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Abstract

Prior neuroimaging studies have reported white matter network underconnectivity as a potential mechanism for
autism spectrum disorder (ASD). In this study, we examined the structural connectome of children with ASD
using edge density imaging (EDI), and then applied machine-learning algorithms to identify children with
ASD based on tract-based connectivity metrics. Boys aged 8–12 years were included: 14 with ASD and 33 typ-
ically developing children. The edge density (ED) maps were computed from probabilistic streamline tractogra-
phy applied to high angular resolution diffusion imaging. Tract-based spatial statistics was used for voxel-wise
comparison and coregistration of ED maps in addition to conventional diffusion tensor imaging (DTI) metrics of
fractional anisotropy (FA), mean diffusivity (MD), and radial diffusivity (RD). Tract-based average DTI/connec-
tome metrics were calculated and used as input for different machine-learning models: naı̈ve Bayes, random for-
est, support vector machines (SVMs), and neural networks. For these models, cross-validation was performed
with stratified random sampling ( · 1,000 permutations). The average accuracy among validation samples was
calculated. In voxel-wise analysis, the body and splenium of corpus callosum, bilateral superior and posterior
corona radiata, and left superior longitudinal fasciculus showed significantly lower ED in children with ASD;
whereas, we could not find significant difference in FA, MD, and RD maps between the two study groups. Over-
all, machine-learning models using tract-based ED metrics had better performance in identification of children
with ASD compared with those using FA, MD, and RD. The EDI-based random forest models had greater av-
erage accuracy (75.3%), specificity (97.0%), and positive predictive value (81.5%), whereas EDI-based polyno-
mial SVM had greater sensitivity (51.4%) and negative predictive values (77.7%). In conclusion, we found
reduced density of connectome edges in the posterior white matter tracts of children with ASD, and demonstrated
the feasibility of connectome-based machine-learning algorithms in identification of children with ASD.
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Introduction

Autism spectrum disorder (ASD) represents a com-
plex, heterogeneous neurodevelopmental condition

characterized by deficits in social communication, as well
as repetitive behaviors and atypical sensory reactivity
(American Psychiatric Association, 2000). A 2013 survey
by Centers for Disease Control and Prevention’s National

Center for Health Statistics showed that the prevalence of
parent-reported ASD among children aged 6–17 has contin-
ued to increase from 1.16% in 2007 to 2.00% in 2011–2012,
likely due to broader diagnostic criteria, increased awareness
of the disorder among parents and providers, increased pa-
rental age, and environmental contributors affecting epige-
netic factors (Blumberg et al., 2013). It is now clear that
inherited and de novo genetic changes, including copy
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number variations and single nucleotide variants, in neurode-
velopment genes contribute to the phenotype in 25–40% of
cases with an evolving understanding of polygenetic and epi-
genetic factors (Chang et al., 2016; Ramaswami and Gesch-
wind, 2018).

In addition to learning about genetic and epidemiologic
factors, there has been increasing evidence from neuro-
imaging research suggesting that alterations in white matter
microstructure and connectivity contribute to cognitive and
behavioral deficits in affected children (Dean et al., 2016).
Neuroimaging studies not only help illuminate the underlying
mechanism of ASD phenotype in general (Falahpour et al.,
2016; Libero et al., 2016) but also could provide objective
biomarkers for timely identification of the ASD (Akshoomoff
et al., 2004) as well as providing a marker for change with
practice-based intervention (Sullivan et al., 2014).

Diffusion tensor imaging (DTI) and fiber tractography have
provided quantitative evaluation of white matter microstruc-
ture and connectivity in children with ASD (Li et al., 2017).
The structural connectome, representing the whole-brain net-
work of macroscale white matter connectivity, has emerged
during the past decade as a powerful formalism for the
study of neurological and psychiatric diseases. The connec-
tome is particularly relevant for ASD, which is hypothesized
to result from short-range overconnectivity and long-range
underconnectivity (Blanken et al., 2017; Shukla et al., 2011;
Washington et al., 2014). However, to date there are no studies
of ASD examining regional connectomic properties within the
white matter. Edge density imaging (EDI) has recently been
introduced as a framework to represent the anatomic embed-
ding of connectome edges within the white matter (Owen
et al., 2015, 2016). In EDI, the edges or links of the white mat-
ter are extracted by constraining probabilistic tractography to
network nodes based on standard atlas parcellation of the cor-
tical and deep gray matter nuclei (Owen et al., 2015, 2016).

Machine-learning analyses are also gaining popularity for
pattern recognition and development of classification (or
regression) models based on multidimensional data. These
algorithms seem particularly suitable for devising classifiers
based on multitude of variables extracted from diffusion and
connectivity maps. In this study, we compared the white mat-
ter connectome and microstructure between children with
ASD and typically developing children (TDC) using voxel-
wise analysis. Then, we applied different machine-learning
algorithms for identification of ASD based on the white mat-
ter tract-based average edge density (ED) and conventional
DTI metrics.

Subjects and Methods

Participants and assessment

The participants in this study were recruited and prospec-
tively enrolled through the UCSF Sensory Neurodevelop-
ment and Autism Program clinical sites and research
database (Chang et al., 2014, 2015; Owen et al., 2013). Chil-
dren with ASD were diagnosed according to the Autism
Diagnostic Interview-Revised (ADI-R) (Lord et al., 1994),
Autism Diagnostic Observation Schedule (ADOS)-G (Lord
et al., 2000), social communication questionnaire (SCQ)
(Eaves et al., 2006), and Diagnostic Statistical Manual-IV
criteria (American Psychiatric Association, 2000). In addition,
all participants were screened and interviewed by a senior pe-

diatric neurologist (E.J.M.) with expertise in neurodevelop-
mental disorders. The exclusion criteria were history of
premature birth (<34 weeks), known genetic disorder associ-
ated with autism at time of enrollment (e.g., fragile X syn-
drome), or other neurological conditions that can potentially
affect neurodevelopment (e.g., epilepsy). TDC did not meet
diagnostic criteria for ASD or sensory processing disorders.
To limit the confounding effects of age and gender, only
boys aged 8–12 years were included in our analysis. Under
the institutional review board approved protocol, informed
consent was obtained from the parents or legal guardians,
with the assent of all participants.

Magnetic resonance imaging protocol

All brain imaging was performed on a 3T MRI scanner (Sie-
mens, Erlangen, Germany) using a 12-channel head coil.
Anatomical scans were acquired using a three-dimensional
T1-weighted magnetization-prepared rapid gradient echo
sequence (field of view = 256 mm, 1 mm cubic voxels, time
to repeat/echo time/inversion time = 2,300/2.98/900 ms, flip
angle = 9�). The whole-brain high angular resolution diffusion
imaging scan was acquired using a multislice two-dimensional
single-shot twice-refocused diffusion-weighted echoplanar
imaging sequence (repetition time, 8,000 ms; echo time,
109 ms; 100 · 100 matrix; field of view, 220 mm; voxel size,
2.2 · 2.2 · 2.2 mm); 64 noncollinear diffusion directions, uni-
formly distributed around a unit sphere with b value of
2,000 sec/mm2; and 1 brain volume with no diffusion weight-
ing (Chang et al., 2014, 2015; Owen et al., 2013).

DTI postprocessing

We used the software packages included in the Functional
Magnetic Resonance Imaging of the Brain (FMRIB) Soft-
ware Library (FSL) version 5.0.8.* The initial quality assur-
ance involved eddy current and motion corrections, which
was followed by removal of nonbrain tissue. The FSL’s DTI-
FIT toolbox was used to compute the fractional anisotropy
(FA), mean diffusivity (MD), and radial diffusivity (RD)
maps. The Bayesian Estimation of Diffusion Parameters
Obtained using Sampling Techniques (BEDPOSTX2) pack-
age from FSL was used for estimation of diffusion parameters
at each voxel and modeling of multiple fiber orientations per
voxel (Chang et al., 2014, 2015; Owen et al., 2013). Figure 1
summarizes the image postprocessing pipeline.

Edge density imaging

For computation of ED maps, the T1-weighted series were
first parcellated into 68 cortical and 14 subcortical regions
based on the Desikan–Killiany atlas from FreeSurfer soft-
ware (Desikan et al., 2006). These 82 regions served as the
connectome nodes (Fig. 1). Then, the T1-weighted volumes,
and subsequently the 82 cortical and subcortical regions,
were registered to the diffusion space. Using EDI methods
reported previously (Owen et al., 2015, 2016; Wang et al.,
2017), the cortical and subcortical regions were employed
as seed and target regions for probabilistic tractography
using the FSL probtrackx2 algorithm (Owen et al., 2015).
The total number of structural connectome edges passing

*www.fmrib.ox.ac.uk/
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through each voxel in white matter was calculated as the ED
value for that voxel (Fig. 1).

Tract-based spatial statistics and voxel-wise analysis

For tract-based spatial statistics (TBSS), each FA map was
registered to all other FA maps to identify the most represen-
tative map of the cohort and use this representative FA map as
the target image. This target image was then affine-aligned
into MNI-152 standard space, and then the rest of FA maps
were transformed into MNI-152 space, combining the nonlin-
ear transform to the target and the affine transform from the
target to standard space. The mean of aligned FA maps was
used to create a skeletonized image representing the center
of white matter tracts across all subjects. This white matter
skeleton was thresholded to exclude voxels with FA values
<0.2 (Fig. 2), which may represent regions of high intersub-
ject variability. The ED maps were projected to MNI-152
using the registration matrix from the corresponding FA
maps and threshold. For nonparametric voxel-wise statistics,

we used ‘‘randomise’’ from FSL with 5,000 permutations
and applied threshold-free cluster enhancement (TFCE) for
multiple voxel-wise comparison correction. General linear
model (GLM) designs were applied to correct for subjects’
age as a covariate. For the ED maps, both ASD>control
and control<ASD contrast designs were tested. The final sta-
tistical maps at a p-value <0.05 threshold were created and
corrected for multiple comparisons (Fig. 2). For anatomic lo-
calization, we used the Johns Hopkins University white mat-
ter tractography atlas (ICBM-DTI-81) incorporated into FSL.

Extraction of tract-based DTI and connectome metrics

For univariate and multivariate analysis as well as machine-
learning models, the average FA, MD, RD, and ED of white
matter tracts from the ICBM-DTI-81 atlas were calculated.
For this purpose, the ICBM-DTI-81 template was warped
into each subject’s native diffusion space applying the inverse
spatial transformations from coregistration step described
above (Chang et al., 2014, 2015; Owen et al., 2013). The

FIG. 1. EDI processing pipeline summary.
EDI, edge density imaging. Color images are
available online.
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average DTI/connectome metrics was then calculated for all
48 white matter tracts in the ICBM-DTI-81 atlas for each
subject.

Voxel-based morphometry

We applied voxel-based morphometry (VBM) to investigate
voxel-wise differences in the local gray and white matter vol-
ume and topography between children with ASD versus TDC.
The VBM tool included in FSL was used.{ Initially, the brain
in T1-weighted images was extracted using the Brain Extrac-
tion Tool. Next, brain-extracted images were segmented into
gray matter, white matter, and cerebrospinal fluid. Then, the
gray matter segments were aligned to ICBM-152 space apply-
ing the affine registration. These images were averaged to cre-
ate a study-specific template, and finally all gray matter
segments were nonlinearly registered and concatenated onto
ICBM-152 space. These registered volume images were then
modulated, and corrected for local expansion or contraction.
These modulated segmented images were smoothed with an
isotropic Gaussian kernel at a sigma of 3 mm. Similar to
voxel-wise statistics for TBSS, we used ‘‘randomise’’ from
FSL with 5,000 permutations and applied TFCE. We also
used GLM for analysis of age as a covariate.

Machine learning

We evaluated different machine-learning algorithms for
predicting cohort assignment as ASD versus TDC based
on tract-specific average connectome/DTI metric: naı̈ve
Bayes, random forest, support vector machine (SVM) with

linear kernel, and polynomial kernel, and neural networks.
Combination of these models with different DTI and connec-
tomic metrics was evaluated using the 48 white matter aver-
age FA, MD, RD, and ED values as input for each model. To
evaluate the performance of these algorithms, the subject co-
hort was randomly divided into the training and validation
datasets with preservation of ASD-to-TDC ratio. The strati-
fied random sampling for training and validation samples
was repeated 1,000 times for cross-validation. For each per-
mutation, the machine-learning model was trained on train-
ing sample, and a confusion matrix was constructed in the
corresponding validation sample based on the model predic-
tions. The accuracy, sensitivity, specificity, positive predic-
tive value (PPV), and negative predictive value (NPV)
were calculated using the confusion matrix for each valida-
tion cohort, and the average across 1,000 permutations is pre-
sented. The accuracy was defined by the sum of true positive
and true negative subjects (correctly classified) divided by
total number of subjects in each validation sample. For
each confusion matrix, the area under the curve (AUC) of re-
ceiver operating characteristics (ROCs) was also calculated.

For naı̈ve Bayes, we applied the ‘‘naivebayes’’ ‘‘r’’ package
with a Laplace smoothing value of 0.{ For random forest anal-
ysis, we applied the ‘‘randomForest’’ package. As recommen-
ded by the package authors, we used 500 random trees in each
of the random forest models; and a 1/3 subset of variables was
tried at each split. The averaged ‘‘mean decrease in Gini coef-
ficients’’ is reported to depict the effect of different variables
on classification accuracy of the final model. For SVM analy-
sis, we used the ‘‘e1071’’ package in ‘‘r’’ project. We applied

FIG. 2. The mean skeletonized fractional
anisotropy of all 47 subjects is overlaid on
MNI-152 brain map in green color. Those
white matter tracts with significantly lower
ED in children with ASD compared with
TDC are filled with red, based on voxel-wise
TBSS analysis and after applying TFCE
correction. ASD, autism spectrum disorder;
ED, edge density; TBSS, tract-based spatial
statistics; TDC, typically developing
children; TFCE, threshold-free cluster
enhancement. Color images are available
online.

{https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLVBM {https://www.r-project.org/
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both linear and polynomial kernels for data classification. Tun-
ing the SVM models, a cost of 0.1 returned the optimal error
rate, and was applied for all linear kernels. For the polynomial
kernel, a sigma of 1 was applied. For neural networks, we ap-
plied the ‘‘neuralnet’’ package using ‘‘resilient back propaga-
tion’’ methods. Using 2/3 rule, we included five hidden
layers with 32, 21, 7, 4, and 2 neurons, consequentially.

Statistics

The data are expressed as number (frequency) or aver-
age – standard deviation, where appropriate. For univariate
analysis, Student’s t-test was performed. Cohen’s d coefficient
was calculated to determine the effect size of the tract-based
average DTI/connectome metrics using the ‘‘effsize’’ package
from ‘‘r.’’ For multivariate analysis, we applied the penalized
logistic regression with stepwise forward and backward selec-
tion using the ‘‘stepPlr’’ package. The penalized regression is
suitable for multivariate analysis with substantial collinearity
between independent variables.

Results

Participant characteristics

A total of 47 boys, 8–12 years of age, were included from
the Sensory Neurodevelopment and Autism Program neuro-
imaging collection. Of these, 14 (30%) boys met criteria for
ASD and 33 (70%) did not. All children with ASD exceeded
screening criteria on either the ADI-R or SCQ parent report
measures, with all these children exceeding autism score cri-
teria on the ADOS. There was no significant difference in the
average age of children with ASD (8.9 – 2.7 years) versus the
TDC (10.0 – 3.3 years, p = 0.52).

Voxel-wise comparison of connectivity maps

On voxel-wise TBSS analysis, after applying TFCE, the
body and splenium of the corpus callosum, bilateral superior
and posterior corona radiata, and the left superior longitudi-
nal fasciculus had significantly lower ED in children with
ASD compared with TDC (Fig. 2). Conversely, there were

no voxels in which the TDC cohort showed lower ED rela-
tive to the children with ASD. Table 1 lists the number of
voxels in each of the white matter tracts from the ICBM-
DTI-81 atlas with significant differences between the ASD
and TDC study groups after applying TFCE. The GLM
showed that children’s age—in the restricted 8–12 years
range examined—had no significant effect on voxel-wise
ED values. In addition, there was no voxel-wise difference
between children with ASD and TDC comparing FA (lowest
voxel-wise p = 0.245), MD (lowest voxel-wise p = 0.275),
and RD (lowest voxel-wise p = 0.240) maps.

Univariate and multivariate tract-based comparison

There was no significant difference between average ED
and DTI microstructural metrics of select white matter tracts
between ASD and TDC groups. Tables 2a–d list the results
for select 22 white matter tracts chosen based on their
Cohen’s d effect size and results of voxel-wise analysis
(Table 1). However, in multivariate stepwise penalized re-
gression, the average ED of the left posterior corona radiata
emerged as the only independent predictor of ASD
( p = 0.046). In ROC analysis, the average ED of the left pos-
terior corona radiata yielded an AUC of 0.665 (95% confi-
dence interval: 0.491–0.838, p = 0.077) for distinction of
children with ASD from TDC.

Machine-learning classification

Applying a 3:7 ratio with preservation of the ASD-to-TDC
proportion, we created 1,000 stratified random samples of
training and validation datasets. The training datasets in-
cluded 26 TDC and 11 ASD children, while the validation
datasets included 7 TDC and 3 ASD children. Table 3 and
Figure 3 demonstrate the test characteristics for different
machine-learning models. Overall, the machine-learning
models using tract-based ED had better performance in clas-
sification of children with ASD compared with those using
FA, MD, or RD. Among all combinations, the greatest accu-
racy (75.3%), specificity (97.0%), and PPV (81.5%) were
achieved by EDI-based random forest models, and the great-
est sensitivity (51.4%) and NPV (77.7%) were achieved by
EDI-based SVM with polynomial kernel (Fig. 3).

The averaged ‘‘mean decrease in Gini coefficients’’ of ran-
dom forest models from stratified cross-validation is reported
to depict the effect of different variables on classification ac-
curacy of the final model (Table 4). In EDI-based random for-
est models, the mean ED of left posterior thalamic radiation,
right superior cerebellar peduncle, left sagittal stratum, left
medial lemniscus, and left superior corona radiata had the
highest averaged mean decrease in Gini coefficient.

Voxel-based morphometry

The VBM analysis revealed no macrostructural difference
between the two study groups. There was no significant dif-
ference in gray–white matter relative tissue concentration or
regional volume comparing ASD children with TDC, in ei-
ther ASD<control or control<ASD constructs.

Discussion

In voxel-wise analysis of the white matter connectome in
children with ASD, we found lower ED in the body and

Table 1. The List of White Matter Tracts

with Significant Difference in Edge Density

Between the Children with ASD and TDC

on Voxel-Wise TBSS Analysis

White matter tracts No. of voxels

Body of corpus callosum 2,712
Splenium of corpus callosum 1,689
Left superior corona radiata 1,615
Right superior corona radiata 166
Left posterior corona radiata 435
Right posterior corona radiata 418
Left superior longitudinal fasciculus 1,243
Right sagittal stratum 8

Each cell represents the number of voxels with significantly lower
edge density ( p < 0.05) in children with ASD compared with TDC
on voxel-wise TBSS analysis after correction for multiple compari-
son. There were no voxels with significantly higher edge density in
children with ASD compared with TDC.

ASD, autism spectrum disorder; TBSS, tract-based spatial statis-
tics; TDC, typically developing children.
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Table 2. Univariate Comparison of DTI Microstructural and Connectome Metrics Between

Select White Matter Tracts

a

Edge density

t-test (p) Cohen’s dASD TDC

Splenium of corpus callosum 98,064 – 38,508 120,153 – 27,940 0.067 �0.62
Body of corpus callosum 67,818 – 28,892 83,668 – 16,510 0.072 �0.61
Genu of corpus callosum 53,289 – 19,884 62,095 – 19,969 0.178 �0.44
Left cingulate gyrus 57,579 – 21,190 65,918 – 13,110 0.190 �0.43
Right cingulate gyrus 56,360 – 18,261 63,704 – 13,393 0.190 �0.43
Left fornix 30,340 – 20,081 24,397 – 9,107 0.305 0.34
Right fornix 4,340 – 3,844 7,427 – 8,530 0.094 �0.55
Left medial lemniscus 8,975 – 6,520 6,551 – 4,193 0.216 0.41
Right medial lemniscus 6,994 – 4,648 9,070 – 4,381 0.168 �0.45
Left superior longitudinal fasciculus 87,892 – 24,300 100,197 – 16,483 0.100 �0.55
Right superior longitudinal fasciculus 89,976 – 29,152 93,908 – 17,252 0.644 �0.15
Left superior corona radiata 51,781 – 15,441 56,318 – 8,407 0.315 �0.33
Right superior corona radiata 51,440 – 18,157 58,002 – 11,306 0.227 �0.40
Left posterior corona radiata 76,082 – 23,974 90,637 – 16,416 0.052 �0.66
Right posterior corona radiata 76,488 – 27,227 83,469 – 14,360 0.378 �0.29
Left sagittal stratum 81,545 – 23,179 85,438 – 15,748 0.573 �0.18
Right sagittal stratum 79,984 – 15,392 82,581 – 16,006 0.606 �0.17
Left superior cerebellar peduncle 2,630 – 2,407 1,811 – 1,817 0.267 0.36
Left superior cerebellar peduncle 2,945 – 2,426 4,362 – 2,142 0.071 �0.60
Left tapetum 35,561 – 13,204 43,427 – 16,420 0.093 �0.55
Right tapetum 44,099 – 19,023 48,948 – 14,266 0.402 �0.27

b

Fractional anisotropy

t-test (p) Cohen’s dASD TDC

Splenium of corpus callosum 0.655 – 0.062 0.643 – 0.020 0.494 0.22
Body of corpus callosum 0.578 – 0.083 0.563 – 0.031 0.521 0.21
Genu of corpus callosum 0.607 – 0.068 0.591 – 0.031 0.403 0.27
Left cingulate gyrus 0.401 – 0.093 0.386 – 0.034 0.556 0.19
Right cingulate gyrus 0.400 – 0.096 0.373 – 0.031 0.336 0.32
Left fornix 0.455 – 0.087 0.441 – 0.028 0.568 0.19
Right fornix 0.338 – 0.093 0.358 – 0.044 0.455 �0.24
Left medial lemniscus 0.547 – 0.100 0.522 – 0.029 0.377 0.29
Right medial lemniscus 0.538 – 0.083 0.523 – 0.027 0.513 0.21
Left superior longitudinal fasciculus 0.426 – 0.079 0.416 – 0.016 0.647 0.15
Right superior longitudinal fasciculus 0.433 – 0.088 0.426 – 0.014 0.757 0.10
Left superior corona radiata 0.464 – 0.071 0.443 – 0.015 0.291 0.35
Right superior corona radiata 0.453 – 0.092 0.433 – 0.017 0.431 0.26
Left posterior corona radiata 0.438 – 0.066 0.417 – 0.024 0.273 0.36
Right posterior corona radiata 0.430 – 0.075 0.424 – 0.023 0.764 0.10
Left sagittal stratum 0.446 – 0.066 0.437 – 0.023 0.621 0.16
Right sagittal stratum 0.434 – 0.051 0.429 – 0.025 0.770 0.09
Left superior cerebellar peduncle 0.570 – 0.068 0.564 – 0.042 0.745 0.10
Left superior cerebellar peduncle 0.553 – 0.076 0.542 – 0.036 0.629 0.16
Left tapetum 0.466 – 0.083 0.441 – 0.036 0.295 0.34
Right tapetum 0.482 – 0.063 0.483 – 0.035 0.953 �0.02

c

Mean diffusivity (· 1,000)

t-test (p) Cohen’s dASD TDC

Splenium of corpus callosum 0.622 – 0.025 0.625 – 0.021 0.726 �0.11
Body of corpus callosum 0.672 – 0.035 0.675 – 0.029 0.786 �0.09
Genu of corpus callosum 0.615 – 0.036 0.621 – 0.035 0.604 �0.17
Left cingulate gyrus 0.724 – 0.033 0.707 – 0.036 0.131 0.50
Right cingulate gyrus 0.701 – 0.034 0.706 – 0.042 0.668 �0.14
Left fornix 0.682 – 0.068 0.677 – 0.027 0.791 0.09
Right fornix 1.070 – 0.261 1.008 – 0.116 0.406 0.27
Left medial lemniscus 0.627 – 0.056 0.642 – 0.020 0.359 �0.30

(continued)
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splenium of corpus callosum, bilateral superior and posterior
corona radiata, and the left superior longitudinal fasciculus
compared with TDC. This measure of regional white matter
connectome ED was more sensitive than conventional DTI
metrics (i.e., FA, MD, and RD maps) as well as VBM of
brain macrostructure, which failed to detect significant dif-
ferences between the ASD and TDC groups at the studied
sample size. While the voxel-wise analysis provides crucial
information regarding the microstructural underpinning of
the ASD, tract-based metrics extracted based on preset
atlas might provide more feasible tool for distinguishing in-
dividual subjects with ASD. In this preliminary study, we
showed the feasibility of applying different supervised
machine-learning algorithms for identification of children
with ASD based on tract-based DTI and connectomic met-
rics. While univariate tract-based variables fail to distinguish

children with ASD from TDC, machine-learning models
could construct imaging biomarkers for identification of
ASD based on multitude of topographic DTI and connec-
tomic information. In this study, the EDI-based models had
better performance in identification of children with ASD
compared with conventional DTI metrics, although the re-
sults should be confirmed in larger cohorts.

Numerous tractography and functional magnetic resonance
imaging studies characterize ASD as a neurodevelopmental
disorder due to underconnectivity between different brain re-
gions (Li et al., 2017; Rane et al., 2015). The majority of
prior DTI studies have demonstrated decreased FA and in-
creased MD in white matter tracts (Di et al., 2018), most com-
monly in the corpus callosum and cingulum (Travers et al.,
2012). The FA represents directional variation in apparent dif-
fusion, and the MD is the average of eigenvalues measuring

Table 2. (Continued)

c

Mean diffusivity (· 1,000)

t-test (p) Cohen’s dASD TDC

Right medial lemniscus 0.619 – 0.036 0.625 – 0.020 0.534 �0.20
Left superior longitudinal fasciculus 0.635 – 0.024 0.630 – 0.024 0.496 0.22
Right superior longitudinal fasciculus 0.641 – 0.032 0.647 – 0.026 0.536 �0.20
Left superior corona radiata 0.621 – 0.025 0.617 – 0.019 0.560 0.19
Right superior corona radiata 0.618 – 0.022 0.612 – 0.019 0.384 0.28
Left posterior corona radiata 0.680 – 0.030 0.678 – 0.028 0.793 0.08
Right posterior corona radiata 0.682 – 0.038 0.684 – 0.029 0.840 �0.07
Left sagittal stratum 0.678 – 0.029 0.668 – 0.026 0.273 0.36
Right sagittal stratum 0.694 – 0.033 0.684 – 0.027 0.338 0.31
Left superior cerebellar peduncle 0.681 – 0.034 0.679 – 0.034 0.800 0.08
Left superior cerebellar peduncle 0.672 – 0.030 0.669 – 0.024 0.807 0.08
Left tapetum 0.754 – 0.055 0.731 – 0.034 0.156 0.47
Right tapetum 0.737 – 0.043 0.720 – 0.036 0.196 0.43

d

Radial diffusivity (· 1,000)

t-test (p) Cohen’s dASD TDC

Splenium of corpus callosum 0.342 – 0.068 0.356 – 0.023 0.479 �0.23
Body of corpus callosum 0.415 – 0.078 0.429 – 0.035 0.544 �0.20
Genu of corpus callosum 0.368 – 0.059 0.383 – 0.036 0.384 �0.28
Left cingulate gyrus 0.555 – 0.073 0.551 – 0.038 0.853 0.06
Right cingulate gyrus 0.539 – 0.076 0.557 – 0.044 0.401 �0.27
Left fornix 0.502 – 0.091 0.502 – 0.029 0.997 0.00
Right fornix 0.877 – 0.270 0.809 – 0.119 0.378 0.29
Left medial lemniscus 0.411 – 0.083 0.432 – 0.019 0.355 �0.30
Right medial lemniscus 0.410 – 0.054 0.420 – 0.021 0.525 �0.21
Left superior longitudinal fasciculus 0.481 – 0.056 0.483 – 0.024 0.875 �0.05
Right superior longitudinal fasciculus 0.483 – 0.064 0.492 – 0.025 0.606 �0.17
Left superior corona radiata 0.448 – 0.043 0.456 – 0.018 0.529 �0.20
Right superior corona radiata 0.449 – 0.058 0.456 – 0.017 0.672 �0.14
Left posterior corona radiata 0.504 – 0.045 0.514 – 0.031 0.482 �0.23
Right posterior corona radiata 0.511 – 0.059 0.516 – 0.031 0.765 �0.10
Left sagittal stratum 0.502 – 0.040 0.499 – 0.027 0.845 0.06
Right sagittal stratum 0.522 – 0.036 0.517 – 0.030 0.668 0.14
Left superior cerebellar peduncle 0.440 – 0.050 0.438 – 0.041 0.867 0.05
Left superior cerebellar peduncle 0.442 – 0.054 0.445 – 0.029 0.879 �0.05
Left tapetum 0.542 – 0.070 0.539 – 0.036 0.892 0.04
Right tapetum 0.523 – 0.052 0.510 – 0.037 0.401 0.27

The average – standard deviation of edge density (a), fractional anisotropy (b), mean diffusivity (c), and radial diffusivity (d) are reported
for select white matter tracts in each study group. Cohen’s d was calculated as a measure of effect size (0.2: small; 0.5: medium; 0.8: large).
Notably, of 48 white matter tracts in ICBM-DTI-81 atlas, those pairs with the largest effect size and/or those with significant voxel-wise
difference (Table 1) were included.

DTI, diffusion tensor imaging.

CONNECTOME EDGE DENSITY FOR AUTISM DIAGNOSIS 215



T
a

b
l
e

3
.

C
o

m
p
a

r
a

t
i
v

e
T

e
s
t

C
h

a
r
a

c
t
e
r
i
s
t
i
c
s

f
o

r
C

o
m

b
i
n

a
t
i
o

n
o

f
D

i
f
f
e
r
e
n

t
D

T
I
/
E

D
I

M
e
t
r
i
c
s

w
i
t
h

M
a

c
h

i
n

e
-
L

e
a

r
n

i
n

g
A

l
g

o
r
i
t
h

m
s

R
O

C
A

U
C

A
cc

u
ra

cy
S
en

si
ti

vi
ty

S
p
ec

if
ic

it
y

P
P

V
N

P
V

F
ra

ct
io

n
al

an
is

o
tr

o
p
y

N
ai

v
e

B
ay

es
0
.6

6
(0

.6
4
–
0
.6

7
)

6
7
.9

%
(6

7
.4

%
–
6
8
.4

%
)

1
8
.8

%
(1

7
.6

%
–
2
0
.1

%
)

8
8
.9

%
(8

8
.4

%
–
8
9
.5

%
)

6
1
.8

%
(5

9
.4

%
–
6
4
.2

%
)

6
9
.2

%
(6

8
.9

%
–
6
9
.6

%
)

R
an

d
o
m

fo
re

st
0
.6

9
(0

.6
8
–
0
.7

0
)

6
9
.3

%
(6

8
.8

%
–
6
9
.8

%
)

2
2
.8

%
(2

1
.4

%
–
2
4
.2

%
)

8
9
.3

%
(8

8
.9

%
–
8
9
.6

%
)

7
5
.0

%
(7

3
.1

%
–
7
6
.8

%
)

6
9
.5

%
(6

9
.1

%
–
6
9
.9

%
)

S
V

M
—

li
n
ea

r
k
er

n
el

0
.5

6
(0

.5
4
–
0
.5

8
)

6
0
.3

%
(5

9
.5

%
–
6
1
.1

%
)

4
8
.3

%
(4

6
.7

%
–
4
9
.9

%
)

6
5
.4

%
(6

4
.3

%
–
6
6
.5

%
)

4
1
.1

%
(3

9
.7

%
–
4
2
.5

%
)

7
3
.6

%
(7

2
.9

%
–
7
4
.3

%
)

S
V

M
—

p
o
ly

n
o
m

ia
l

k
er

n
el

0
.5

5
(0

.5
1
–
0
.5

7
)

6
0
.0

%
(5

9
.2

%
–
6
0
.8

%
)

4
8
.4

%
(4

6
.8

%
–
4
9
.9

)
6
5
.0

%
(6

3
.9

%
–
6
6
.0

%
)

4
1
.5

%
(4

0
.1

%
–
4
2
.8

%
)

7
3
.0

%
(7

2
.3

%
–
7
3
.7

%
)

N
eu

ra
l

n
et

w
o
rk

0
.5

3
(0

.5
1
–
0
.5

7
)

5
8
.0

%
(5

7
.2

%
–
5
8
.7

)
3
3
.1

%
(3

1
.6

%
–
3
4
.5

%
)

6
8
.6

%
(6

7
.7

%
–
6
9
.5

%
)

3
5
.2

%
(3

3
.7

%
–
3
6
.8

%
)

6
7
.6

%
(6

7
.0

%
–
6
8
.1

%
)

M
ea

n
d
if

fu
si

v
it

y
N

ai
v
e

B
ay

es
0
.6

5
(0

.6
4
–
0
.6

7
)

6
6
.5

%
(6

5
.9

%
–
6
7
.0

%
)

1
8
.4

%
(1

7
.2

%
–
1
9
.6

%
)

8
7
.0

%
(8

6
.5

%
–
8
7
.5

%
)

6
0
.4

%
(5

8
.1

%
–
6
2
.8

%
)

6
7
.8

%
(6

7
.4

%
–
6
8
.1

%
)

R
an

d
o
m

fo
re

st
0
.7

1
(0

.7
0
–
0
.7

2
)

7
1
.6

%
(7

1
.1

%
–
7
2
.1

%
)

2
3
.5

%
(2

2
.1

%
–
2
5
.0

%
)

9
2
.2

%
(9

1
.8

%
–
9
2
.6

%
)

7
7
.4

%
(7

5
.5

%
–
7
9
.3

%
)

7
1
.8

%
(7

1
.4

%
–
7
2
.1

%
)

S
V

M
—

li
n
ea

r
k
er

n
el

0
.5

6
(0

.5
4
–
0
.5

7
)

5
9
.6

%
(5

8
.8

%
–
6
0
.4

%
)

4
7
.8

%
(4

6
.2

%
–
4
9
.4

%
)

6
4
.7

%
(6

3
.6

%
–
6
5
.8

%
)

4
0
.7

%
(3

9
.3

%
–
4
2
.0

%
)

7
2
.9

%
(7

2
.2

%
–
7
3
.6

%
)

S
V

M
—

p
o
ly

n
o
m

ia
l

k
er

n
el

0
.5

5
(0

.5
2
–
0
.5

8
)

5
8
.7

%
(5

8
.0

%
–
5
9
.5

%
)

4
7
.3

%
(4

5
.8

%
–
4
8
.9

%
)

6
3
.6

%
(6

2
.6

%
–
6
4
.6

%
)

4
0
.6

%
(3

9
.3

%
–
4
1
.9

%
)

7
1
.5

%
(7

0
.8

%
–
7
2
.1

%
)

N
eu

ra
l

n
et

w
o
rk

0
.5

4
(0

.5
2
–
0
.5

6
)

5
9
.9

%
(5

9
.1

%
–
6
0
.6

%
)

3
4
.1

%
(3

2
.6

%
–
3
5
.7

%
)

7
0
.9

%
(6

9
.9

%
–
7
1
.8

%
)

3
6
.4

%
(3

4
.8

%
–
3
8
.0

%
)

6
9
.8

%
(6

9
.2

%
–
7
0
.3

%
)

R
ad

ia
l

d
if

fu
si

v
it

y
N

ai
v
e

B
ay

es
0
.6

6
(0

.6
3
–
0
.6

9
)

6
8
.6

%
(6

8
.1

%
–
6
9
.2

%
)

1
9
.0

%
(1

7
.8

%
–
2
0
.3

%
)

8
9
.9

%
(8

9
.3

%
–
9
0
.4

%
)

6
2
.4

%
(6

0
.0

%
–
6
4
.8

%
)

7
0
.0

%
(6

9
.6

%
–
7
0
.3

%
)

R
an

d
o
m

fo
re

st
0
.6

8
(0

.6
6
–
0
.7

0
)

7
0
.8

%
(7

0
.3

%
–
7
1
.3

%
)

2
3
.3

%
(2

1
.9

%
–
2
4
.7

%
)

9
1
.2

%
(9

0
.8

%
–
9
1
.6

%
)

7
6
.6

%
(7

4
.7

%
–
7
8
.5

%
)

7
1
.0

%
(7

0
.6

%
–
7
1
.4

%
)

S
V

M
—

li
n
ea

r
k
er

n
el

0
.5

6
(0

.5
3
–
0
.5

8
)

5
8
.4

%
(5

7
.6

%
–
5
9
.1

%
)

4
6
.8

%
(4

5
.2

%
–
4
8
.4

%
)

6
3
.3

%
(6

2
.3

%
–
6
4
.4

%
)

3
9
.8

%
(3

8
.5

%
–
4
1
.1

%
)

7
1
.3

%
(7

0
.6

%
–
7
2
.0

%
)

S
V

M
—

p
o
ly

n
o
m

ia
l

k
er

n
el

0
.5

7
(0

.5
4
–
0
.6

0
)

6
0
.6

%
(5

9
.8

%
–
6
1
.4

%
)

4
8
.9

%
(4

7
.3

%
–
5
0
.5

%
)

6
5
.7

%
(6

4
.6

%
–
6
6
.7

%
)

4
1
.9

%
(4

0
.6

%
–
4
3
.3

%
)

7
3
.8

%
(7

3
.1

%
–
7
4
.5

%
)

N
eu

ra
l

n
et

w
o
rk

0
.5

4
(0

.5
1
–
0
.5

6
)

5
9
.2

%
(5

8
.5

%
–
6
0
.0

%
)

3
3
.8

%
(3

2
.3

%
–
3
5
.3

%
)

7
0
.1

%
(6

9
.2

%
–
7
1
.1

%
)

3
6
.0

%
(3

4
.4

%
–
3
7
.6

%
)

6
9
.0

%
(6

8
.5

%
–
6
9
.6

%
)

E
d
g
e

d
en

si
ty

N
ai

v
e

B
ay

es
0
.7

1
(0

.6
9
–
0
.7

2
)

7
2
.2

%
(7

1
.7

%
–
7
2
.8

%
)

2
0
.0

%
(1

8
.7

%
–
2
1
.4

%
)

9
4
.6

%
(9

4
.0

%
–
9
5
.2

%
)

6
5
.7

%
(6

3
.2

%
–
6
8
.3

%
)

7
3
.7

%
(7

3
.3

%
–
7
4
.0

%
)

R
an

d
o
m

fo
re

st
0
.7

5
(0

.7
4
–
0
.7

6
)

7
5
.3

%
(7

4
.8

%
–
7
5
.9

%
)

2
4
.8

%
(2

3
.3

%
–
2
6
.3

%
)

9
7
.0

%
(9

6
.6

%
–
9
7
.4

%
)

8
1
.5

%
(7

9
.5

%
–
8
3
.5

%
)

7
5
.5

%
(7

5
.1

%
–
7
5
.9

%
)

S
V

M
—

li
n
ea

r
k
er

n
el

0
.5

9
(0

.5
7
–
0
.6

2
)

6
3
.4

%
(6

2
.6

%
–
6
4
.3

%
)

5
0
.8

%
(4

9
.1

%
–
5
2
.6

%
)

6
8
.8

%
(6

7
.7

%
–
7
0
.0

%
)

4
3
.3

%
(4

1
.8

%
–
4
4
.7

%
)

7
7
.5

%
(7

6
.8

%
–
7
8
.2

%
)

S
V

M
—

p
o
ly

n
o
m

ia
l

k
er

n
el

0
.6

0
(0

.5
8
–
0
.6

3
)

6
3
.8

%
(6

3
.0

%
–
6
4
.7

%
)

5
1
.4

%
(4

9
.8

%
–
5
3
.1

%
)

6
9
.1

%
(6

8
.0

%
–
7
0
.3

%
)

4
4
.1

%
(4

2
.7

%
–
4
5
.6

%
)

7
7
.7

%
(7

6
.9

%
–
7
8
.4

%
)

N
eu

ra
l

n
et

w
o
rk

0
.5

8
(0

.5
5
–
0
.6

1
)

6
3
.0

%
(6

2
.2

%
–
6
3
.8

%
)

3
5
.9

%
(3

4
.3

%
–
3
7
.5

%
)

7
4
.6

%
(7

3
.6

%
–
7
5
.6

%
)

3
8
.3

%
(3

6
.6

%
–
4
0
.0

%
)

7
3
.5

%
(7

2
.9

%
–
7
4
.0

%
)

D
et

ai
le

d
re

su
lt

s
fo

r
co

m
b
in

at
io

n
o
f

d
if

fe
re

n
t

su
p
er

v
is

ed
m

ac
h
in

e-
le

ar
n
in

g
al

g
o
ri

th
m

s
w

it
h

D
T

I
an

d
E

D
I

m
et

ri
cs

fo
r

cl
as

si
fi

ca
ti

o
n

o
f

ch
il

d
re

n
w

it
h

A
S

D
.

T
h
e

re
su

lt
s

ar
e

th
e

av
er

ag
e

(9
5
%

co
n
fi

d
en

ce
in

te
rv

al
)

p
er

fo
rm

an
ce

fo
r

cr
o
ss

-v
al

id
at

io
n

o
f

ea
ch

al
g
o
ri

th
m

am
o
n
g

·
1
,0

0
0

ra
n
d
o
m

ly
se

le
ct

ed
v
al

id
at

io
n

sa
m

p
le

s.
A

U
C

,
ar

ea
u
n
d
er

th
e

cu
rv

e;
E

D
I,

ed
g
e

d
en

si
ty

im
ag

in
g
;

N
P

V
,

n
eg

at
iv

e
p
re

d
ic

ti
v
e

v
al

u
e;

P
P

V
,

p
o
si

ti
v
e

p
re

d
ic

ti
v
e

v
al

u
e;

R
O

C
,

re
ce

iv
er

o
p
er

at
in

g
ch

ar
ac

te
ri

st
ic

;
S

V
M

,
su

p
p
o
rt

v
ec

to
r

m
ac

h
in

e.

216



diffusion rate irrespective of direction. While the changes in
FA and MD are sensitive measures of white matter microstruc-
ture, they are relatively nonspecific and may represent lower
axonal density, thinner axons, or less myelination. In EDI,
on the contrary, quantification of network edges represents
the significance of each white matter voxel in the overall con-
nectomic framework. Driven from the probabilistic calculation
of tract density, ED provides a metric sensitive to directional-
ity of diffusion at each voxel, and theoretically more likely
representative of true neural fibers given the constraints in con-
struction of edges originating from predetermined cortical and
subcortical gray matter regions as connectome nodes.
Although the number of cases in the current cohort was too
small to draw a firm conclusion, these results suggest that
ED is potentially more sensitive than FA, MD, and RD
maps for identification of microstructural connectivity differ-
ences between children with ASD and the control cohort.

In our study, the results of EDI are consistent with the the-
ory of decreased transcallosal fiber connectivity in children
with ASD (Aoki et al., 2017). The commissural tracts con-
necting bilateral premotor, primary motor, and primary sen-
sory cortex traverse through the body of corpus callosum
(Hofer and Frahm, 2006); and the lower ED in the mid-
corpus callosum may help explain sensory and motor pro-
cessing deficits in ASD. The splenium, specifically, connects
occipital, parietal, and temporal regions that are involved in
visual processing. Lower ED in the splenium of corpus
callosum in children with ASD may be related to deficits
in visual processing (Di et al., 2018). Notably, callosal ab-

normalities, such as the diminished ED noted herein, are
one of the most well-replicated findings for individuals
with ASD, with implications for slower transmission of in-
formation leading to deleterious consequences for processing
of nuanced and socially rich visual information (Demopou-
los et al., 2015; Marco et al., 2012).

While voxel-wise comparison of EDI maps in children
with ASD can elucidate the neural microstructural underpin-
ning of autism, development of voxel-wise DTI/connectomic
fingerprint for identification of individual subjects with ASD
can be challenging. As a solution, atlas-based parcellation of
white matter tracts can provide automated and reproducible
tractometry variables for classification of individual subjects
based on topographic pattern of connectivity changes. In our
series, there was no significant difference in average tract-
based DTI or connectomic metrics between children with
ASD and TDC (Table 2). On the contrary, the average ED
in the left posterior corona radiata was the only independent
predictor of ASD in multivariate stepwise penalized regres-
sion. Still, the average ED of the left posterior corona radiata
could not reach statistical significance in identification of
children with ASD applying ROC analysis ( p = 0.077).
Nevertheless, multidimensional data from tract-based con-
nectivity metrics could identify individuals with ASD using
machine-learning algorithms.

In recent years, there has been increasing interest in the ap-
plication of machine learning for objective and reproducible
decision models in diagnosis or treatment planning. These
models have been applied in neurological disorders, such as

FIG. 3. Heat map summary for
classification performance of different
machine-learning algorithms using DTI and
connectome metrics for identification of
children with ASD. The accuracy,
sensitivity, specificity, PPV, and NPV were
calculated in validation datasets from · 1,000
cross-validation—details provided in
Table 3. In each column, yellow to red color
range is assigned to values from low to high,
respectively. DTI, diffusion tensor imaging;
SVM, support vector machine; PPV, positive
predictive value; NPV, negative predictive
value. Color images are available online.
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the diagnosis of Alzheimer’s (Bryan, 2016) and Parkinson’s
disease (Haller et al., 2012), or lesion-symptom mapping in
stroke patients (Zhang et al., 2014). Different machine-
learning algorithms, however, vary in their implementation,
mathematical logic, and computation. Given the small sample
size and inherent variability in results of machine-learning al-
gorithms depending on the randomly sampled training and
validation datasets, we reported the averaged test characteris-
tics among 1,000 stratified samples for cross-validation of
each model. Thus, Table 3 results likely represent a realistic
assessment of the classification accuracy for each combina-
tion of diffusion/connectomic metrics and machine-learning
model in our cohort. The models using ED had better perfor-
mance in identification of ASD compared with those using
conventional DTI metrics. Also, the accuracy of random for-
est models was slightly higher than that of SVM models
mostly due to higher PPV and specificity, although the results
may not hold in a larger dataset (Table 3). It should be noted
that the high accuracy achieved by random forest was in part
due to assigning majority of participants to control cohort,
achieving higher specificity and NPV at the expense of low
sensitivity. This can affect clinical application of the model,
given the cost of assigning a child with ASD to the TDC co-
hort, and thus preventing him/her from receiving proper and
timely treatments. It is also noteworthy that, in a larger data-

set, SVM models may outperform random forests for binary
classification (Statnikov and Aliferis, 2007).

Of note, random forest models can also offer a glimpse
into their classification constructs by reporting variable
importance (mean decrease in Gini); however, the possible
neurobiological translation of these outputs remains elusive—
whether they are mere reflection of random forest algorithm
computation or may indeed point out to neurobiologically
important white matter tracts. Nevertheless, our preliminary
results emphasize the importance of exploring different
machine-learning options to identify the suitable solution
in the development of image-based classifiers.

We found no significant difference in voxel-wise morpho-
metric distribution of gray or white matter volume in our co-
hort. Prior studies also reported variable results regarding the
cerebral and cerebellar volumetric differences between chil-
dren with ASD and TDC (Boddaert et al., 2004; Chen et al.,
2011; Girgis et al., 2007; Ismail et al., 2016; McAlonan et al.,
2005). In a 2011 review of pooled density-based and volume-
based voxel-wise morphometric studies on ASD, there was
no consistent pattern of regional specificity with respect to
gray and white matter differences (Chen et al., 2011).
Also, while many studies on ASD children <6 years have
shown regional increase in gray or white matter volumes;
in ASD children >9 years, regional volumetric thinning is

Table 4. Variables with the Largest ‘‘Mean Decrease in Gini Coefficient’’ in Random Forest Models

Fractional anisotropy Mean diffusivity Radial diffusivity Edge density

White
matter
tracts

Mean
decrease
in Gini

White
matter
tracts

Mean
decrease
in Gini

White
matter
tracts

Mean
decrease
in Gini

White
matter
tracts

Mean
decrease
in Gini

Right posterior
thalamic
radiation

0.84 Left posterior
thalamic
radiation

0.82 Left posterior
internal capsule

0.83 Left posterior
thalamic
radiation

0.89

Left posterior
corona radiata

0.71 Left tapetum 0.59 Left posterior
thalamic
radiation

0.69 Right superior
cerebellar
peduncle

0.69

Left external
capsule

0.51 Right tapetum 0.58 Left cingulate
gyrus

0.56 Left sagittal
stratum

0.56

Right superior
cerebellar
peduncle

0.42 Left anterior
internal capsule

0.49 Right posterior
thalamic
radiation

0.52 Left medial
lemniscus

0.52

Right fornix 0.41 Left cingulate
gyrus

0.48 Right anterior
internal capsule

0.51 Left superior
corona radiata

0.51

Right uncinate
fasciculus

0.41 Left sagittal
stratum

0.45 Right uncinate
fasciculus

0.44 Left superior
longitudinal
fasciculus

0.44

Right cingulate
gyrus

0.40 Right superior
fronto-occipital
fasciculus

0.39 Right corticospinal
tract

0.44 Right corticospinal
tract

0.44

Left posterior
thalamic
radiation

0.38 Right posterior
thalamic
radiation

0.39 Middle cerebellar
peduncle

0.42 Right medial
lemniscus

0.42

Left posterior
internal capsule

0.37 Pontine crossing
tract

0.38 Pontine crossing
tract

0.39 Left posterior
internal capsule

0.39

Right anterior
internal capsule

0.36 Left superior
fronto-occipital
fasciculus

0.37 Right posterior
internal capsule

0. Left posterior
thalamic
radiation

0.89

The 10 white matter tracts with the highest ‘‘mean decrease in Gini coefficient,’’ among random forest models (Table 3). The reported
‘‘mean decrease in Gini coefficient’’ represents the averaged values driven from 1,000 stratified random samples for the random forest mod-
els among different diffusion and connectomic metrics.
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more commonly reported (Ismail et al., 2016). Aside from
likely effects of age on volumetric changes of brain in chil-
dren with ASD, the small sample size of our cohort might
contribute to the lack of significant results in VBM analysis.

In addition to the small sample size, there are other limi-
tations to our study. The unequal number of case and control
participants can potentially affect the overall power of our
voxel-wise study—particularly VBM. This may also affect
the performance of machine-learning models, and contribute
to uneven sensitivity and specificity values achieved by clas-
sifiers. The relatively low sensitivity of machine-learning
models also raises question regarding their practical applica-
bility. While restricting the inclusion criteria to boys between
8 and 12 years helped reduce the effects of age and gender as
confounding factors, it limits the generalizability of our re-
sults. In addition, since this study focused on children with
primary (i.e., idiopathic) ASD, the results may not be appli-
cable to those with secondary forms of ASD due to genetic or
chromosomal abnormalities.

While our investigation supports the potential value of
white matter connectomics and application of machine-
learning algorithms for identification of children with
ASD, multisite and multimodal studies on large patient
groups are the key to development of effective biomarkers
for ASD and comprehensive characterization of the underly-
ing mechanism. EDI is expected to benefit greatly in sen-
sitivity and precision from multiband diffusion magnetic
resonance imaging (MRI) sequences developed by the
Human Connectome Project on the next generation of mag-
netic resonance scanners with faster and more powerful
magnetic field gradients (Fan et al., 2016, 2017; Vu et al.,
2015), as well as the application of more granular and ro-
bust cortical/subcortical atlases, such as from data-driven
connectivity-based parcellation techniques (Tittgemeyer et al.,
2018). Future studies can also integrate functional connectiv-
ity using resting-state functional MRI and magnetoencepha-
lography with white matter microstructural and connectomic
imaging, and apply machine-learning classifiers to identify
objective patterns relevant to clinical diagnosis, prognos-
tication, response to therapy, and/or treatment triage. Utiliz-
ing larger sample sizes and direct assessment of specific
functional domains in ASD can also help gain a deeper un-
derstanding of how neural circuitry differences relate to indi-
vidual patient symptoms.

Conclusion

Limited by small sample size and the present state of dif-
fusion MRI acquisition and analysis technology for clinical
research, we have reported the white matter connectomic
correlates of ASD with topographic distribution of reduced
white matter connectome Edges. Most notably, ED was
more sensitive than conventional DTI metrics in identifica-
tion of children with ASD. In addition, we have shown the
potential for construction of multivariate classification mod-
els for identification of children with ASD, based on
machine-learning analysis of white matter connectome
EDI. The methodology introduced in this study can be ap-
plied to large cohorts in longitudinal trials using emerging
diffusion MRI acquisition and tractography techniques for
development of clinically useful imaging biomarkers of
ASD from more sensitive and precise measurements of

white matter connectomic ED. Such models can provide ob-
jective quantitative biomarkers for diagnosis, and potentially
prognostication and treatment triage of children with ASD.
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