-consuming computations by using a cached representation ought to 

allow actions to be selected much faster, i.e. improving skill. Furthermore, simply looking 

up the solution in a cache frees up the resources that would have been required to compute 

the solution, reducing the cognitive load associated with performing the task. Alongside 

these advantages, however, behavior will be liable to become inflexible; if the task changes 

in a way that warrants a different action being selected, information in the cache will remain 

outdated, leading to persistence of old patterns of behavior. Behavior therefore, will become 

habitual [14,21].

It’s worth noting that even the process of recalling an association from past experience can 

in general be an iterative, time-consuming process (try naming all the countries in Europe to 

see that this is true). Caching, therefore, should be understood as more than merely a process 

of retrieving prior outcomes, but as a means of storing direct associations between inputs 

and output in a way that is amenable to instant lookup. Indeed, the process of retrieval itself 

can be improved through practice [28], and many theories have argued that one-step retrieval 

should be considered a hallmark of automatic behavior [29]. Thus memory retrieval itself 

can be considered to be a form of cachable computation.

The principle of caching therefore provides a potentially unifying and appealingly 

parsimonious theory of practice and automaticity: it accounts for improved speed of 

responding, reductions in cognitive load, and the tendency for behavior to become habitual. 

Considered in this way, the primary function of practice therefore might be to gather 
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sufficient experience to establish this pre-computed cache. If so, changes in all three of these 

aspects should be closely correlated with one another (Figure 1b).

Hierarchical representations and intermediate computations

In principle, one can reduce any learned behavior, such as braking at a red light or hitting a 

tennis ball, to a single cached association between a stimulus and a response (Figure 2a), 

which will naturally give rise to all three facets of the automaticity “syndrome”. More 

generally, however, the process of determining an appropriate action may involve a more 

hierarchical process that entails multiple computational steps. In the case of braking at a red 

light, seeing the light may prompt us to engage in the goal of stopping the car. We then 

select an appropriate action to satisfy this goal. Both steps of this process might require 

time-consuming computations at first. With practice, however, either or both of these 

computational steps could, in principle, be cached. Caching different steps will lead to 

different behavioral consequences.

If you were to cache the association between the red light and the goal of stopping the car, 

you would habitually stop at red lights even if the rules of traffic lights were to change so 

that green now meant stop. But driving a car in which the brake and accelarator pedals were 

switched would pose no problem. Conversely, caching the association between stopping the 

car and braking would make you flexible to different traffic light rules, but unable to cope 

with a switch in pedals.

The idea that decisions in more complex tasks can be decomposed into selection of a goal, 

and selecting of actions to pursue the goal is supported by Cushman and Morris [30]. In an 

abstract navigation task, they showed that human participants can be prone to habitual 

selection of high- level goals (where to go), but engage in flexible goal-directed decisions to 

attain those goals (how to get there). Another example of a more nuanced kind habit was 

shown by Momennejad et al. [31]. They found that human participants were more 

vulnerable to habitual errors following a change in the consequences of their actions than 

following a change in the amount of reward associated with those consequences. This 

pattern of errors is consistent with using a cached prediction about the future consequences 

of current actions - an intermediate step in computing future expected reward and, therefore, 

which action to select.

The possibility of caching multiple component computations also has implications for 

cognitive load. Different component computations might depend on distinct cognitive 

resources (e.g. verbal working memory versus spatial working memory) or to differing 

degrees. Caching some computations might therefore have a big impact on cognitive load, 

but not on habitual choice, or vice versa. Economides et al. [32] showed some evidence for 

this perspective. They tested whether goal-directed choice behavior imposed a cognitive 

load. Initially, performing a concurrent dual task led to an increase in habitual responding. 

With practice, however, participants became able to select appropriate, goal-directed actions 

while also accurately performing the dual task. These improvements in dual-task 

performance were likely attributable to caching auxiliary computations, such as parsing the 

stimuli and remembering basic task instructions, rather than caching the key computations 

that supported goal-directed action selection.
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Conclusions

The principle of caching provides a compelling and parsimonious theory of automaticity 

following practice. Caching of a simple stimulus-response relationship accounts for the 

typically observed behavioral effects of practice: faster responding (skill), habitual behavior, 

and reduced cognitive load. The idea of caching computations can be applied more 

generally, however, giving rise to a multitude of different behavioral consequences.

This richer and more nuanced view of automaticity view raises the possibility that practice 

may indeed have multiple, dissociable effects, associated with caching different intermediate 

computations. If so, this may help to explain why attempts to identify the neural basis of 

automaticity have yielded such disparate conclusions [10,12,33,34], including that 

automaticity reflects recruitment of circuits in the cerebellum [10,35] or cortex [33], a shift 

in representation across subregions of the striatum [15,36], or a shift to cortical 

computations becoming independent of the basal ganglia altogether [37].

Ultimately, these considerations highlight the need for a richer understanding of the 

computations underlying action selection, which we suggest is most likely to be achieved 

through careful measurement and analysis of behavior.
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Box 1:

Parallels with other learning dichotomies

The computed-versus-cached perspective is related to several other dichotomies that have 

been proposed in the context of learning [19] (Table 1). One such distinction is that 

between declarative and procedural forms of memory. Since the time of H.M., the idea of 

declarative knowledge has come to be associated with dependence on the hippocampus 

and the medial temporal lobe [38]. In certain areas, the terms declarative and procedural 
have come to be associated with different types of learning that are either explicit or 

implicit [36]. However, the terms declarative and procedural originally derive from 

computer science, and theories of knowledge representation [39]. Declaratively 

represented knowledge is expressed in the form of facts about the world, which can be 

used to logically deduce answers to questions. Procedural knowledge, on the other hand, 

is expressed in terms of solutions to potential queries. Thus, a cached movement policy 

can be considered a form of procedural knowledge.

Another common dichotomy in theories of learning is the distinction between model-

based and model-free reinforcement learning [19,21]. In Model-based reinforcement 

learning, individual agents maintain a rich model of the world, including the effects of 

their actions and availability of rewards, and use this model to compute the value 
(expected future reward) of each available state and/or action at a given point in time. In 

model-free reinforcement learning, by contrast, no such model is maintained. Instead, 

only the values of states and/or actions are stored in a cached form. The key additional 

distinction of model-free reinforcement learning, however, is that it is associated with a 

means of updating these cached values directly, based on experienced versus anticipated 

reward [40].

Table 1.

Common dual-process dichotomies in learning. 

Green boxes: processes or characteristics that 

dominate early in learning. Purple boxes: processes 

that dominate late in learning. Grey boxes describe 

the defining feature of late learning in contrast to 

early learning.
Defining Feature Typically Dominates Early Typically Dominates Late

Response Speed Slow Fast

Flexibility Goal-Directed Habitual

Cognitive Load Effortful Efficient

Deducing or Retrieving Computed Cached

Representation of Knowledge Declarative Procedural

Representation of Value Model-Based Model-Free
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• Practice leads to improved skill, habitual behavior and reduced cognitive load

• Collectively, these phenomena are commonly referred to as “automaticity”

• Automaticity may be a consequence of caching the outcome of frequent 

computations

• More complex tasks can involve intermediate computations which may be 

cached

• This can lead to dissociations between skill, habit and cognitive load
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Figure 1. 
Automaticity as a “syndrome” of skill, habit and cognitive load. a) Automaticity of well-

practiced behaviors is typically characterized by a cluster of features: skill (faster 

performance), habit (behavior is expressed even if no longer appropriate) and low cognitive 

load (behavior can be produced with little attention or effort) b). If these features are 

supported by a common underlying mechanism, they should exhibit a comparable time 

course. c) Alternatively, if these facets of behavior are supported by independent 

mechanisms, they may follow dissociable time courses.
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Figure 2. 
Caching in the context of hierarchical selection problems. a) In a simple stimulus- response 

scenario, only one computation is available to be cached. Consequently, skill, habit and 

cognitive load are likely to co-vary. b) In a more complex scenario, action selection involves 

two distinct computations: i) behavioral goals must be determined from stimuli and ii) 

actions must be selected to achieve these goals. Either of these computations could be 

cached, giving rise to a more diverse set of potential configurations. Habits and cognitive 

load associated with these different configurations may differ.
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