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Summary
Objective: As has been shown recently, obesity is associ-
ated with brain volume deficits. We here used an inter-
ventional study design to investigate whether the brain 
shrinks after caloric restriction in obesity. To elucidate 
mechanisms of neuroprotection we assessed brain-pull 
competence, i.e. the brain’s ability to properly demand 
energy from the body. Methods: In 52 normal-weight 
and 42 obese women (before and after 10% weight 
loss) organ masses of brain, liver and kidneys (magnetic 
resonance imaging), fat (air displacement plethysmogra-
phy) and muscle mass (dual-energy X-ray absorptiom-
etry) were assessed. Body metabolism was measured 
by indirect calorimetry. To investigate how energy is 
allocated between brain and body, we used reference 
data obtained in the field of comparative biology. We 
calculated the distance between each woman and a 
reference mammal of comparable size in a brain-body 
plot and named the distance ‘encephalic measure’. To 
elucidate how the brain protects its mass, we measured 
fasting insulin, since ‘cerebral insulin suppression’ has 
been shown to function as a brain-pull mechanism. Re-

sults: Brain mass was equal in normal-weight and obese 
women (1,441.8 ± 14.6 vs. 1,479.2 ± 12.8 g; n.s.) and was 
unaffected by weight loss (1,483.8 ± 12.7 g; n.s.). In con-
trast, masses of muscle, fat, liver and kidneys decreased 
by 3–18% after weight loss (all p < 0.05). The encephalic 
measure was lower in obese than normal-weight women 
(5.8 ± 0.1 vs. 7.4 ± 0.1; p < 0.001). Weight loss increased 

the encephalic measure to 6.3 ± 0.1 (p < 0.001). Insulin 
concentrations were inversely related to the encephalic 
measure (r = –0.382; p < 0.001). Conclusion: Brain mass 
is normal in obese women and is protected during ca-
loric restriction. Our data suggest that neuroprotection 
during caloric restriction is mediated by a competent 
brain-pull exerting cerebral insulin suppression. 

Introduction

Recently, the world has been alerted that obesity is associated 
with detectable brain volume deficits [1, 2]. 
Examples of recent newspaper headlines:
– ‘Brain damage: Being fat is bad for your brain’ by Olivia 

Judson, April 20, 2010, The New York Times, USA. 
– ‘Link between obesity and dementia according to new 

 research’ May 20, 2010, The Daily Telegraph, UK.
– ‘Viel Speck, wenig Hirn [More fat, less brain]’ by Jörg 

Blech. October 5, 2009, Spiegel online, Germany.
– ‘Obesity can inflict big toll on brain’ by David Templeton, 

August 27, 2009, Pittsburgh Post-Gazette, USA.
– ‘Obesity shrinks the brain’ August 29, 2009, The daily 

 Telegraph, Australia.
– ‘More obesity blues: Research shows brains of obese 

 people have less tissue’ by Mark Wheeler, August 25, 2009, 
UCLA Newsroom, USA.

– ‘Being overweight linked to severe brain degeneration’ 
August 27, 2009, Medical News Today, UK.

– ‘Overweight and obesity linked to lower brain volume’ by 
Caroline Cassels, August 28, 2009, Medscape Medical News.

http://dx.doi.org/10.1159%2F000327676
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Considering these results, the question aroused whether the 
brain of obese subjects has lost its basic property, i.e. the 
brain’s priority in energy metabolism. Very early autopsy data 
demonstrated that the human brain is preserved during inani-
tion, while all other organs of the body such as heart, liver, 
kidneys and pancreas lose about 40% of their mass [3]. Using 
modern state-of-the-art techniques, this observation has been 
confirmed both in humans and animals in adult and fetal life 
[4–8]. It is unknown however whether the brain of obese peo-
ple resists caloric restriction. If so, what are the mechanisms 
which enable the brain to maintain its mass during body 
downsizing? To answer these questions, we studied normal-
weight and obese women undergoing caloric restriction. We 
measured their brain mass and peripheral organ masses by 
magnetic resonance imaging (MRI), body metabolism by indi-
rect calorimetry as well as blood concentrations of glucose 
and insulin. 

Two recent papers on the ‘logistics of brain energy’ showed 
that a competent ‘brain-pull’, i.e. the brain’s ability to prop-
erly demand energy from the body, is indispensable for main-
taining systemic energy homeostasis [9, 10]. In a recent ap-
proach we used supply-chain principles and laws of logistics to 
further characterize the central and peripheral energy metab-
olism [9]. The supply chain of the brain – with the central 
nervous system as the final consumer – describes the energy 
fluxes from the remote environment to the near environment, 
through the body, towards the brain. The supply chain is 
branched, i.e. it is possible to store energy in side buffers such 
as muscle or fat tissue. It is a general principle in economic 
supply chains that the flux is determined by the supplier (push 
component) and by the receiver (pull component). In other 
words, the fluxes are regulated by offer and demand. 

It has been demonstrated that in the cerebral supply chain 
brain-pull is necessary for protecting brain mass during food 
deprivation [9]. Similarly, it has been shown that under condi-
tions of food abundance, an incompetent brain-pull will lead 
to build-ups in the cerebral supply chain culminating in obes-
ity and type 2 diabetes. It could be proven that a general 
property is inherent in the brain’s supply chain: the fat com-
partment increases with decreasing brain-pull competence 
and vice versa [9]. An incompetence of brain-pull can be com-
pensated by an increased body-pull, i.e. by increased ingestive 
behavior. But what happens when obese subjects are set on a 
calorie-restricted diet and cannot cover the brain’s enormous 
energy needs by increasing energy intake? Do their brains 
shrink?

To study changes in brain size in relation to simultaneous 
changes in body size, it turned out to be useful referring to the 
methodological knowledge and the data obtained in the field 
of comparative biology [11]. Here, we first make use of so 
called brain-body allometric plots and second of a compara-
tive rule valid for the class of mammals, which states that 
brain metabolism and body metabolism are strictly propor-
tional [12–14]. As body metabolism increases, brain metabo-

lism increases in a so-called ‘isometric’ manner, i.e. it follows 
a ‘linear’ function. ‘Isometric’ functions number amongst a 
larger class of ‘allometric’ functions that are often used in 
comparative biology, and all follow the power function Y = 
kXa. Such allometric functions are also used for example to 
describe the relationship between body metabolism and body 
mass among different species, where the allometric exponents 
‘a’ have been reported to be around 0.7 [15–17]. Remarkably, 
the relationship between brain energy metabolism (Y) and 
body energy metabolism (X) is particularly simple, since the 
exponent ‘a’ has been found to be very close to 1.0 [12–14]. 
According to that rule, an increase in brain mass keeps pace 
with a proportional increase in body metabolism. 

Humans occupy a unique position in this brain-body isom-
etry. For example, Mink et al. [14] analyzed the ratios of cen-
tral nervous system metabolism to body metabolism in 42 ver-
tebrate species. Most of vertebrates allocate 3–8% of their 
total body metabolism to the central nervous system [14]. In 
contrast, humans use about 20% of their body’s energy re-
serves for the brain [18]. Accordingly, we measured brain 
mass (which essentially is proportional to brain metabolism) 
as well as body metabolism in our study population and aimed 
at integrating normal-weight and obese subjects in the known 
isometric plot valid for the class of mammals. In this plot, we 
calculated the distance between each human subject and a ref-
erence mammal of comparable size and named the distance 
‘encephalic measure’. Already in 1985, Armstrong [19] sug-
gested that relatively large brains such as human brains must 
harbor mechanisms for directing more energy reserves to the 
brain compared to other mammals. These proposed mecha-
nisms precisely fulfil the function of brain-pull [9, 10].

To elucidate mechanisms of brain mass protection, which 
could be understood as neuroprotection, we used the ‘en-
cephalic measure’ to compare body-to-brain energy allocation 
in 52 healthy and 42 obese subjects, who underwent a calorie-
restricted diet. We aimed at investigating whether in obese 
subjects the brain-pull functions as a protector of brain size. 

Material and Methods

Study Design and Population
67 obese women of Caucasian origin were recruited by notice board 
 postings and advertisements in the local newspaper to participate in a 
weight loss program. The program included a low-calorie diet (800–1,000  
kcal/day) for a mean duration of 12.7 ± 2.2 weeks as described elsewhere 
in greater detail [20]. Of these 67 women, 16 dropped out because of 
 unsuccessful weight loss (<5 kg), 6 for personal reasons and 3 because of 
artifacts in magnetic resonance images. Thus, the data of 42 obese women 
were analyzed. As a control, 52 healthy normal-weight women were re-
cruited. Participants met the following inclusion criteria: no history of 
previous diseases, no chronic or acute illness, no current medication of 
any kind, no smoking and no alcohol or drug abuse. All women were 
studied at the follicular phase of the menstrual cycle. The local Ethical 
Committee of Christian-Albrechts-University in Kiel (Germany) ap-
proved the study. Written informed consent was obtained from each 
woman before participation according to the Declaration of Helsinki. 
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(B in gram) and M (in ml O2 / 100 min) was best described by the follow-
ing linear regression equations among the logarithmically transformed 
data [12]: 

log B = 1.03 × log M – 2.11 for the class of mammals and (1)
log B = 1.02 × log M – 1.69 for the order of primates (2).

Converting units revealed the following equations for the relation be-
tween B (in gram) and M (in ml O2/min):

log B = 1.03 × log M – 0.06 for the class of mammals and (3)
log B = 1.02 × log M + 0.35 for the order of primates. (4).

Taking equation 3 as a basis, predicted brain mass (Bpred.) was calculated 
as a function of observed body metabolism (Mobs.):

Bpred. = B(Mobs.) = Mobs.
1.03 × 10–0.06  (5).

Subsequently, the distance in B-M isometric plot was calculated as fol-
lows and named ‘encephalic measure’ (E):

E = 
Bobs. =

 Bobs. =
 Bobs.

 Bpred.  B(Mobs.)  Mobs.
1.03  10-0.06 (6).

Based on the equation for the order of primates (equation 4), linear re-
gression lines for our study population were calculated. Assuming the 
same slope, ordinate intercepts were computed taking into account mean 
brain mass and body metabolism of our study population.

Statistical Analysis
Data analysis was performed using SPSS statistical software (SPSS 12.0, 
Inc., Chicago, IL, USA). Descriptive statistics were given as mean ± SEM 
or median (interquartile range; IQR) in the case of non-normal distribu-
tion. Variables that did not meet the criteria of normal distribution (as 
assessed by Kolmogorov-Smirnov test) were body mass, BMI, fat mass, 
muscle mass and plasma insulin concentrations. REE was adjusted for 
FFM in a linear regression analysis. Between-group comparisons of nor-
mal-weight and obese subjects were analyzed by independent t-test for 
normally distributed and Mann Whitney U-test for non-normally distrib-
uted parameters. Within-group differences in obese women before and 
after weight loss were determined using a dependent t-test for normally 
distributed and Wilcoxon non-parametric test for non-normally distrib-
uted variables. To assess the relationship between encephalic measure 
and insulin concentrations, Spearman’s rank correlation coefficient was 
calculated. Power calculation was performed using G*Power 3 statistical 
software (Germany). A p value (two-sided) of 0.05 was considered 
significant.

Results

Body mass was higher in obese than normal-weight women. 
During dietary intervention, obese women lost about 10% 
of body mass (table 1). A loss of about 10% in body  
mass led to a decrease in muscle mass of about 3%, fat mass 
of 18%, liver mass of 4%, kidney mass of 6% and body 
 metabolism of 8%. By contrast, brain mass was unaffected 
by weight loss (+0.3%). Moreover, brain mass did not differ 
between normal-weight and obese women. Our study 
 provides a power of >80% in order to detect a difference of 
50 g in brain mass between normal-weight and obese 
women, which can be regarded to be of clinical relevance. 
After the dietary intervention, brain mass was slightly 
higher in obese than in normal-weight subjects, making it 

Body Composition 
Body height was measured to the nearest 0.5 cm against a stadiometer 
(SECA, Modell 220, Hamburg, Germany). Body mass was measured to 
the nearest gram using the digital scale coupled to the BodPodTM-system 
(Body Composition System, Life Measurement Instruments, Concord, 
CA, USA). BMI was calculated as weight (kg) / height (m2). Subjects 
were classified as normal weight (BMI >20 and <25 kg/m2) and obese 
(BMI  30 kg/m2). Air displacement plethysmography was performed to 
measure fat mass using the BOD-POD device as in detail described 
elsewhere [21]. Fat-free mass (FFM) was calculated as the difference be-
tween body and fat mass. Dual energy X-ray absorptiometry was per-
formed to measure bone mineral content and lean soft tissue from the 
arms and legs with a Hologic Discovery A densitometer and the whole-
body software 12.6.1:3 (Hologic Inc, Bedford, MA, USA). Bone mass 
was calculated by multiplying bone mineral content by 1.85 based on 
reference man data [22]. Skeletal muscle mass was calculated from the 
sum of lean soft tissue from arms and legs by using the equation from 
Kim et al. [23].

Magnetic Resonance Imaging 
Volumes of internal organs were assessed by MRI using a Magnetom 
Avanto 1.5-T scanner (Siemens Medical Systems, Erlangen, Germany) as 
in detail described elsewhere [20]. In brief, subjects were examined in a 
supine position with their arms extended above their heads. Transversal 
images were obtained from wrist to ankle. Only images from the head, 
abdominal and thoracic regions were included in the present analysis by 
using a contiguous axial T1 weighted gradient-echo sequence (repetition 
time (TR) 157 ms; time to echo (TE) 4 ms; flip angle 70 °; voxel size 3.9  
2  8 mm³).The protocol for the brain comprised contiguous 4 mm slices 
with 1 mm inter-slice gaps (TR 313 ms, TE 14 ms). For analysis of liver 
and kidneys images were obtained with 8 mm slice thicknesses and 2 mm 
inter-slice gaps. The images were manually segmented (software: Slice-O-
Matic, Tomovision 4.3 Software, Montreal, ON, Canada). Organ volumes 
were determined from the sum of all areas (cm2) multiplied by slice thick-
ness. Absolute organ masses were calculated as organ volumes multiplied 
by density as in detail described elsewhere [20]. Each organ was analyzed 
by the same observer (intra-observer CVs based on comparison of re-
peated segmentations were 1.8% for brain, 0.1% for liver and 1.0% for 
kidneys).

Laboratory Methods
Plasma insulin was measured by radioimmunoassay showing no cross- 
reactivity with C-peptide and only 14% with proinsulin (Adaltis, Rome, 
Italy). Plasma glucose was assayed using a hexokinase enzymatic method.

Assessment of Body Metabolism
O2 consumption and CO2 production were assessed by indirect calorime-
try using a ventilated hood system for at least 30 min (Vmax model 29n, 
SensorMedics®; Viasys Healthcare, Bilthoven, Netherlands) as in detail 
described elsewhere [20; 24]. Briefly, flow calibration was performed with 
a 3-L syringe, and gas analyzers were calibrated before and every 5 min 
during the run using standard gases (gas 1 20% O2 and 0.75% CO2; gas 2 
26% O2). Data were collected every 20 s and acquired oxygen volume and 
carbon dioxide volume were converted to REE (resting energy expendi-
ture) by using the abbreviated equation of Weir [25]. Body metabolism 
(M) was defined as the O2 consumption in ml/min. 

Calculation of the Encephalic Measure
Armstrong [12] collected brain masses of 93 adult mammalian species 
from the literature and analyzed brain masses in terms of body me-
tabolism. Moreover, a separate analysis of the order of primates was 
conducted. Armstrong [12] found that the relation between brain mass 
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Normal-weight women  
(n = 52)

Obese women t0 (n = 42) Obese women t1 (n = 42)

Age, years 37.8 ± 2.1 33.1 ± 1.0
Body mass, kg 65.1 (60.0–68.7) 102.4(90.3–115.9)*** 91.0 (80.2–105.2)###, +++

Body height, cm 168.1 ± 0.9 168.4 ± 1.2
BMI, kg/m2 23.3 (21.7–24.2) 35.0 (32.7–38.8)*** 31.2 (29.9–34.4)###, +++

Brain mass, g 1,441.8 ± 14.6 1,479.2 ± 12.8 1,483.8 ± 12.7+

Muscle mass, kg 20.4 (18.8–22.5) 29.0 (24.3–32.5)*** 27.8 (24.6–31.4)##, +++

Fat mass, kg 19.7 (17.4–23.5) 49.3 (39.6–58.8)*** 41.0 (32.0–50.1)###, +++

FFM, kg 44.7 ± 0.7 53.1 ± 1.1*** 52.1 ± 1.0##, +++

Liver mass, g 1,389.2 ± 28.6 1,778.0 ± 52.7*** 1,694.2 ± 46.6##, +++

Kidney mass, g 238.4 ± 6.2 378.3 ± 9.8*** 349.7 ± 12.4#, +++

Bone mass, kg 4.2 ± 0.1 4.5 ± 0.1* 4.5 ± 1.0##, ++

Body metabolism, ml O2 / min 194.0 ± 3.0 252.9 ± 5.7*** 231.5 ± 4.0###, +++

REEadjFFM, MJ/day 5.7 ± 0.1 7.4 ± 0.1*** 6.8 ± 0.1###, +++

Insulin, pmol/l 77.9 (56.3–101.7) 124.7(85.5–198.7)*** 93.5 (79.8–136.5)###, + b

Glucose, mg/dl 91.8 ± 1.1 90.8 ± 2.1 87.2 ± 1.8##, +

Encephalic measure 7.4 ± 0.1 5.8 ± 0.1*** 6.3 ± 0.1###, +++

*p < 0.05, ***p < 0.001: difference between normal weight women and obese women at t0 by independent t-test or Mann 
Whitney U-test; +p < 0.05, ++p < 0.01; +++p < 0.001: difference between normal weight women and obese women at t1 by 
independent t-test or Mann Whitney U-test; #p < 0.05, ##p < 0.01, ###p < 0.001: difference between obese women t0 vs. t1 by 
dependent t-test or Wilcoxon rank test 
aData are means ± SEM or median (IQR).
bThe effect of intervention on plasma insulin remained (p < 0.001) after adjusting for changes in blood glucose concentrations.

Table 1. Character-
istics of normal- 
weight women and 
obese women before 
(t0) and after caloric 
restriction interven-
tion (t1)

Fig. 1. Logarithmic plot of brain mass (B) and body metabolism (M) in normal-weight women and obese women before (t0) and after weight loss (t1). 
The blue line represents the order of primates as a reference; the green line represents the class of mammals as a reference (according to Armstrong 
[12]). The inserted figure shows the broader context of mouse to elephant isometry. The length of each graph indicates the scope covered by experi-
mental data [12].
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Discussion

What This Study Adds to the Current Discussion of Brain 
Mass and Obesity
We could show that young obese women display a normal 
brain mass, which is even preserved during caloric restriction. 
Our results confirm previous studies investigating the brain’s 
priority in energy metabolism [3–8]. Here, we could extend 
the scope of validity of that concept by showing that the 
brain’s priority in energy metabolism is also valid in obesity. 

The discussion about the topic ‘brain mass and obesity’ has 
been ignited by recent news that obesity is allegedly linked to 
brain volume deficits [1, 2]. These findings arouse the question 
whether obesity causes brain loss. But there is doubt about 
such a causal link, because Raji et al. [1] only showed correla-
tions between BMI and multiple brain regions in a study popu-
lation of elderly people, suggesting that age and the long dura-
tion of a metabolic disease could have led to lower brain vol-
umes. There are various other studies in the elderly which re-
ported associations between brain volume deficits and obesity 
[26–28]. Interestingly, one study investigating younger subjects 
showed greater white but not gray matter volumes in several 
basal brain regions in obese when compared to lean subjects. 
Dieting did not affect gray matter in obese people, whereas 
white matter expansion was partly reversed by dieting [29]. 
While most of the studies concerning this topic provide correl-
ative data only, we here applied an interventional study de-
sign. We showed in young obese women that peripheral or-
gans and tissues (masses of fat, muscle, liver and kidneys) were 
heavier in obese than in normal-weight women and that there 
was a loss of organ weight during caloric restriction, whereas 
brain mass is normal and is even maintained during weight loss 

unlikely that we failed to detect any relevant losses in  
brain mass. In contrast, weights of other organs and tissues 
were markedly higher in obese than normal-weight women 
(muscle mass, fat mass, liver mass, kidney mass and bone 
mass). 

The logarithmic plot of brain mass versus body metabo-
lism is shown in figure 1. As known from the literature [12], 
brain mass and body metabolism are related in an isometric 
way with a slope of 1.03 in mammals and 1.02 in primates. 
The isometric associations between brain mass and body me-
tabolism are differently located in the plot; from right to left, 
the graphs are placed as follows: the graph for the class of 
mammals, the graph for the order of primates, the graph for 
obese women before weight loss, the graph for obese women 
after weight loss, and finally the graph for normal-weight 
women. The encephalic measure was about 23% lower in 
obese than in normal-weight women. However, dieting in-
creased the  encephalic measure by about 10% in obese 
women (table 1). 

Pre-interventional plasma insulin was about 72% higher in 
obese than in normal-weight women. Post-interventional 
 insulin concentrations were only about 24% higher in obese 
than in normal-weight women (table 1). Corresponding 
 glucose concentrations did not differ between normal-weight 
and obese women before weight loss. However, after weight 
loss, obese women displayed a minor decrease in glucose 
concentrations (table 1). In the total study population, 
plasma insulin concentrations were found inversely corre-
lated with the encephalic measures (fig. 2a). Caloric restric-
tion in obese women resulted in reduced plasma insulin con-
centrations (p < 0.001) and increased encephalic measures  
(p < 0.001) (fig. 2b).

Fig. 2. a Scattergram showing the relationship between plasma insulin and the encephalic measure. b Effect of caloric restriction on plasma insulin and 
the encephalic measure. ***p < 0.001 significantly different after weight loss intervention, by dependent t-test.
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the SNS/HPA system (as evidenced by reduction of their 
plasma insulin), in order to reduce body size and safeguard 
brain size. 

Adverse Effects of Neuroprotection
What are the side effects of protecting brain mass during ca-
loric restriction? Instead of increasing energy intake, obese 
subjects have to burden their brain-pull to allocate sufficient 
energy from body periphery towards the brain. Such a loading 
of the brain-pull is accompanied by the desired weight loss. 
The adverse aspects of burdening the brain-pull, i.e. the SNS/
HPA system, when people go on a diet are not fully explored 
and require future research. There is, however, evidence that 
in people with chronic stress loading of the HPA axis is ac-
companied by an increase of depression symptoms [36]. Like-
wise, caloric restriction diets have recently been reported to 
cause an increase of depression symptoms [37]. There are 
other studies addressing the issue of depression and mood 
under caloric restriction. However, the study designs applied 
do not allow to appropriately control for biases that produce 
apparent beneficial effects because of psychological, motiva-
tional co-interventions [38–41]. Taken together, these findings 
emphasize the relevance of caution when prescribing a weight 
reduction program to obese individuals.

What This Study Adds to the Knowledge about Human Brain 
Evolution
For downsizing the body while preserving the brain it has 
been shown that in the cerebral supply chain the brain-pull is 
indispensable [9]. Body downsizing at maintained brain size is 
indicated by a left-shift in the brain-body allometric plot, i.e. 
by an increased encephalic measure. In comparative biology, 
insulin has never been measured across different species rang-
ing from mouse to elephant, particularly because species dif-
fer in the structure of their insulin molecules. Here we show 
that in humans the inter-individual variances of insulin con-
centrations and the encephalic measure are sufficiently large 
to reveal a link between them. In our study population, a 
large encephalic measure was found related to decreased in-
sulin. This observation is in line with a view proposed recently 
[9], which states that a brain-pull mechanism, which is capable 
to suppress insulin and in so doing downsizes the body, is an 
essential evolutionary driving force for the encephalization of 
the human brain.

Conclusion

In conclusion, we could show that brain mass is normal in 
young obese women, which may help to prevent an overhasty 
stigmatization of people with obesity. Our data provide evi-
dence that the brain-pull, exerted as ‘cerebral insulin suppres-
sion’, functions to preserve brain mass when obese people 
diet. 

in obesity. Thus, our findings do not support the conclusions 
that have been drawn by several newspapers raising the alarm 
that obesity causes brain loss. 

Cerebral Insulin Suppression as a Brain-Pull Mechanism
What are the mechanisms which enable the brain to maintain 
its mass but to downsize the body? To address the question of 
brain-pull mechanisms, we tested whether plasma insulin is 
related to the encephalic measure. Insulin fulfils two criteria 
to mediate the effect of brain-pull: i) insulin concentrations 
have been shown to be controlled by a brain-pull mechanism, 
referred to as ‘cerebral insulin suppression’ [10], and ii) insu-
lin is known to allocate energy rather to the body than to 
brain. That means, insulin fulfils the function of a storage hor-
mone by mediating a push component of the energy flux from 
blood to the energy stores: the higher the energy content in 
the blood (glucose), the more insulin is secreted in order to 
enhance glucose uptake into peripheral tissues. When there is 
an energy accumulation in peripheral tissues, leptin concen-
trations rise. Leptin stimulates neurons in the ventromedial 
hypothalamus [30] and in so doing limits further energy up-
take in the side buffers.

The results on how the brain-pull mechanism ‘cerebral in-
sulin suppression’ safeguards the brain’s high energy need can 
be summarized as follows [10]: 

Upon cerebral energy need, the brain activates its stress 
systems. In parallel to sympatho-nervous system (SNS) stimu-
lation, the hypothalamus-pituitary-adrenal (HPA) axis is acti-
vated with the release of CRH (corticotropin-releasing hor-
mone) from the paraventricular nucleus, ACTH (adrenocorti-
cotropic hormone) from the pituitary and cortisol from the 
adrenals. Insulin secretion from the beta cells is suppressed by 
SNS activation [31, 32] and cortisol release [10, 33]. Thus, the 
insulin-dependent glucose uptake via glucose transporter 
GLUT4 into body periphery becomes limited. As a conse-
quence, glucose is now available via insulin-independent 
GLUT1-transport across the blood-brain barrier [34, 35]. 
Thus, a competent brain-pull is exerted by limiting the glu-
cose transport into body periphery via cerebral insulin sup-
pression and by enhancing the glucose transport into the 
brain. 

We found that normal-weight women, obese women be-
fore and obese women after dieting displayed normal blood 
glucose concentrations, but that their plasma insulin concen-
trations were normal, high and intermediate, respectively. 
Our finding of an inverse relation between insulin and the en-
cephalic measure supports the view that a competent brain-
pull, which exerts cerebral insulin suppression, allows healthy 
subjects to display normal brains and gracile bodies (as evi-
denced by a high encephalic measure). In obese subjects, in-
competent brain-pull (as evidenced by high insulin) is associ-
ated with normal brain mass but an expanded body mass. 
Moreover, our data support the notion that calorie-restricted 
obese subjects must burden their brain-pull mechanisms, i.e. 
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