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A 3D-printed platform for modular neuromuscular
motor units
Caroline Cvetkovic1,2, Max H. Rich3, Ritu Raman2,4, Hyunjoon Kong3 and Rashid Bashir1,2

A complex and functional living cellular system requires the interaction of one or more cell types to perform specific tasks, such as
sensing, processing, or force production. Modular and flexible platforms for fabrication of such multi-cellular modules and their
characterization have been lacking. Here, we present a modular cellular system, made up of multi-layered tissue rings containing
integrated skeletal muscle and motor neurons (MNs) embedded in an extracellular matrix. The MNs were differentiated from mouse
embryonic stem cells through the formation of embryoid bodies (EBs), which are spherical aggregations of cells grown in a
suspension culture. The EBs were integrated into a tissue ring with skeletal muscle, which was differentiated in parallel, to create a
co-culture amenable to both cell types. The multi-layered rings were then sequentially placed on a stationary three-dimensional-
printed hydrogel structure resembling an anatomical muscle–tendon–bone organization. We demonstrate that the site-specific
innervation of a group of muscle fibers in the multi-layered tissue rings allows for muscle contraction via chemical stimulation of
MNs with glutamate, a major excitatory neurotransmitter in the mammalian nervous system, with the frequency of contraction
increasing with glutamate concentration. The addition of tubocurarine chloride (a nicotinic receptor antagonist) halted the
contractions, indicating that muscle contraction was MN induced. With a bio-fabricated system permitting controllable mechanical
and geometric attributes in a range of length scales, our novel engineered cellular system can be utilized for easier integration of
other modular “building blocks” in living cellular and biological machines.
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INTRODUCTION
Engineering living cellular machines requires the interaction of
one or more cell types in an instructive environment1. These
systems could be composed of micro- or macro-scale subunits
engineered to cooperatively perform certain tasks. The modularity
of these subunits (consisting of cells, tissues, and biomaterials,
along with growth factors or other biochemical signals) allows for
“forward-engineering” of the system by assembling the compo-
nents in a diverse manner, like building blocks, thus expanding
the functionality of the system. For example, we recently
demonstrated a modular skeletal muscle tissue “ring” that could
be coupled to a three-dimensional (3D)-printed skeleton to
produce net motion2. This bio-integrated actuator (bio-bot) was
a functional cellular system that exhibited dynamic and adaptive
behavior based on both its inherent design and its surroundings.
Our previously demonstrated muscle-powered biological

machines2,3 used externally applied electrical or optogenetic
signals to stimulate an engineered skeletal muscle tissue to
contract. Skeletal muscle is the principal actuator in many animals4,
and its inherently modular and scalable nature renders it a natural
component of many cellular systems. The ability to respond to
stimuli by producing force (resulting in events such as fluid motion
or net displacement, in a pump or motile bioactuator, for example)
is an intuitive design principle of many systems. However, a more
complex biological system with greater functionality would likely
require the integration and coordination of multiple cell types, that

is, moving from a homotypic cluster such as a cell sheet5–7 or an
engineered muscle strip8,9 (with a singular cell type) towards a
heterotypic co-culture such as a neuromuscular junction (NMJ), with
multiple cell types1. In vivo, skeletal muscle fibers are innervated by
the axons of somatic motor neurons (MNs) and do not inherently
contract without stimulation from an excitatory neurotransmitter10.
Early research on the formation of NMJs in two dimensions (2D)

has primarily focused on either the co-culture of excised or
isolated muscle and neural tissues in vitro11,12, or the differentia-
tion of mouse13–16 or human17–19 embryonic stem cells into MNs
(usually through the formation of embryoid bodies or EBs), which
were then co-cultured with excised or engineered muscle tissues.
Beyond applications in regenerative medicine and therapeutics20,
however, only a few studies have produced 3D NMJ platforms or
applied neuromuscular research to living cellular systems using
embryonic or neural stem cells21–23. Furthermore, there is a lack of
research demonstrating the possibility of translating such an
arrangement into a platform that is potentially autonomous,
scalable, and forward-engineered, which are necessary character-
istics of a mobile and functional cellular system or machine.
Here we present a modular cellular system made up of multi-

layered tissue rings containing integrated skeletal muscle and MNs
embedded in an extracellular matrix (ECM). The first layer contained
differentiated skeletal muscle myotubes (Figure 1a) mixed with ECM
to form an engineered muscle tissue ring (Figure 1b). Simulta-
neously, MNs were differentiated from mouse embryonic stem cells
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(mESCs) through the formation of EBs, spherical aggregations of
cells grown in suspension culture (Figures 1c and d). The EBs were
mixed with ECM proteins (Figure 1e) to form a second tissue layer
that integrated with the differentiated muscle tissue ring to create a
co-culture amenable to both cell types. After the multi-layered rings
sequentially compacted and fused together (Figure 1f), they were
then placed on a stationary hydrogel skeleton that had been 3D
printed in parallel (Figures 1g and h).
The use of stereolithographic 3D printing (an additive rapid

prototyping technique)24,25 to create a flexible yet integrated
tissue arrangement allows for iterative design modifications on a
range of length scales. This system demonstrates functional NMJ
behavior and controllable outputs, including engineered muscle
contraction upon applied chemical stimulation, and permits
control over physical, mechanical, and biochemical cues.

MATERIALS AND METHODS
Materials
3-(Trimethoxysilyl)propyl methacrylate, poly(ethylene glycol) dia-
crylate, retinoic acid, ciliary neurotrophic factor (CNTF), fibrinogen,
thrombin from bovine plasma, aminocaproic acid (ACA), LONG R3

human insulin-like growth factor (IGF-1), Triton X-100, 4′, 6-
diamindino-2-phenylindole (DAPI), and L-glutamic acid (gluta-
mate) were obtained from Sigma-Aldrich (St Louis, MO, USA).
Poly(ethylene glycol) dimethacrylate and hexamethyldisilazane
(HMDS) were obtained from Polysciences, Inc. (Warrinton, PA,
USA). 1-[4-(2-Hydroxyethoxy)phenyl]-2-hydroxy-2-methyl-1-propa-
none-1-one photoinitiator (Irgacure 2959) was obtained from
BASF (Florham Park, NJ, USA). Dulbecco’s modified Eagle’s
medium (DMEM), penicillin–streptomycin (10 000 U mL− 1), and
L-glutamine were obtained from Cellgro (Corning, Manassas, VA,
USA). Fetal bovine serum (FBS) was obtained from VWR (Rednor,
PA, USA). Mouse embryonic fibroblasts (CF-1 mitomycin-C
inactivated MEFs) were obtained from Applied Stem Cell, Inc.
(Milpitas, CA, USA). HBG3 mESCs (Hb9-GFP) were obtained from
ArunA Biomedical (Athena, GA, USA). EmbryoMax ES DMEM,
EmbryoMax nucleosides, ESGRO mouse leukemia inhibitory factor
(mLIF), and purmorphamine were obtained from EMD Millipore
(Billerica, MA, USA). Penicillin–streptomycin (5000 U mL− 1), mini-
mum essential medium (MEM) non-essential amino acids,
β-mercaptoethanol, advanced DMEM/F12, neurobasal, KnockOut
serum replacement, heat-inactivated horse serum, and collagen
I-coated dishes were obtained from Gibco (Life Technologies,
Carlsbad, CA, USA). Glial-derived neurotrophic factor (GDNF) was
obtained from Neuromics (Edina, MN, USA). Matrigel basement
membrane was obtained from Corning (Tewksbury, MA, USA).
Paraformaldehyde was obtained from Electron Microscopy
Services (Hatfield, PA, USA). Image-iT FX Signal Enhancer and
tetramethylrhodamine α-bungarotoxin (TRITC-conjugated α-BTX)
were obtained from Molecular Probes (ThermoFisher, Waltham,
MA, USA). MF-20 anti-myosin heavy-chain antibody was obtained
from the Developmental Studies Hybridoma Bank (The University of
Iowa, Iowa City, IA, USA). Anti-glial fibrillary acidic protein (GFAP) was
obtained from Chemicon (EMD Millipore). Alexa Fluor 488 goat anti-
mouse IgG and Alexa Fluor 568 F(ab′)2 fragment of goat anti-mouse
IgG were obtained from ThermoFisher. Thirty-five millimeter glass-
bottom dishes used for imaging were obtained from MatTek
(Ashland, MA, USA). (+)-Tubocurarine chloride hydrochloride penta-
hydrate (curare) was obtained from Abcam (Cambridge, MA, USA).

Fabrication of hydrogel ring molds and bio-bot skeletons
CAD software (AutoCAD, Autodesk, San Rafael, CA, USA) was used
to design hydrogel ring molds and bio-bot skeletons2. Briefly,
parts were exported in.stl format, sliced into layers using 3D
Lightyear software (v1.4, 3D Systems, Rock Hill, SC, USA), and
fabricated using a modified Stereolithography apparatus (SLA
250/50, 3D Systems). Cover glass slides (22 × 22 mm2) were treated
in an oxygen plasma system to render the surface hydrophilic,
chemically treated with 2% (v/v) 3-TPM, and adhered to a 35-mm
culture dish, as detailed previously2. This treatment ensured
chemical tethering of the fabricated hydrogel to the underlying
glass slide. For hydrogel ring molds and bio-bot skeletons, liquid
pre-polymer solutions were prepared as previously described3:
20% (w/v) poly(ethylene glycol) dimethacrylate of MW

1000 g mol− 1 (PEGDMA 1000) and 20% (v/v) poly(ethylene glycol)
diacrylate of MW 700 g mol− 1 (PEGDA 700), respectively, dissolved
in phosphate-buffered saline (PBS) with 0.5% (w/v) Irgacure 2959.
After fabrication, hydrogel parts were rinsed in PBS and then
disinfected in 70% EtOH for at least 1 h. Sterilized parts were
stored in sterile PBS at 4 °C until use.

Cell culture
Skeletal muscle. Proliferating C2C12s (murine myoblasts) were
maintained in a muscle growth medium consisting of DMEM with
10% (v/v) FBS, 1% (v/v) penicillin–streptomycin (10 000 U mL− 1),
and 1% (v/v) L-glutamine. Cells in culture were passaged before
confluence. All cells, cultures, and tissue rings were incubated at
37 °C and 5% CO2.
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Figure 1 Skeletal muscle cells and motor neurons were combined
into a fabricated 3D co-culture system. C2C12 myoblasts were
differentiated into multinucleated myotubes (a) and combined with
extracellular matrix (ECM) proteins to create an engineered muscle
ring tissue (b). In parallel, mouse embryonic stem cells (HBG3
mESCs) were differentiated into motor neurons (MNs) through the
formation of embryoid bodies (EBs) (c and d) and then combined
with the engineered muscle tissue and ECM proteins (e) on
3D-printed hydrogel devices (f and g). Once the multi-layered rings
sequentially compacted and fused together, they were then placed
on a stationary hydrogel skeleton (h). Scale bars, 50 μm (b and d),
500 μm (c), and 10 μm (d, inset).
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Mouse embryonic stem cells. A feeder layer of mouse embryonic
fibroblasts (CF-1 mitomycin-C-inactivated MEFs) was pre-plated
2 days prior to stem cell culture at a density of 3 × 104 cells per
cm2 in DMEM with 10% (v/v) FBS, 1% (v/v) penicillin–streptomycin,
and 1% (v/v) L-glutamine. HBG3 mESCs (Hb9-GFP) were thawed
and expanded at a density of 5 × 104 cells per cm2 on top of
the MEF layer in an mESC proliferation medium consisting of
EmbryoMax ES DMEM with 15% (v/v) FBS, 1% (v/v) each
of penicillin–streptomycin (5000 U mL− 1), L-glutamine, Embryo-
Max nucleosides and MEM non-essential amino acids, 0.1 mM
β-mercaptoethanol, and 0.1% (v/v) mLIF. Cells were passaged
before colonies reached confluence.

EBs containing MNs. As previously described15,22, to initiate
differentiation, HBG3 mESCs were switched to neural differentia-
tion medium containing 50% (v/v) advanced DMEM/F12, 50% (v/v)
neurobasal, 10% (v/v) KnockOut serum replacement, 1% (v/v)
penicillin–streptomycin (5000 U mL− 1), 1% (v/v) L-glutamine, and
0.1 mM β-mercaptoethanol. After 1 h of incubation in serum-free
neural differentiation medium, cells were trypsinized, centrifuged,
and replated at a density of 1–2.5 × 106 cells per 10-cm tissue
culture dish (day 0). On day 1, floating cells in suspension were
collected and replated in a new dish, and adhered cells were
discarded. On day 2, floating EBs were collected and replated in a
differentiation medium with 1 μM purmorphamine and 1 μM
retinoic acid. On day 5, floating EBs were collected, and the
medium was supplemented with 10 ng mL− 1 each of GDNF and
CNTF (a complete neural differentiation medium). Differentiated
GFP+ EBs were used between days 5 and 7.

Multi-layered tissue ring formation
For the formation of layer 1 of the multi-layered tissue rings, 5 × 106

cells per mL (final density of C2C12s in the cell–gel solution) were
combined with fibrinogen (4 mgmL−1), thrombin (0.5 U mg− 1

fibrinogen), and Matrigel basement membrane (30% (v/v) of total
cell–gel solution) on ice. Muscle growth medium was added to
bring the cell–gel solution to its final volume (80 μL, 4 × 105 cells
total per ring, unless otherwise noted), and the solution was added
to the well of a hydrogel ring mold (day 0). Molds were previously
aspirated of excess liquid to ensure consistent cell–gel densities.
Tissue rings were allowed to incubate for 2 h before adding warm
growth medium with 1 mgmL−1 ACA, which was exchanged daily.
On day 1, tissue rings were switched to a muscle differentiation
medium consisting of DMEM with 10% (v/v) heat-inactivated horse
serum, 1% (v/v) penicillin–streptomycin, 1% (v/v) L-glutamine,
1 mgmL−1 ACA, and 50 ngmL− 1 IGF-1. On day 3, layer 2 was
added to the hydrogel ring molds and allowed to compact around
layer 1. Differentiated EBs were individually selected for being GFP+

and mixed with the cell–gel solution. The cell–gel solution (60 μL,
3 × 105 cells total per ring) was otherwise identical to layer 1. Tissue
rings were allowed to incubate for 2 h before adding a warm
complete neural differentiation medium with 1 mgmL−1 ACA and
50 ngmL−1 IGF-1.

Imaging
Immunocytochemistry. Samples were rinsed in PBS, fixed in 4%
paraformaldehyde for 30 min, rinsed again, permeabilized with
0.25% Triton X-100 for 10 min, and blocked in Image-iT FX
overnight at 4 °C. Samples were incubated with primary anti-
bodies, MF-20 (1:400) or GFAP (1:1000), in Image-iT FX at 4 °C
overnight. After rinsing three times with PBS, samples were
incubated with secondary antibodies, either Alexa Fluor 488 or
Alexa Fluor 568 goat anti-mouse (1:400), in Image-iT FX in the dark
at 4 °C overnight. After rinsing three times with PBS, samples were
incubated with DAPI (1:5000 in sterilized de-ionized water) for
10 min, rinsed, and imaged in a 35-mm glass-bottom dish using a
confocal microscope (LSM710, Zeiss, Oberkochen, Germany). For

imaging of acetylcholine receptors (AChRs), live samples were first
incubated with TRITC-conjugated α-BTX (1:1000) in a complete
neural differentiation medium for 1 h at 37 °C, and then fixed and
imaged as detailed above.

Scanning electron microscopy. Samples were rinsed in PBS, fixed
in 4% paraformaldehyde, and dehydrated using a series of ethanol
solutions: 37% (10 min), 67% (10 min), 95% (10 min), and 100%
(3 × 10 min). HMDS was added for 5 min and then allowed to
vaporize. Gold/palladium was deposited on the dried sample for
70 s using a sputter coater (Desk II TSC, Denton Vacuum,
Moorestown, NJ, USA). Images were acquired using an environ-
mental scanning electron microscope (XL30, Philips/FEI, Eindho-
ven, The Netherlands).

Area measurements. A digital camera (Flex, SPOT Imaging
Solutions, Diagnostic Instruments, Inc., Sterling Heights, MI, USA)
on a stereomicroscope (MZ FL III, Leica Microsystems, Wetzlar,
Germany) was used to take images of the multi-layered tissue
rings during compaction. SPOT Software (v5.2, SPOT Imaging
Solutions, Diagnostic Instruments, Inc., Sterling Heights, MI, USA)
and ImageJ software (National Institutes of Health, Bethesda, MD,
USA) were used to measure tissue area dimensions over time.

Neurite growth measurements. After day 9 of differentiation, EBs
were plated on either collagen I- or Matrigel-coated dishes in
a complete neural differentiation medium. EBs containing MNs
expressed GFP+ and thus did not require additional cell markers.
Live samples were imaged on days 10–14 using an inverted
fluorescent microscope for 2D cultures (IX81, Olympus, Tokyo,
Japan) or a confocal microscope for 3D tissue rings (LSM710, Zeiss,
Oberkochen, Germany). The NeuronJ plug-in for ImageJ (National
Institutes of Health, Bethesda, MD, USA) was used to measure
neurite growth distances (Supplementary Figure S1).

Chemical stimulation of multi-layered tissue rings
To stimulate MNs in tissue rings, glutamate was added to the cell
culture medium in a bath application of either 200 or 400 μM, as
noted. Tissues were then transferred to the fresh medium. After
chemical stimulation, the nicotinic AChR antagonist curare was
added to the cell culture medium in a bath application of 25 μM.
Tissues were then rinsed in PBS and transferred to fresh medium.

Video capture and movement tracking
Muscle contraction within tissue rings was captured using a digital
camera on a stereomicroscope with a capture rate of 5–10 frames
per second. Image sequences were exported to .avi files. A custom
MATLAB script was used to calculate the x–y displacement of user-
specified regions of interest using normalized 2D cross-correlation,
as described previously3.

Statistical analysis
All results are presented as the mean ± standard deviation.
OriginPro software (v9.1, OriginLab, Northampton, MA, USA) was
used to calculate significance (one-way analysis of variance
followed by Tukey’s multiple comparison test).

RESULTS
Differentiation of EBs containing MNs
To attain MNs, we induced mESCs (HBG3 mESCs, from a transgenic
mouse cell line) to directly differentiate using a protocol that
recapitulates spinal MN maturation in embryonic development
in vivo13,15,22. Temporal addition of relevant growth and signaling
factors pushed cells to become neural progenitor cells and then
MNs. First, HBG3 mESCs were proliferated on a feeder layer of
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MEFs to support their propagation, preserve pluripotent capacity,
and prevent differentiation26. When colonies became confluent
(Supplementary Figure S2a), cells were switched to a differentia-
tion medium, trypsinized, centrifuged, and replated in a cell
culture dish. MEFs adhered to the dish, while HBG3 mESCs
differentiated in suspension and aggregated to become spherical
EBs (Figure 2a). We added retinoic acid and purmorphamine
(caudalizing and ventralizing signaling molecules that drive neural
progenitors first toward spinal and then MN identities,
respectively13) on day 2 and supplemented EB cultures with
GDNF and CNTF (neural growth factors that promote MN
survival27) on day 5. The EBs increased in size and circularity over
time, with the initial cell seeding density on day 0 playing a role in
the size of differentiated EBs (Figure 2b).
Cells expressed green fluorescent protein (GFP) under the

control of the post-mitotic MN-specific Hb9 promoter (Supple-
mentary Figure S3a); thus, we could visually confirm differentia-
tion of MNs without the addition of exogenous factors or
antibodies. Fluorescent imaging revealed that EBs also contained
proliferating glia (Figure 2c), which are known to contribute to the
formation and maintenance of the NMJ and differentiation and
survival of MNs11.
When allowed to adhere to natural ECM substrates such as

collagen I (Figure 3a) and Matrigel (Figure 3b and Supplementary
Figure S3b), EBs containing MNs attached readily and extended
neurites across the gels. Neurites grew 417.5 ± 154.8 and 999.1
+356.9 μm after 4 days of attachment (propagating at nearly linear
rates of 88.6 and 264.8 μm per day) on collagen I and Matrigel
surfaces, respectively (Figure 3c). Similarly, EBs adhered to (and
extended neurites across) the surface of 2D layers of differen-
tiated C2C12s (Figure 3d and Supplementary Figure S3c). After
5 days of co-culture, we identified clusters of post-synaptic AChRs

(visualized with fluorescently conjugated α-BTX, which binds to a
subunit of AChR) near the termination of neurite extensions on
myotubes (Figure 3e).

Development of multi-layered tissue rings in hydrogel molds
To fabricate the macroscopic structures necessary for the
development and co-culture of engineered tissue rings, we used
a stereolithography apparatus to 3D print poly(ethylene) glycol-
(PEG)-based hydrogels. We designed and 3D printed a hydrogel
ring mold to guide the formation of a liquid cell–gel solution into
a solid engineered muscle tissue. The mold contained rectangular-
shaped wells that forced the compacting cells and ECM into a
ring-shaped tissue (Figure 4a and Supplementary Figure S4a). A
cell–gel solution consisting of 80 μL of C2C12 myoblast precursor
skeletal muscle cells and ECM proteins (Matrigel and fibrinogen)
was injected into the mold. The polymerization of the matrix
proteins (thrombin was added to cleave fibrinogen and form a
cross-linked fibrin network) and the traction forces exerted by the
myoblasts on surrounding proteins resulted in compaction of the
tissue into a solid ring (Figures 4b–i). After 1 day, we added a
differentiation medium containing 10% horse serum to induce
fusion of myoblasts into mature muscle fibers, or myotubes
(Supplementary Figure S2b). The medium was also supplemented
with ACA, an inhibitor to prevent degradation of the ECM by
cell-secreted proteases) and insulin-like growth factor (IGF-1,
which is known to increase myoblast fusion and muscle
hypertrophy28,29).
After 3 days of allowing the first muscle layer to compact and

differentiate in the hydrogel ring mold, we added a second layer
of cell–gel solution (Figure 4bii). This mixture contained the
same C2C12 and ECM components as the first layer, as well as

Day 2 Day 6 Day 8 z

x

y

x

y

z

(i) (ii) (iii)

0.04

a c

b
0.03
0.02
0.01s.

d.
E

B
 c

ro
ss

-s
ec

tio
na

l a
re

a 
(m

m
2 )

0.00

0.150

0.125

Starting density:

1.0 × 106 cells

1.5 × 106 cells
2.0 × 106 cells

2.5 × 106 cells

0.100

0.075

0.050

0.025

0.000
Day 2 Day 5 Day 6

DAPI Hb9-GFP GFAP Merge
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differentiated EBs that were individually selected for being
predominantly GFP+ (thus containing MNs). The co-culture
medium was switched to a complete neural differentiation
medium supplemented with ACA and IGF-1.
Layer 2 compacted around the first, and the cross-sectional

tissue area decreased daily to a lower limit of 17.9 ± 1.6 mm2,
or ~ 22% of the original area dictated by the hydrogel ring mold,
after 5 days of co-culture (Figure 4c). We controlled the thickness
of the tissue by varying the initial cell–gel volume; initial volumes
of 60, 80, and 90 μL (containing 3 × 105, 4 × 105, and 4.5 × 105 cells
in each ring) resulted in ring tissues with layer 1 cross-sectional
areas of 11.7 ± 1.6, 13.9 ± 2.4, and 17.1 ± 4.6 mm2 (14.3%, 17.1%,
and 21.0% of the original area) after 5 days, respectively
(Supplementary Figure S5).
Various imaging modalities confirmed the presence of both

differentiated muscle and GFP+ EBs in the multi-layered tissue
rings. Compaction of layer 2 brought the EBs in close contact with
layer 1 during the first 24 h of co-culture (Figure 4d). By this time,
the myoblasts in layer 1 had differentiated to form elongated,
multinucleated myotubes that expressed mature myosin protein
(Figure 4e and Supplementary Video S1).

Spontaneous muscle contraction in co-culture
Following the addition of layer 2 with MN-containing EBs to the
hydrogel ring molds (Figure 5ai), we observed spontaneous
contraction of differentiated muscle in layer 1 as early as 2 h after
co-culture. Two regions of muscle in layer 1, ~ 600 and 800 μm
from the nearest group of EBs, twitched at ~ 1.6 contractions
per second, with local displacements measuring 9.9 ± 1.8 and
6.8 ± 1.9 μm per twitch for regions 1 and 2, respectively
(Figure 5aii). After 24 h of co-culture, after layer 2 had begun to
compact into a solid ring (Figure 5bi), we observed continued
spontaneous contraction. The muscle twitched with decreased
frequency (~0.9 contractions per second) and amplitude (6.5 ± 0.9
and 8.7 ± 1.6 μm per twitch) compared to hour 2 (Figure 5bii and
Supplementary Video S2), and spontaneous contraction eventually
ceased.

Transfer of multi-layered tissue rings to hydrogel skeletons
When both layers fused into one tissue, the compliant ring was
physically placed onto a 3D-printed structure (Figure 6a). We
designed and fabricated a stationary skeleton, composed of a
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pillar connecting two stiff beams, representing a physiological
muscle–tendon–bone arrangement (Supplementary Figure S4b).
The beam of the skeleton was chemically tethered to a glass slide
and thus provided a static mechanical stretch to the tissue rings.
Within the multi-layered tissue rings, EBs began to extend

neurites from GFP+ MNs. Using confocal imaging, we confirmed
that the extension propagated in 3D throughout the tissue, both
in the direction of other EBs and toward differentiated muscle
(Figure 6b and Supplementary Video S3). Neurite length signifi-
cantly increased between days 3 and 9 of co-culture, from
207.4 ± 153.2 to 433.6 ± 372.5 μm (Figure 6c).

Chemical stimulation of MNs in multi-layered tissue rings
On day 9 after co-culture, we chemically stimulated MNs by
adding glutamate. Multi-layered tissue rings were first subjected
to a bath application of 200 μM glutamate in a complete neural
differentiation medium. Through video recordings, we observed
that local muscle contraction began in response to chemical
stimulation of MNs (Figure 6d). When we increased the glutamate
concentration from 200 to 400 μM, the frequency of muscle
twitching increased from 1.08 to 1.33 contractions per second,
whereas the average displacement decreased from 6.3 ± 0 to

4.4 ± 0.2 μm per twitch (Figure 6e and Supplementary Video S4).
The addition of 25 μM tubocurarine chloride (curare), an
irreversible nicotinic NMJ antagonist and muscle relaxant23 that
blocks AChRs, halted the contractions; no further muscle twitching
was observed.

DISCUSSION
The engineered hydrogel-muscle ring platform, which we
demonstrated previously for muscle-powered biological
machines2, is ideal for introducing different cell types and
biomaterials. Here we present a method for overcoming some
of the challenges associated with innervating 3D muscles15. Prior
work has confirmed that ESC-derived MNs attained electrophy-
siological properties that were characteristic of native spinal
MNs14; we demonstrate an ability to integrate MN-containing EBs
into a cellular system and achieve outputs representative of a
functional NMJ. A ring tissue design with directional force
production allowed for a physiological neuron-muscle co-culture
with greater potential for innervation in 3D, whereas an adaptable
fabrication system provided physical cues and structural support
for maturation and synergy of both neurons and muscle in a
relevant engineered tissue system. By allowing the two major cell
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types to differentiate in parallel before combining them into one
co-culture system, we were able to create a flexible platform in
which cells and tissues can be combined with 3D-printed scaffolds
in a modular and user-friendly manner.
Compaction in the hydrogel ring mold or transfer to the

skeleton did not hinder the further maturation of either major cell
type. C2C12s differentiated into mature myotubes in the presence
of IGF-1, whose use we previously reported to accelerate muscle
differentiation in 3D engineered systems in a physiologically
relevant manner3. We also hypothesized that forcing the tissue to
compact and differentiate in this constrained environment would
result in greater myotube alignment along the longitudinal axis2,
as the imposition of this static mechanical cue during muscle
development would contribute to improved functionality and
force production30,31. The design and fabrication of an instructive
environment for this cellular system were easily achieved with the
use of stereolithographic 3D printing24,25. This manufacturing
technology has been widely utilized for applications in tissue
engineering, not only due to the user’s control over the specific
design, geometric, and mechanical parameters but also for its
ability to fabricate biomaterials (hydrogels whose properties can
mimic cells’ natural micro-environments) and encapsulate various
cell types in three dimensions32,33 in a short time frame and over a
range of length scales.
The mammalian NMJ forms as a result of mutually stimulating

signaling from both MNs and skeletal muscle fibers. Neurons can
provoke the post-synaptic terminal site at the muscle, and
likewise, skeletal fibers can induce pre-synaptic differentiation of
neurons27. One outcome is the clustering of AChRs, which are
uniformly distributed throughout myotubes but become greatly
concentrated at the post-synaptic membrane, due to both AChR
redistribution throughout the membrane and increased
synthesis34. Another outcome is the extension and branching of
the neuron’s axon into a motor nerve terminal that can release

neurotransmitters (such as ACh) at the NMJ. We observed both
outcomes, signifying functional NMJ formation. The extension of
neurites across 2D surfaces (Figure 3) was a promising observa-
tion, indicating the potential to extend neurites throughout
engineered tissues and innervate the skeletal muscle. Indeed, we
observed a similar phenomenon in 3D multi-layered tissue rings
(Figure 6b).
In a functioning NMJ, muscle contraction is induced by an

excitatory neurotransmitter that is released from an MN at the
synaptic cleft between cells, binds to a post-synaptic receptor, and
depolarizes the cell on which it acts, thus increasing that cell’s
excitability and probability of firing an action potential35. When
the nicotinic neurotransmitter ACh binds to its specific membrane
receptor (AChR) on the muscle cell, it initiates an intracellular
signaling cascade resulting in the release of calcium ions from the
sarcoplasmic reticulum in the muscle fiber, terminating in actin–
myosin contraction10,36. Before ACh is released, however, the MN
must be chemically stimulated by an excitatory neurotransmitter
that induces a neuronal action potential35,37. Various studies
have reported the use of glutamate in chemical activation of
neuromuscular systems with high success, as it is a major
excitatory neurotransmitter in the mammalian nervous system.
We demonstrate that the site-specific innervation of a group of
muscle fibers in the multi-layered tissue rings allowed for muscle
contraction via chemical stimulation of MNs, with the frequency
of contraction increasing with glutamate concentration. The
decrease in displacement per contraction followed a physiological
relationship between force output and frequency for functional
skeletal muscle3,38; the engineered tissue ring had less time to
return to baseline tension between each successive stimulus as
the frequency of neuronal firing increased. Because the addition
of curare terminated the contractions, we confirmed both that the
muscle contraction was MN-induced and the presence of a
functional NMJ.
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Further enhancements to the multi-layered tissue ring system
could allow for the development of an autonomous biological
actuator. With a bio-fabricated system permitting controllable
mechanical and geometric attributes on a range of length scales,
our novel engineered cellular system can be utilized for easier
integration of other modular “building blocks” in living cellular and
biological machines. This modular NMJ platform is the foundation
of a novel heterotypic cellular system and has the potential to
address larger challenges in medicine and biology. Target
applications could include microscale tissue fabrication for
organ-on-a-chip mimics of neurodegenerative diseases or
drug screening for neuromuscular diseases in an autonomous
platform.
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