Skip to main content
. 2018 Dec 4;40(2):93–99. doi: 10.4082/kjfm.17.0083

Table 5.

Difference in forced vital capacity by serum 25(OH)D quartile according to evidence of PTB

Variable 25(OH)D (quartile)
P for trend
Q1 Q2 Q3 Q4
Non-PTB (mL)
 Crude Ref 22.0±16.0 24.0±16.0 38.0±16.0 0.122
 Model 1 Ref 20.4±16.2 25.2±15.8 39.6±16.2* 0.015
 Model 2 Ref 20.5±16.2 25.1±15.7 39.4±16.2* 0.016
 Model 3 Ref 15.4±16.1 19.5±15.7 31.2±16.0 0.052
Past PTB (mL)
 Crude Ref 75.0±46.0 66.0±45.0 88.0±48.0 0.502
 Model 1 Ref 62.0±45.8 48.5±44.3 69.3±47.7 0.203
 Model 2 Ref 61.2±45.8 51.7±44.4 69.4±47.0 0.186
 Model 3 Ref 55.2±45.1 53.2±44.4 73.3±46.1 0.141

Values are presented as the mean±standard error. Model 1 was adjusted for age, sex, height, and season; model 2 was adjusted for the same variables as in model 1 with additional adjustment for smoking and exercise; model 3 was adjusted for the same variables as in model 2 with additional adjustment for body mass index, occupation, and region. Q1, <15.1 ng/mL; Q2, 15.1–19.1 ng/mL; Q3, 19.1–23.9 ng/mL; and Q4, ≥23.9 ng/mL for men. Q1, <12.7 ng/mL; Q2, 12.7–16.1 ng/mL; Q3, 16.1–20.5 ng/mL; and Q4, ≥20.5 ng/mL for women. The data were analyzed by multiple linear regression with the Bonferroni post-hoc test and are shown as the mean and standard error in mL.

25(OH)D, 25-hydroxyvitamin D; PTB, pulmonary tuberculosis; Q, quartile; Ref, reference.

*

P<0.05, compared with the lowest vitamin D quartile (Q1).