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The molecular mechanism of the occurrence and development of papillary thyroid car-
cinoma (PTC) has been widely explored, but has not been completely elucidated. The
present study aimed to identify and analyze genes associated with PTC by bioinformat-
ics methods. Two independent datasets were downloaded from Gene Expression Om-
nibus (GEO) database. The differentially expressed genes (DEGs) between PTC tissues and
matched non-cancerous tissues were identified using GEO2R tool. The common DEGs
in the two datasets were screened out by VennDiagram package, and analyzed by the
following tools: KOBAS, Database for Annotation, Visualization, and Integrated Discovery
(DAVID), Search tool for the retrieval of interacting genes/proteins (STRING), UALCAN and
Gene expression profiling interactive analysis (GEPIA). A total of 513 common DEGs, in-
cluding 259 common up-regulated and 254 common down-regulated genes in PTC, were
screened out. These common up-regulated and down-regulated DEGs were most signifi-
cantly enriched in cytokine–cytokine receptor interaction and metabolic pathways, respec-
tively. Protein–protein interactions (PPI) network analysis showed that the up-regulated
genes: FN1, SDC4, NMU, LPAR5 and the down-regulated genes: BCL2 and CXCL12 were
key genes. Survival analysis indicated that the high expression of FN1 and NMU genes sig-
nificantly decreased disease-free survival of patients with thyroid carcinoma. In conclusion,
the genes and pathways identified in the current study will not only contribute to elucidating
the pathogenesis of PTC, but also provide prognostic markers and therapeutic targets for
PTC.

Introduction
Papillary thyroid carcinoma (PTC) is the most common subtype of thyroid malignancy, and accounts for
approximately 75% of all thyroid cancers [1]. Although PTC has been reported as a curable malignancy
with more than 90% 10-year survival, the incidence of PTC had been increasing and a subset of patients
died of the disease due to local recurrence or distant metastasis [2–4]. Therefore, the molecules involved
in the occurrence and development of PTC needs to be explored, which will contribute to the finding of
prognostic markers and therapeutic targets of PTC.

Previous studies have made an important contribution to revealing the pathogenesis of PTC [5–7]. For
instance, Dong et al. [5] found that estrogen could induce the metastatic potential of PTC cells through
estrogen receptor α and β. Yin et al. [6] found that miR-195 was down-regulated in PTC. Overexpres-
sion of miR-195 could significantly inhibit the growth and metastasis of PTC cells by targeting CCND1
and FGF2. Shen et al. [7] found that lncRNA PROX1-AS1 could promote the proliferation, invasion and
migration of PTC cells and might act as a potential target for PTC therapy. However, the above find-
ings were obtained based on molecular biological methods, such as Western blot, immunohistochemistry
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and dual-luciferase reporter assay system. These methods were often used to explore the specific function of a cer-
tain molecule in disease, and could not observe the overall change of molecules in cells. With the development of
high-throughput molecular detection technology, an increasing number of gene expression profiling data can be
generated by microarray or RNA-seq. By bioinformatic analysis of these data, researchers found many novel genes
associated with disease initiation and progression [8–10]. In the current study, we utilized various bioinformatics
methods to mine high-throughput gene expression data of PTC and normal thyroid tissues, and identified several
key genes associated with PTC, such as FN1, SDC4, NMU, LPAR5, BCL2 and CXCL12, which might act as prog-
nostic markers and therapeutic targets for PTC.

Materials and methods
Microarray data
High-throughput gene expression data of PTC and normal thyroid tissues from two independent datasets (GSE3467
and GSE29265) were obtained from Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/). There-
into gene expression profiling data of nine paired PTC and normal thyroid tissues were from GSE3467, which were
generated by the GPL570 platform (Affymetrix Human Genome U133 Plus 2.0 Array) and contributed by He et
al. [11]. Other data including 20 paired PTC and noncancerous tissues were from GSE29265, which were gener-
ated by the GPL570 platform (Affymetrix Human Genome U133 Plus 2.0 Array) and contributed by Tomas et al.
(https:www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29265).

Identification of differentially expressed genes
GEO2R tool (https://www.ncbi.nlm.nih.gov/geo/geo2r/) was used to identify differentially expressed genes (DEGs) in
PTC tissues compared with matched non-cancerous tissues. The t-test and Benjamini–Hochberg method were used
to calculate the P-value and FDR, respectively. The DEGs were screened out according to adjusted P-value <0.05 and
|logFC| ≥1. The common DEGs in the two datasets were screened out by VennDiagram package [12].

Kyoto encyclopedia of genes and genomes pathway enrichment analysis
KOBAS 3.0 (http://kobas.cbi.pku.edu.cn/) is an online tool for gene/protein functional annotation and gene set func-
tional enrichment [13]. For enrichment analysis, KOBAS 3.0 can accept either gene list or gene expression data as
input, and generates enriched gene sets, corresponding name, P-value or a probability of enrichment and enrichment
score based on results of multiple methods. To identify key pathways implicating PTC, we conducted Kyoto Ency-
clopedia of Genes and Genomes (KEGG) pathway enrichment of common DEGs by using KOBAS 3.0. A corrected
P-value <0.05 was considered significant.

Protein–protein interactions network and module analysis
The Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database (http://string-db.org/) consol-
idates known and predicted protein–protein association data for a large number of organisms, which contributes
to uncovering the direct (physical) and indirect (functional) relationships of DEGs [14]. In the present study,
Protein–protein interactions (PPI) network of common DEGs were constructed by the latest STRING v10.5 database
based on a minimum required interaction score 0.7. PPI network with the most number of nodes were visualized by
Cytoscape v3.3.0 software. Key nodes (genes) in the PPI network were screened out according to node degree >10.
Furthermore, a Cytoscape App, Molecular Complex Detection (MCODE v1.4.1) with K-Core >4 was used to detect
densely connected regions (modules) in the PPI network that might represent molecular complexes [15]. Database for
Annotation, Visualization, and Integrated Discovery (DAVID) v.6.8 (https://david.ncifcrf.gov/tools.jsp) can annotate
input genes, classify gene functions, identify gene conversions and carry out gene ontology (GO) term analysis. Thus,
the DAVID was used to annotate genes in each densely connected region and perform GO term enrichment, which
helped reveal the biological function of each densely connected region [16,17]. FDR value <0.05 was considered
significant.

Validation of the expression level of key genes in PPI network
UALCAN (http://ualcan.path.uab.edu/) is a user-friendly, interactive web resource for analyzing transcriptome data
of cancers from The Cancer Genome Atlas (TCGA) [18]. In the current study, the online tool was used to validate
the expression level of key genes in PPI network.
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Figure 1. The common differentially expressed genes in the two datasets

(A) Common up-regulated genes; (B) common down-regulated genes.

Association of key genes expression with survival of patients with thyroid
carcinoma
Gene Expression Profiling Interactive Analysis tool (GEPIA, http://gepia.cancer-pku.cn/) could deliver fast and cus-
tomizable functionalities based on TCGA and GTEx data [19], including differential expression analysis, profiling
plotting, correlation analysis, patient survival analysis, similar gene detection and dimensionality reduction analysis.
In the current study, GEPIA was utilized to explore the association of key gene expression with disease-free survival
(DFS) of patients with thyroid carcinoma. Patients were grouped into high expression group and low expression group
according to the median value of gene expression. P(HR)-value <0.05 was considered statistically significant.

Analysis of the main functional regions of proteins encoded by key genes
UniProt provided a comprehensive and high-quality resource of protein sequences and their annotations, such as
functional region, subcellular location, structure and so on, and can be freely accessed via the website at http://www.
uniprot.org/ [20]. In the current study, UniProt was utilized to summarize the main functional regions of proteins
encoded by key genes.

Results
Identification of DEGs
For GSE3467 dataset, a total of 771 DEGs, including 373 up-regulated and 398 down-regulated genes in PTC, were
identified. For GSE29265 dataset, a total of 847 DEGs, including 417 up-regulated genes and 430 down-regulated
genes in PTC, were screened out. Intersection analysis of the two datasets showed 513 common DEGs, including
259 common up-regulated and 254 common down-regulated genes in PTC (Figure 1 and Supplement). KEGG path-
way enrichment analysis indicated that these common up-regulated genes were significantly enriched in 43 path-
ways. The top ten pathways included ‘Cytokine–cytokine receptor interaction’, ‘Pathways in cancer’, ‘p53 signaling
pathway’, ‘Small cell lung cancer’, ‘Proteoglycans in cancer’, ‘Transcriptional misregulation in cancer’, ‘Focal adhe-
sion’, ‘ECM–receptor interaction’, ‘Cell adhesion molecules’ and ‘Complement and coagulation cascades’ (Figure 2A).
These common down-regulated genes were significantly enriched in 27 pathways. The top ten pathways included
‘Metabolic pathways’, ‘Insulin resistance’, ‘Adipocytokine signaling pathway’, ‘Tyrosine metabolism’, ‘AMPK signaling
pathway’, ‘Hedgehog signaling pathway’, ‘Retinol metabolism’, ‘Thyroid hormone synthesis’, ‘Fructose and mannose
metabolism’ and ‘Cytokine–cytokine receptor interaction’ (Figure 2B).

PPI network of common DEGs
The PPI network of common DEGs, including 170 nodes (genes) and 328 edges (interactions), were constructed
(Figure 3A). The degree centrality analysis showed that FN1, BCL2, CXCL12, SDC4, NMU and LPAR5 genes were
key genes. Therein the expression levels of FN1, SDC4, NMU and LPAR5 genes were up-regulated in PTC. The
expression levels of BCL2 and CXCL12 genes were down-regulated in PTC (Figure 3B). In addition, two signifi-
cant modules were identified in PPI network (Figure 4A,B). Due to the limited number of genes in each module,
we furtherly analyzed each module as a whole. Genes in Module 1 were significantly enriched in ‘G-protein cou-
pled receptor signaling pathway’, ‘Cell chemotaxis’, ‘Negative regulation of leukocyte tethering or rolling’, ‘Chemokine
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Figure 2. The top ten KEGG pathways enriched by common differentially expressed genes

(A) common up-regulated genes; (B) common down-regulated genes.

Figure 3. Construction and analysis of PPI network of common differentially expressed genes

PPI network plot (A): red and light blue nodes indicate up- and down- regulated genes, respectively; the node size indicates the

node degree. Key nodes in PPI network (B): a node degree is defined as the number of other nodes connected to the node.

activity’. Genes in Module 2 were significantly enriched in ‘Extracellular region’, ‘Endoplasmic reticulum lumen’, ‘Col-
lagen trimer’, ‘Platelet degranulation’, ‘Platelet alpha granule lumen’, ‘Collagen catabolic process’, ‘Extracellular matrix
organization’, ‘Proteinaceous extracellular matrix’, ‘Extracellular matrix’ and ‘Protease binding’ (Figure 4C).

Validation of the expression level of key genes in PPI network
TCGA data analysis showed that FN1, SDC4, NMU and LPAR5 genes were significantly up-regulated in PTC,
and BCL2 and CXCL12 genes were significantly down-regulated in PTC, which were consistent with the results of
microarray analysis (Figure 5).

Association of key genes expression with survival of patients with thyroid
carcinoma
Survival analysis based on TCGA data showed that the expression levels of SDC4, BCL2, CXCL12 and LPAR5 genes
were not associated with DFS of patients with thyroid carcinoma; however, the high expression of FN1 and NMU
genes significantly decreased DFS of patients with thyroid carcinoma (Figure 6).

Analysis of the main functional regions of proteins encoded by key genes
Information of the main functional regions of proteins encoded by FN1 and CXCL12 genes was obtained from
UniProt and summarized in Table 1. The protein encoded by FN1 gene contained eight main functional regions,
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Figure 4. Identification and analysis of significant modules in PPI network

Two significant modules in PPI network (A): module 1 network; (B): module 2 network; (C): gene ontology enrichment results of

different modules. The cut-off value of ‘significant’ modules is K-Core >4).

Figure 5. The expression level of key genes in papillary thyroid carcinoma from TCGA

including 52–272 aa (fibrin- and heparin-binding 1), 308–608 aa (collagen-binding), 464–477 aa (critical for colla-
gen binding), 1267–1540 aa (cell-attachment), 1721–1991 aa (heparin-binding 2), 1813–1991 aa (binds to FBLN1),
1992–2102 aa [connecting strand 3 (CS-3) (V region)] and 2206–2337 aa (fibrin-binding 2). The protein encoded
by CXCL12 gene had five main functional regions, including 29–33 aa (receptor and heparin binding), 39–41 aa
(receptor binding), 41–51 aa (heparin binding), 48–50 aa (receptor binding) and 60–70 aa (receptor binding).
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Figure 6. The association of the expression level of key genes with DFS of patients with thyroid carcinoma

The association of the expression level of key genes with DFS of patients with thyroid carcinoma based on TCGA [P(HR) value

<0.05 was considered to be associated with DFS].

Table 1 Summary of the main functional regions of proteins encoded by key genes

Gene name Protein name Uniport entry Organism Length Main functional regions
Regions Description

FN1 Fibronectin P02751 Homo sapiens 2386 52–272 Fibrin- and
heparin-binding 1

308–608 Collagen-binding

464–477 Critical for collagen
binding

1267–1540 Cell-attachment

1721–1991 Heparin-binding 2

1813–1991 Binds to FBLN1

1992–2102 Connecting strand 3
(CS-3) (V region)

2206–2337 Fibrin-binding 2

SDC4 Syndecan-4 P31431 Homo sapiens 198 - -

NMU Neuromedin-U P48645 Homo sapiens 174 - -

LPAR5 Lysophosphatidic acid
receptor 5

Q9H1C0 Homo sapiens 372 - -

BCL2 Apoptosis regulator
Bcl-2

P10415 Homo sapiens 239 - -

CXCL12 Stromal cell-derived
factor 1

P48061 Homo sapiens 93 29–33 Receptor and heparin
binding

39–41 Receptor binding

41–51 Heparin binding

48–50 Receptor binding

60–70 Receptor binding

Discussion
In the present study, we analyzed gene expression profiling data of 29 paired PTC tissues and corresponding
non-cancerous tissues from two independent datasets, and found 513 common DEGs, including 259 common
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up-regulated and 254 common down-regulated genes in PTC. Pathway enrichment analysis indicated that these com-
mon up-regulated and down-regulated DEGs were most significantly enriched in cytokine–cytokine receptor inter-
action and metabolic pathways, respectively. PPI network analysis showed that FN1, SDC4, NMU, LPAR5, BCL2
and CXCL12 genes had high degree centrality, suggesting that these genes might play an important role in the oc-
currence or development of PTC. In order to validate the expression level of these key genes, we further analyzed
related data in TCGA. Results indicated that FN1, SDC4, NMU and LPAR5 genes were significantly up-regulated
in PTC, and BCL2 and CXCL12 genes were significantly down-regulated in PTC, which were consistent with the
results of microarray analysis. In addition, survival analysis showed that the high expression of FN1 and NMU genes
significantly decreased DFS of patients with thyroid carcinoma.

By reviewing the previous studies, we found that these crucial genes were involved in the initiation and progress
of various cancers [21–28]. For instance, Sponziello et al. [21] found that FN1 expression was significantly overex-
pressed in PTC tissues compared with normal tissues. Silencing of FN1 significantly reduced proliferation, adhesion,
migration and invasion of PTC cells. Chen et al. [22] observed that SDC4 gene silencing not only favored human
PTC cell apoptosis, but also inhibited epithelial mesenchymal transition via Wnt/β-catenin pathway. Zhu et al. [23]
confirmed that CXCL12 could stimulate the invasion and migration of K1 cells overexpressing CXCR4, but did not
affect K1 cells overexpressing CXCR7, which suggested that CXCL12 function in cancer depended on the assistance
of other molecules. In addition, results of Zhang’s study suggested that CXCL12 down-regulation in PTC might be
caused by promoter hypermethylation [24]. Although the specific biological functions of BCL2 and LPAR5 genes
in PTC had not been explored directly by molecular biology methods, data mining based on bioinformatics tools
had also confirmed that BCL2 gene was down-regulated in PTC [25], and LPAR5 gene was up-regulated in thyroid
cancer [26]. To the best of our knowledge, NMU gene had not been identified as key genes in PTC so far. However,
the promotion effect of NMU gene on other cancers had been reported [27,28]. For instance, Lin et al. [27] found
that NMU signaling promoted endometrial cancer cell progression by modulating adhesion signaling. Martinez et al.
[28] found that overexpression of NMU resulted in up-regulation of epithelial–mesenchymal transition markers and
expanded the cancer stem cell phenotype in HER2-positive breast cancer. Furthermore, the current result showed
that the high expression of NMU gene significantly decreased DFS of patients with thyroid carcinoma. Thus, the
specific functions of NMU in PTC were worth to be further explored.

In conclusion, our study identified several key genes (FN1, SDC4, NMU, LPAR5, BCL2 and CXCL12) and signal-
ing pathways (cytokine–cytokine receptor interaction and metabolic pathways) associated with PTC, which might
act as prognostic markers and therapeutic targets for PTC. However, further experimental studies are still required
to confirm the functions of identified genes, such as BCL2, LPAR5 and NMU.
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