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Abstract

Purpose of Review: The present review discusses brain circuits that are engaged by negative 

emotions and possibly linked to cardiovascular disease risk. It describes recent human brain 

imaging studies that relate activity in these brain circuits to emotional processes, peripheral 

physiology, preclinical cardiovascular disease, as well as clinical outcomes.

Recent Findings: Negative emotions and the regulation of negative emotions reliably engage 

several brain regions that cross-sectional and longitudinal brain imaging studies have associated 

with CVD risk markers and outcomes. These brain regions include the amygdala, anterior 

cingulate cortex, medial prefrontal cortex, and insula. Other studies have applied advanced 

statistical techniques to characterize multivariate patterns of brain activity and brain connectivity 

that associate with negative emotion and CVD-relevant peripheral physiology.

Summary: Brain imaging studies on emotion and cardiovascular disease risk are expanding our 

understanding of the brain-body bases of psychosocial and behavioral risk for cardiovascular 

disease.
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Introduction

Cardiovascular disease (CVD) is a leading contributor to morbidity and mortality in the 

developed world. A large body of epidemiological research suggests that negative emotions 

and mood states may play a significant role in the development and progression of CVD. 

Moreover, it is thought that negative emotions, moods, and related dispositional traits (e.g., 

anxiety, anger, and depressive phenotypes) may impact CVD risk and progression via 
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peripheral physiological changes that are evoked by stressful or otherwise adverse 

experiences. However, the brain mechanisms that link the experience, expression, and 

regulation of negative affective states and traits with downstream physiological changes are 

not fully understood.

To better understand these mechanisms, parallel lines of research using animal models, as 

well as human brain imaging studies, have attempted to identify brain circuits that are 

implicated in processing and responding to negative emotional stimuli, as well as the 

regulation of autonomic, neuroendocrine, immune, and cardiovascular physiology. Emerging 

human brain imaging studies have, moreover, begun to link functioning in these brain 

circuits to preclinical and clinical CVD endpoints. Accordingly, the present review 

summarizes findings from these brain imaging studies, which together point to localized 

activity as well as patterned and network-level responses within a brain circuitry 

encompassing specific brainstem, subcortical, and cortical structures. After this summary, 

we identify open questions for further research in this field.

Emotion, Stress, and Cardiovascular Disease

Although mortality due to cardiovascular disease (CVD) has declined in recent decades, it 

nonetheless remains a leading cause of death among adult men and women in developed 

countries [1]. In addition to traditional CVD risk factors, psychosocial factors are thought to 

influence the development and progression of CVD across the lifespan [2, 3]. Key among 

these psychosocial factors are processes involving the generation and regulation of negative 

emotions [4]. Negative emotions may relate to CVD within at least two contexts. First, 

chronic or prolonged experiences of negative emotional or mood states, such as clinical 

depression, as well as the trait-like tendency to experience negative emotion, each associate 

with preclinical CVD disease markers, clinical CVD incidence, as well as treatment 

outcomes [5–7]. Along these lines, increased CVD risk has been demonstrated in relation to 

several other clinical disorders (e.g., anxiety, post-traumatic stress), and personality 

characteristics (e.g., hostility) that involve negative emotions [8–10]. Second, acute 

emotional responses to negative events may trigger cardiac events in at-risk individuals or 

individuals with ongoing CVD [11]. Importantly, reported associations between CVD and 

experiences of chronic or acute negative emotion are often independent of conventional 

CVD risk factors, such as lipid levels, blood pressure, and tobacco use [12]. Similarly, the 

statistical effect size of associations between negative emotionality and CVD is comparable 

to these and other CVD risk factors [13]. We note that, in addition to the literature on 

negative emotions, a parallel line of research suggests a possible protective role for positive 
emotions in CVD risk and incidence [14, 15]; however, to our knowledge, none of the brain 

imaging studies described below have yet examined neural correlates of positive emotions as 

they relate to CVD risk. Hence, taken together, chronic and acute negative emotional states 

represent a substantial and potentially modifiable source of risk for CVD and other chronic 

diseases of aging.

Despite cumulative epidemiological and clinical evidence linking negative emotions to 

CVD, physiological mechanisms underlying this link are not fully understood. A key 

component of negative emotional responses is the generation of peripheral physiological 
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changes involving the autonomic, immune, and neuroendocrine systems. Some of the most 

frequently documented physiological changes that accompany negative emotions and are 

jointly implicated in CVD pathogenesis include a suppression of parasympathetic cardiac 

control, an increase in sympathetic nervous system activity, an increase in systemic 

inflammation, and activation of the hypothalamic-pituitary-adrenal axis [16–19]. The role of 

these different peripheral physiological changes in the context of emotion and CVD is 

beyond the scope of the present review, yet we note that these peripheral physiological 

responses can vary substantially across different emotions, contexts, and individuals. 

Regarding the latter, observed inter-individual variability in peripheral physiological 

responses may correspond to specific phenotypes that forecast an individual’s CVD risk or 

prognosis [20].

In a separate line of research, the peripheral physiological responses listed above (and 

others) are considered to comprise biological aspects of the canonical stress response: they 

are evoked when environmental demands tax or exceed an individuals’ ability to cope in 

order to prepare or motivate the individual to respond to changing environmental contexts 

and life circumstances [21]. In the context of emotional responses, these stressor-evoked 

peripheral physiological adjustments are adaptive insofar as they provide the individual with 

energy and metabolic support to respond to changes in the environment. However, it is 

thought that prolonged or repeated experience of stress and negative emotions may induce 

pathological changes in the heart and vasculature via activation of these physiological 

pathways [22]. For example, there are appreciable individual differences in peripheral blood 

pressure responses to acute stressors; moreover, individuals with a tendency to show larger 

and perhaps more sustained (longer lasting) physiological stress responses have increased 

risk for future incident CVD [23]. Accordingly, these and other perspectives on 

psychological stress have the goal of identifying components of negative emotions that 

translate into peripheral physiological responses and hence CVD risk.

Importantly, however, for emotional or stressful stimuli to be translated into downstream 

physiological responses and hence CVD risk, they must first be processed by the brain [24]. 

Hence, the brain represents an integral yet relatively underappreciated component in the 

emotion-CVD link [25]. Drawing from preclinical animal models of stress and CVD, a 

growing line of research aims to delineate the brain circuits jointly involved in generating 

and regulating stress and negative emotions, as well as in generating and regulating 

subsequent peripheral physiological responses. These neurobiological accounts and their 

accompanying brain imaging studies, reviewed below, indicate there are overlapping neural 

circuits for negative emotion and CVD risk, respectively.

Neural Substrates of Negative Emotion and Psychological Stress

There is not a complete agreement of how negative emotions and mood states are generated 

and regulated in the brain. Nonetheless, many leading neurobiological models attribute 

emotional and stress processing to a core brain circuit comprising brainstem and subcortical 

regions including the amygdala, hypothalamus, periaqueductal gray (PAG), as well as 

cortical regions including the medial prefrontal cortex (mPFC), anterior cingulate cortex 

(ACC), and insula (Figure 1) [26]. Hence, it is not plausible that there is any single brain 
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region for negative emotions in particular. Rather, emotional and stressful experiences 

engage circuit-level patterns in the brain, and these patterns likely vary across contexts and 

individuals [27]. Moreover, these patterns of neural responses within and across the above 

brain regions may be most important for emotion and emotion associated risk for CVD.

Notwithstanding, of particular relevance to understanding the affective neurobiology of 

CVD risk is the role of the amygdala. The amygdala (Figure 1, red) is thought to be involved 

in assigning salience and relevance to environmental stimuli [28]. In particular, the amygdala 

is critical for pairing fearful stimuli and situations with appropriate responses [29]. 

Moreover, the amygdala issues neuroanatomical connections to the regions listed above, 

particularly the mPFC (Figure 1, blue) [30–32]. Animal models suggest that lesions to the 

amygdala associate with impaired physiological and behavioral responses to emotional 

stimuli [33]; in contrast, electrical stimulation of the amygdala in humans and animals 

results in an array of subjective, behavioral, and downstream physiological responses 

including feelings of fear and anxiety, altered respiration, and increased heart rate and blood 

pressure [34]. Finally, many, but not all, human brain imaging studies show that negative 

emotional states reliably evoke activity within the amygdala [35–37], and alterations in 

amygdala responsivity are consistently observed in clinical depression and other affective 

disorders [38]. Collectively, the amygdala is a major focus in neuroscience research linking 

emotion to peripheral physiology.

Parallel to subcortical and brainstem structures are regions within the cortex, particularly the 

mPFC, ACC, and insula, that are involved in negative emotion. Moreover, substantial human 

brain imaging evidence indicates these cortical regions represent and regulate downstream 

visceral physiological signals, especially those of the autonomic, vascular, neuroendocrine, 

and immune systems [39, 40].

Briefly, the mPFC and ACC (Figure 1, blue and purple, respectively) are thought to be 

involved in processes including executive control, conflict monitoring, and the expression 

and regulation of negative emotion [41–44]. Regarding the latter process, the mPFC and 

ACC are critically implicated in the regulation of negative emotion, in particular cognitive 

reappraisal [45]. Cognitive reappraisal is a major clinical focus of behavioral interventions 

for depression and other affective disorders [46], and individual differences in the tendency 

to use cognitive regulation of emotion associates with preclinical markers of CVD [47]; 

hence, the role of these cortical structures in emotion regulation and CVD risk is an 

emerging line of research. Separately, the mPFC and ACC issue ‘brain-to-body’ 

visceromotor commands in the form of autonomic and cardiovascular responses to 

environmental stimuli [48–50]. In particular, dorsal and ventral divisions of the ACC and 

mPFC may be involved in generating sympathetic and parasympathetic responses to stimuli, 

respectively [25]. Stimulation of the ventral mPFC (vmPFC) appears to reduce sympathetic 

tone and arterial pressure [51, 52]. Neurological patients with focal damage to areas in the 

dorsal ACC exhibit altered (i.e., “blunted”) autonomic and cardiovascular responses to 

effortful cognitive tasks [53], perhaps indicating that more dorsal and midline cortical 

territories participate in generating sympathetic nervous system responding.
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Another cortical brain region implicated in emotion and CVD risk is the insula (Figure 1, 

yellow). In the context of emotion, the insula integrates ‘body-to-brain’ viscerosensory 

feedback into subjective emotional states [54, 55]. Specifically, viscerosensory feedback 

(e.g., autonomic, immune) conveying bodily states is sensed by the posterior insula and 

subsequently integrated and interpreted by the anterior insula. The process by which 

viscerosensory feedback is sensed and processed is known as interoception, and hence the 

insula is considered to be an ‘interoceptive cortex’ [56, 57]. In the context of emotion, 

viscerosensory feedback shapes feeling states (e.g., fatigue), and biases motivations and 

drives to maintain optimal functioning [58]. Separately, the insula is involved in regulating 

cardiac function [59]. Interestingly, several studies have found that stroke patients with 

infarctions localized to the insula, when compared to patients with infarctions in other brain 

regions, exhibit altered autonomic tone, elevated blood pressure, and more complex 

arrhythmias [60–62]. Moreover, stimulating the insula can induce cardiac arrhythmias as 

well as structural damage to cells of the heart (myocytolysis) [63]. Along these lines, it has 

been suggested that the insula may be involved in acute emotion-induced cardiac alterations, 

arrhythmias, and sudden death, including Takotsubo cardiomyopathy [64].

Taken together, brain substrates for emotion and CVD risk are not limited to evolutionarily 

‘old’ subcortical and brainstem structures, but additionally implicate cortical and insular 

regions and networks involved in higher-order cognitive, emotional, and social behavioral 

processes [65].

Brain Imaging Studies of Emotion, Stress, and CVD

Drawing from the evidence linking emotional processes to CVD risk as described above, an 

emerging body of brain imaging research examines brain circuits jointly implicated in 

processing emotional and stressful experiences as well as regulating physiology that is 

involved in CVD [66, 67]. To this end, such brain imaging studies typically employ 

behavioral task paradigms in the scanner, requiring participants to view emotional or 

aversive pictures or film clips [68], complete difficult cognitive tasks under unpredictable 

time pressure and negative feedback [69], prepare a difficult speech before an unsupportive 

panel of judges [68], or respond to social exclusion during a computerized group 

interactions [70]. Further, these studies examine an array of peripheral physiological systems 

that are engaged by negative emotion and also relate to CVD pathophysiology, including 

heart rate [71], heart rate variability [72], cardiac contractility [73], baroreflex sensitivity 

[74], and blood pressure [75]. Broadly, these studies consistently report brain regions, 

particularly those described above, that relate to peripheral physiology during emotional and 

stressful experiences [74, 76, 77]. For example, a recent study observed an association 

between amygdala responses during the processing of threatening faces with circulating 

levels of C-Reactive protein (CRP) [78], a marker of systemic inflammation known to 

predict incident CVD independently of traditional CVD risk factors [79]. In another study, 

negative emotion inductions engaged areas in the mPFC, insula, and PAG, and responses in 

these areas associated with changes in high frequency heart rate variability[80], an indirect 

or surrogate index of cardiac parasympathetic autonomic nervous system function that is 

linked to CVD risk [81].
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Other brain imaging studies examine associations of emotion processing with markers of 

preclinical CVD pathophysiology. In one study, amygdala responses during the processing 

of emotional faces associated with carotid intima-media thickness (cIMT), a preclinical 

marker of CVD risk [82]. In another study, activity in the dorsal subdivision of the ACC 

(dACC) during cognitive regulation of negative emotional stimuli associated with cIMT 

[83]. In the latter study, the observed association was statistically mediated by circulating 

levels of the pro-inflammatory cytokine interleukin(IL)-6. Several other regions in the 

mPFC, ACC, and insula associated with IL-6, but not with cIMT. Notably, however, this 

study failed to replicate the above association between amygdala activity during the 

processing of negative emotional stimuli and cIMT, indicating that single brain areas 

including the amygdala may not be uniformly associated with CVD risk across all contexts 

and subject populations.

While the above studies are promising insofar as they identify candidate brain regions 

linking emotion to CVD, nearly all are cross sectional, which limits generating causal 

interpretations. As mentioned previously, some of the candidate brain regions reviewed here 

are implicated in relaying and representing viscerosensory feedback to the brain; hence, it is 

plausible that preclinical changes in peripheral CVD risk factors (e.g., inflammatory or 

vascular state) could influence, in a body-to-brain manner, brain activity observed in 

response to emotion [39]. Accordingly, to better interrogate the directionality of these brain-

body pathways, what is needed are longitudinal brain imaging studies demonstrating that 

functional activity in brain circuits involved in negative emotion precede the development of 

CVD, or otherwise predict clinical outcomes in CVD patients.

The only study so far to take a longitudinal approach to these questions used a brain imaging 

method called positron emission tomography to examine resting metabolism of the 

amygdala in a sample of nearly 300 individuals [84]. This study showed that higher resting 

activity in the amygdala at baseline was associated with a greater incidence of CVD events, 

defined as coronary death, myocardial infarction, coronary insufficiency, angina, 

cerebrovascular accidents, revascularization, peripheral artery disease, and heart failure, over 

a median follow-up period of 3.7 years. Importantly, the predictive utility of resting 

amygdala activity on these subsequent events remained following statistical adjustment for 

several traditional CVD risk factors at baseline. Finally, the relation between baseline 

amygdala activity and CVD event incidence was statistically mediated by bone marrow 

activity and arterial inflammation, and amygdala activity was positively associated with 

increased symptoms of perceived stress in a subset of participants. In summary, this study 

provided crucial longitudinal evidence in a clinical population linking neural substrates of 

negative emotion to objective CVD outcomes, and moreover identified physiological 

pathways that plausibly mediate this longitudinal risk.

Toward Brain Networks and Multivariate Patterns for Predicting CVD Risk

Thus far, the majority of brain imaging research on negative emotion, stress reactivity, and 

CVD has focused on mean levels of activity within discrete regions of the brain. Two 

emerging lines of research aim to expand current knowledge using novel conceptual and 
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statistical approaches: formulating the brain into networks of connections between brain 

regions, as well as examining patterns of activity across distinct brain regions.

First, brain circuits involved in emotional responses and physiological control may be 

conceptualized as networks. These networks comprise brain regions that are structurally 

connected via white matter fibers (i.e., structural connectivity networks [85]) as well as brain 

regions whose observed activities correlate with each other over time (i.e., functional 

connectivity networks [86]). The reformulation of brain regions into networks and their 

resulting connections attracts substantial interest, as metrics of communication between 
brain regions might estimate underlying neuronal processes more accurately than activity 

levels within brain regions [87].

As mentioned above, candidate brain regions involved in emotion and CVD risk are richly 

interconnected. Hence, metrics of structural and functional connectivity between these brain 

regions may more accurately estimate biobehavioral risk in the context of negative emotions 

and stress. Indeed, psychological stress consistently alters functional connectivity between 

the amygdala, insula, ACC and mPFC, and changes in these estimates of functional 

connectivity relate to downstream autonomic and cardiovascular reactivity (for review, see 

[66]). Several of these regions can be grouped into a corticolimbic circuit involving limbic 

(subcortical) regions such as the amygdala and hippocampus, as well as neuroanatomically 

connected cortical regions in the ACC and mPFC. This circuit is involved in emotion 

regulation, stress reactivity, and control over peripheral autonomic and cardiovascular 

physiology [88, 89]. Connections between these regions as well as the insula, periaqueductal 

gray matter, parabrachial complex, nucleus of the tractus solitarius, and ventrolateral 

medulla have moreover been historically described as comprising a central autonomic 
network [90]. Several brain imaging studies have linked connectivity across this network 

with peripheral physiology and CVD. For example, during a cognitive stressor task, 

individuals with exaggerated blood pressure responses also exhibited increased functional 

connectivity (i.e., cross-correlation) between the amygdala and other regions including the 

mPFC, insula, hippocampus, and pons [91]. Similarly, during a task in which participants 

received negative social feedback, individuals with greater IL-6 responses to the task also 

exhibited greater functional connectivity between the amygdala and mPFC [92]. 

Collectively, these and other studies suggest that functional connectivity between subcortical 

(i.e., amygdala) and cortical (e.g., mPFC) regions may link negative emotional states to 

peripheral physiological pathways as well as preclinical markers for CVD.

Parallel to the above are advances in statistical approaches to characterizing patterns of brain 
activity. These statistical approaches contend that complex psychological phenomena, such 

as negative emotions, may be expressed in the brain by distributed patterns, or signatures, of 

activity across multiple regions. Due to the multivariate nature of these brain patterns, 

studies typically employ machine learning algorithms to examine the predictive utility on 

unseen, out-of-sample observations. Similar to the above argument for brain networks, it is 

thought that patterns of neural responses across the entire brain may be important to 

consider above-and-beyond those observed in individual regions [93].
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Indeed, several ‘brain signatures’ have recently been generated in the context of emotion and 

CVD. In one study, a brain signature encompassing the amygdala, insula, ACC, mPFC, as 

well as other regions, predicted subjective response to viewing negative affective pictures 

[94]. In the context of peripheral physiology, a separate recent study identified a brain 

signature comprising the dACC, ventral mPFC (vmPFC), and brainstem that predicted 

peripheral autonomic (i.e., heart rate, skin conductance) responses to a social stressor over 

time [95]. Moving towards individual differences in physiological reactivity, a recent study 

identified a brain signature for interindividual variability in cardiovascular responses to 

stress, which comprised similar regions within the ACC and vmPFC, as well as the insula 

[96]. Importantly, brain signatures identified in these studies were able to accurately predict 

emotional and physiological responses in participants who were not used to model and 

generate the brain signature, showing these brain signatures are generalizable. Moreover, 

these multivariate patterns predicted responses better than individual regions. To our 

knowledge, no studies have yet leveraged these statistical techniques toward predicting 

future preclinical CVD factors or clinical incidence; hence, this is a promising avenue for 

future research.

Open Questions and Future Directions

So far, brain imaging studies reviewed above suggest that brain regions involved in negative 

emotion and stress, as well as their network-level interactions and distributed patterns of 

activity, may associate with concurrent and future CVD risk. However, several open 

questions remain regarding the precise nature of these observed relationships, their 

reliability and generalizability, their relation to downstream physiology and health 

behaviors, as well as their clinical utility.

First, while the present review focuses on brain circuits for immediate emotional responses 

and downstream peripheral physiology, there are nonetheless other indirect pathways that 

could plausibly link emotion to CVD risk that implicate entirely independent sets of brain 

regions and circuits. One clear example points to behavioral evidence linking emotion to 

health behaviors that are known to elevate CVD risk, in particular diet, physical activity, 

alcohol intake, and smoking habits [97]. These behaviors and lifestyles are influenced by 

emotions but engage somewhat distinct brain circuits from the set reviewed here. 

Specifically, a corticostriatal network, including components of the basal ganglia and 

neuroanatomically connected divisions of the mPFC, is implicated in reward valuation, 

craving, reinforcement learning, and motor planning [98]. Alterations in this corticostriatal 

circuitry have been extensively documented in mood and stress-related disorders [99] and 

could plausibly be implicated in biasing individuals towards adopting unhealthy behaviors 

following negative emotional states [100]. Neural activity in these brain areas has also been 

linked to systemic inflammation [101]. However, to our knowledge, no brain imaging 

studies have yet examined this specific link in the context of emotion and CVD.

Second, there is a lack of consensus on the generalizability and reliability of task paradigms 

that evoke stress and negative emotion in the above reviewed studies. For example, anger 

and hostility have long been proposed to confer CVD risk, but no studies have used anger 

provocation tasks during brain imaging in order to link brain activity to physiology and 

Kraynak et al. Page 8

Curr Cardiol Rep. Author manuscript; available in PMC 2019 October 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



disease markers. It is unclear whether brain circuits engaged by anger would similarly 

associate with peripheral physiology and CVD risk markers. In contrast, a separate and 

emerging brain imaging method examines brain activity and functional connectivity 

networks at rest [102]. Connectivity across these networks at rest, also called intrinsic 
connectivity networks, has been linked to individual differences in emotion as well as 

peripheral markers of CVD risk (e.g., inflammation, heart rate variability) [103–105]. To this 

end, it is unclear whether individual differences in these brain circuits measured at rest, 

including the longitudinal study discussed above, are comparable or generalizable to 

individual differences evoked by emotions or stress in the context of CVD. Similarly, while 

the reliability of some of the above brain imaging tasks have been previously examined 

[106], there are open questions about whether other brain imaging studies of other emotion 

or emotion regulation tasks reliably reveal individual difference phenotypes that effectively 

stratify participants according to emotional responsivity and CVD risk.

Third, nearly all the extant brain imaging research on emotion and CVD focuses on risk 

factors and clinical occurrence, with little or no focus on functional or clinical prognosis for 

participants currently affected by chronic affective disorders or clinical CVD. Hence, future 

research is needed to characterize the role of these and other brain circuits in clinical 

samples. To this end, a recent study examined neural correlates of mental stress-induced 

myocardial ischemia (MI) in coronary heart disease patients [107]. This study found that 

patients exhibiting mental stress-induced MI also demonstrated exaggerated responsivity to 

stress in prefrontal cortical regions including the ACC. Whether these differences in stress-

induced brain responsivity in this clinical sample relate to clinical prognosis is an exciting 

question for future study. Separately, as the majority of the above brain imaging studies was 

conducted on psychiatrically healthy community samples, it is relatively unknown whether 

these findings extend to individuals diagnosed with chronic psychiatric disorders. Along 

these lines, acute CVD events confer elevated risk for poor mental health outcomes (e.g., 

posttraumatic stress disorder) which in turn is associated with risk for recurrent CVD events 

[108]; hence, future studies may examine whether brain changes or remodeling following 

CVD events prospectively predict mental and physical health outcomes.

Finally, future studies might examine surrogate or intermediate markers in psychosocial 

interventions designed to reduce negative emotion or improve emotion regulation (e.g., 

cognitive behavioral therapy, mindfulness meditation) prior to later stage endpoints, 

particularly in patients with clinical depression or other affective disorders who are at 

elevated CVD risk [109].

Conclusions

The recent research presented in this review adds to a growing body of evidence indicating 

that activity within specific brain regions and circuits may link negative emotional and mood 

states and psychological stress to CVD risk. However, this evidence largely relies on cross-

sectional studies on individuals without CVD, and does not systematically examine potential 

mediating pathways or moderating influences. Future studies that adopt longitudinal 

designs, employ advanced statistical techniques, and consider potential mediating pathways 

Kraynak et al. Page 9

Curr Cardiol Rep. Author manuscript; available in PMC 2019 October 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



across diverse healthy and clinical samples stand to greatly increase our understanding of the 

brain-body pathways linking emotion with CVD [25].
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Figure 1. 
Neuroanatomically connected limbic and cortical brain regions linking negative emotion, 

psychological stress, and regulation of peripheral physiology. Highlighted are limbic regions 

including the amygdala (red), hippocampus (green), and hypothalamus (pink) as well as 

cortical regions including the insula (yellow), anterior cingulate cortex (purple), and 

ventromedial prefrontal cortex (blue). Negative emotion and psychological stress engage 

these regions via changes in (1) local (within-region) activity, (2) distributed and patterned 

(across-region) activity, and (3) network-level interactions between regions across over time. 

These responses issue brain-to-body visceromotor commands via specific brainstem nuclei 

to influence physiology in peripheral organs. Exaggerated or prolonged engagement of these 

responses promote cumulative pathophysiology and future clinical CVD endpoints. Along 

this pathway, the effect of stress and negative emotion on the body affects the brain via 

body-to-brain viscerosensory feedback (dotted arrows), including baroreceptor firing, 

recruitment of circulating mediators of systemic inflammation into the brain, and brain 

structural damage/remodeling following myocardial infarction.
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