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Computer-aided diagnosis of breast cancer has been 
investigated since the early 1990s (1–4). Floyd et al 

(5) used an artificial neutral network to predict breast 
cancer from mammographic findings with an improved 
sensitivity and specificity compared with radiologists’ 
performance. Huo et al (1) developed a computer-aided 
diagnostic method to quantify the spiculation measure 
of breast lesions, achieving high diagnostic accuracy. 
Sahiner et al (6) applied a rubber band–straightening 
transform method in the breast mass lesion classifica-
tion task. The results from these studies showed that 
computer-aided diagnostic systems can help radiologists 
improve their diagnostic decision making (4,7).

Breast imaging has also been used to evaluate a woman’s 
risk for breast cancer. The relationship between mammo-
graphic parenchymal patterns and the risk of developing 
breast cancer has been studied extensively. In 1976, Wolfe 
(8) proposed a relationship between the radiographic ap-
pearance of the breast parenchyma and breast cancer risk 
based on the visual assessment of the breast. Other researchers 
(9,10) have also investigated mammographic parenchymal 

patterns by assessing the extent of fibroglandular tissue on 
mammograms. In addition, computerized radiographic 
texture analysis (11–13) has been performed to character-
ize the breast parenchymal patterns in the assessment of 
breast cancer risk. These studies demonstrated an associa-
tion between breast cancer risk and mammographic pat-
terns characterized by quantitative texture features. Thus, 
parenchymal texture features have been used as imaging 
markers for the assessment of breast cancer risk and their 
association with breast cancer development (11,12,14,15).

In addition to their utility in risk assessment, parenchy-
mal texture features can help evaluate or predict the stage 
and subtype of breast cancer (16). This suggests that breast 
parenchymal texture features may reflect the biologic risk 
factors associated with breast cancer development because 
parenchymal stromal cells play an important role in breast 
tumor formation and development (17,18). Because the 
stromal parenchyma may be indicative of a precancerous 
state, a combination of parenchymal texture and tumor 
characteristics may yield stronger predictive models. Pre-
vious studies (14,19) have also found a high correlation 
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Background:  Previous studies have suggested that breast parenchymal texture features may reflect the biologic risk factors associated 
with breast cancer development. Therefore, combining the characteristics of normal parenchyma from the contralateral breast with 
radiomic features of breast tumors may improve the accuracy of digital mammography in the diagnosis of breast cancer.

Purpose:  To determine whether the addition of radiomic analysis of contralateral breast parenchyma to the characterization of 
breast lesions with digital mammography improves lesion classification over that with radiomic tumor features alone.

Materials and Methods:  This HIPAA-compliant, retrospective study included 182 patients (age range, 25–90 years; mean age, 
55.9 years 6 14.9) who underwent mammography between June 2002 and July 2009. There were 106 malignant and 76 benign 
lesions. Automatic lesion segmentation and radiomic analysis were performed for each breast lesion. Radiomic texture analysis was 
applied in the normal regions of interest in the contralateral breast parenchyma to assess the mammographic parenchymal patterns. 
The classification performance of both individual features and the output from a Bayesian artificial neural network classifier was 
evaluated with the leave-one-patient-out method by using the area under the receiver operating characteristic curve (AUC) as the 
figure of merit in the task of differentiating between malignant and benign lesions.

Results:  The performance of the combined lesion and parenchyma classifier in the differentiation between malignant and benign 
mammographic lesions was better than that with the lesion features alone (AUC = 0.84 6 0.03 vs 0.79 6 0.03, respectively; P = 
.047). Overall, six radiomic features—spiculation, margin sharpness, size, circularity from the tumor feature set, and skewness and 
power law beta from the parenchymal feature set—were selected more than 50% of the time during the feature selection process on 
the combined feature set.

Conclusion:  Combining quantitative radiomic data from tumors with contralateral parenchyma characterizations may improve diag-
nostic accuracy for breast cancer.
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between parenchymal texture features extracted from the left and 
right breast due to left-right breast symmetry.

We hypothesized that by combining characteristics of normal 
parenchyma from the contralateral breast with mammographic ra-
diomic features of breast tumors, the accuracy of digital mammog-
raphy in the diagnosis of breast cancer may be improved (Fig 1). 
We used normal breast parenchyma from the contra-
lateral breast instead of the ipsilateral breast because 
parenchyma in the ipsilateral breast may be affected 
by the presence of breast lesions. The purpose of our 
study was to assess whether the addition of radiomic 
analysis of contralateral breast parenchyma to the 
characterization of breast lesions with digital mam-
mography improves lesion classification over that 
with radiomic tumor features alone.

Materials and Methods

Data Set
This retrospective study was approved by the in-
stitutional review board and compliant with the 
Health Insurance Portability and Accountability 
Act. The requirement to obtain informed consent 
was waived. Images were obtained at the University 
of Chicago Medical Center (Chicago, Ill) from June 
2002 to July 2009. The full-field digital mammo-
grams were acquired by using a Senographe 2000D 
system (GE Medical Systems, Waukesha, Wis) at 
12-bit quantization level and 100-mm pixel size. 
Images were obtained in 182 patients (age range, 
25–90 years; mean age 6 standard deviation, 55.9 
years 6 14.9). We used the “For Presentation” for-
mat (ie, processed data) for our study.

The data set included 182 biopsy-proven breast 
lesions, 106 of which were malignant and 76 of 
which were benign. The malignant lesions ranged 
in diameter from 0.5 to 3.3 cm (mean, 1.9 cm 6 
0.7), and the benign lesions ranged in diameter 

from 0.5 to 2.8 cm (mean, 1.5 cm 6 0.6). The patients had 
no previous cancer. Their contralateral mammograms were re-
viewed by a breast radiologist (D.S.) with 9 years of experience 
and were used only if no detectable abnormalities were observed. 
If there were multiple lesions, only the index lesion was used 
in our study. All patients were required to have standard mam-
mographic views of the contralateral breast for inclusion in the 
computerized parenchymal analysis.

Each breast lesion had been assigned a Breast Imaging Re-
porting and Data System (BI-RADS) score by a dedicated breast 
radiologist at the time of the initial clinical image interpretation. 
The standardized BI-RADS lexicon enables malignancy risk 
stratification for each descriptor and helps guide management 
decisions. BI-RADS category 4 and 5 lesions are recommended 
for biopsy and carry a malignancy risk of 2% to more than 95%. 
The computer code referred to in the following section is avail-
able from the authors upon request.

Radiomic Analysis of Breast Lesions
The methods for computerized analysis of breast lesions at mam-
mography have been described in detail elsewhere (2,20). Briefly, 
several steps are involved in the analysis. First, each breast lesion 
center was indicated by a radiologist, who in this study was a 
breast radiologist (D.S.). Second, breast lesions were automatically 
segmented from the parenchymal background by using a dual-

Abbreviations
AUC = area under the receiver operating characteristic curve, BANN = 
Bayesian artificial neural network, BI-RADS= Breast Imaging Reporting 
and Data System, ROI = region of interest

Summary
Combining radiomic analysis of breast tumors with that of paren-
chyma may improve diagnostic accuracy for breast cancer.

Key Points
nn The addition of contralateral breast parenchyma analysis in the charac-

terization of breast tumors at full-field digital mammography through 
quantitative radiomics improves lesion classification compared with 
using radiomic tumor features alone (area under the receiver operating 
characteristic curve, 0.84 vs 0.79, respectively; P = .047).

nn Because breast parenchyma may reflect the biologic risk factors 
associated with breast cancer development, yielding the stromal 
parenchyma as an indicator of precancer, the combination of 
parenchyma and tumor characteristics may provide a stronger pre-
dictive model of malignancy.

Figure 1:  Illustration of computerized analysis method used on digital mam-
mograms. Quantitative imaging analysis was performed in both lesion (left) and 
region of interest from normal contralateral breast (right). Segmentation outline was 
obtained from a dual-stage computerized segmentation method.
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Quantitative radiomic texture features were extracted from 
each ROI to characterize the mammographic parenchymal pat-
terns. The intraclass correlation coefficients from our previous 
study (26) on reliability of the reader’s ROI placement indicated 
high reliability of ROI selection and parenchymal analysis. A to-
tal of 45 texture features (Appendix E1, Table E2 [online]) were 
calculated from each individual ROI to characterize the local 
composition, contrast, homogeneity, and coarseness of breast 
parenchyma (22,25). These features are based on (a) gray-level 
histogram analysis to characterize the local tissue composition; 
(b) fractal analysis, including box-counting and Minkowski 
methods; (c) edge-frequency analysis; (d) Fourier analysis, in-
cluding root mean square variation, first moment of power spec-
trum, and power law beta from power spectral analysis; and (e) 
textural analysis using neighborhood gray-tone difference matrix 
and gray-level co-occurrence matrix to characterize the special 
relationship among gray levels.

Classifier Development
The radiomic features were standardized with zero mean and unit 
variance across all cases before input to the classification tasks. 
Stepwise feature selection (27) was used with multiple linear re-
gression analysis to select the subset of features for the classification 
task by using the Wilks L criterion. To reduce database bias, step-
wise feature selection and classification were conducted concur-
rently within a leave-one-case-out cross-validation manner. Fea-
tures were selected from each cross-validation iteration and used 
in the same iteration for classification with a BANN classifier. For-
ward feature addition and backward feature removal were both in-

stage segmentation method (20), 
which included an initial seg-
mentation with a radial gradient 
index–based method followed by 
an active contour model. Third, 
radiomic lesion features (Appen-
dix E1, Table E1 [online]), in 
terms of mathematical descrip-
tors (21,22), were automatically 
extracted from the image data of 
lesions and surrounding tissues. 
Finally, subsequent classification 
was performed to differentiate 
between malignant and benign 
lesions by using a Bayesian arti-
ficial neural network (BANN) 
classifier (23).

A total of 32 features (Ap-
pendix E1, Table E1 [online]) 
were extracted from each tu-
mor; these were used to char-
acterize the tumor size, shape, 
spiculation, margin sharpness, 
radial gradient index, and tex-
ture (1,21,22). The size feature 
“effective diameter” is defined as 
the diameter of a circle yielding 
the same area as the segmented 
lesion. Shape features include circularity, irregularity, and com-
pactness of the breast tumor. To quantify the degree of spicula-
tion of a mass lesion, the full width at half maximum of the nor-
malized edge gradient distribution relative to the radial direction 
is calculated. Margin sharpness is defined as the average gradi-
ent along the margin of the lesion. Radial gradient index cor-
responds to the average proportion of the gradient direction and 
thus contains shape information. Density features are radiomic 
features related to radiographic density information of the tumor 
and parenchyma, such as average gray value of the lesion and 
contrast. Texture features are calculated on the basis of the gray-
level co-occurrence matrix. These features are used to quantify 
the different characteristics of a lesion, such as gray-level depen-
dence, homogeneity, randomness, brightness, and variation.

Radiomic Analysis of Breast Parenchymal Patterns
The method used for computerized parenchymal texture analy-
sis has been detailed in previous publications (24,25). Briefly, 
parenchymal analysis was performed on the normal contralat-
eral breast, where each contralateral mammogram had no breast 
abnormalities present when reviewed by the breast radiologist 
(D.S.). Regions of interest (ROIs) of 256 3 256 pixels (25.6 3 
25.6 mm) were manually selected by a computer scientist (L.L., 
with 18 years of experience in breast cancer image analysis) from 
the central breast region immediately behind the nipple in the 
craniocaudal view of the full-field digital mammographic im-
ages (Fig 2) because they usually included the dense parts of the 
breast (24). ROIs were selected such that regions along the skin 
line that contain subcutaneous fat were not included.

Figure 2:  Digital mammogram of normal contralateral breast shows selection of region of interest from 
central breast region behind nipple.
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Of the 106 malignant lesions, 30 were classified as BI-RADS 
category 4 and 76 as BI-RADS category 5.

Radiomic Analysis of Breast Lesions
When we evaluated the tumor characteristics alone, an AUC of 
0.79 6 0.03 was obtained by using the BANN classifier out-
puts in the differentiation between malignant and benign lesions 
(Table 2, Fig 3). Individual radiomic lesion features had poor to 
moderate classification performance in lesion characterization, 
with AUCs ranging from 0.53 to 0.75. Four features were se-
lected more than 50% of the time during the feature selection 
process: spiculation, margin sharpness, size, and circularity.

Radiomic Analysis of Breast Parenchymal Patterns
When we evaluated the parenchymal features alone, an AUC 
of 0.67 6 0.04 was obtained by using the BANN classifier 
outputs in the differentiation between malignant and benign 
lesions (Table 2, Fig 3). Edge gradient, contrast, power law 
beta, and two texture features based on gray-level co-occur-
rence matrix were the most frequently selected features.

volved in the feature selection pro-
cess. The stepwise feature selection 
process was automatically stopped 
when no statistically significant im-
provement was obtained by adding 
or removing features in each leave-
one-case-out cross-validation itera-
tion on the training data set. Note 
that in each iteration, the data set 
was split into two data sets: N 2 
1 cases for training and one case 
for testing (N is the total number 
of cases in our study). The BANN 
classifier was trained by using the N 
2 1 training cases with the selected 
features and then tested on one test 
case. This process was repeated N 
times for each classification task: 
that is, in each leave-one-case-out 
cross-validation iteration, feature 
selection was conducted only on 
the corresponding training cases; 
thus, a different feature set could 
result at each iteration.

However, to appreciate the 
important characteristics of the 
tumor and parenchyma, we also 
examined features that were se-
lected more than 50% of the time 
during the iterative process. This 
same feature selection method was 
performed throughout our study.

To evaluate the additive role of 
contralateral parenchyma texture 
analysis to lesion characterization, 
classifications were performed by 
using (a) breast tumor features 
alone and (b) radiomic features extracted from both breast tu-
mor and contralateral parenchymal stroma.

Statistical Analysis
Receiver operating characteristic analysis (28) was conducted 
to assess the performance of each classifier, with the area under 
the receiver operating characteristic curve (AUC) serving as the 
figure of merit in the task of differentiating between malignant 
and benign lesions by using output from the relevant BANN 
classifier as a decision variable. The statistical significance for 
the difference between classifiers’ performance in AUC was as-
sessed by using software (ROCKIT; http://metz-roc.uchicago.
edu/MetzROC/software). The Holm-Bonferroni method (29) 
was applied to adjust for multiple comparisons (aT = .05).

Results
The data set included 182 biopsy-proven breast lesions, 106 
of which were malignant and 76 of which were benign, as 
described in Table 1. Of the 76 benign lesions, 69 were classi-
fied as BI-RADS category 4 and seven as BI-RADS category 5. 

Table 1: Baseline Characteristics of Study Population

Characteristic Benign (n = 76) Malignant (n = 106)
Age
  39 y 17 (22) 14 (13)
  40–49 y 19 (25) 12 (11)
  50–59 y 14 (19) 26 (25)
  60–69 y 16 (21) 30 (28)
  70 y 10 (13) 24 (23)
  Mean (y)* 52.6 6 14.8 (29–90) 58.2 6 14.7 (25–88)
BI-RADS score
  4 69 (91) 30 (28)
  5 7 (9) 76 (72)
BI-RADS density rating
    Fatty (category a) 4 (5) 6 (6)
    Scattered fibroglandular density (category b) 37 (49) 52 (49)
    Heterogeneously dense (category c) 32 (42) 43 (40)
    Extremely dense (category d) 3 (4) 5 (5)
Lesion size (cm)* 1.5 6 0.6 (0.5–2.8) 1.9 6 0.7 (0.5–3.3)
Pathologic finding
  DCIS … 13 (12)
  LCIS … 1 (1)
  IDC … 81 (76)
  ILC … 9 (9)
  Metaplastic carcinoma … 1 (1)
  Papillary carcinoma … 1 (1)
  Fibroadenoma/tubular adenoma 34 (45) …
  Papilloma 9 (12) …
  Fibrocystic changes 24 (31) …
  Cyst 6 (8) …
  Fat necrosis 2 (3) …
  Mastitis 1 (1) …

Note.—Except where indicated, data are numbers of patients, with percentages in parentheses. 
BI-RADS = Breast Imaging Reporting and Data System, DCIS = ductal carcinoma in situ, IDC = 
invasive ductal carcinoma, ILC = invasive lobular carcinoma, LCIS = lobular carcinoma in situ.
* Data are means 6 standard deviations, with ranges in parentheses.
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the reduction in the data sets as one subcategorizes the cases on 
the basis of patient age, BI-RADS rating, and breast density, one 
must be careful in interpreting the statistical evaluations; thus, 
we report just the classification performances in terms of AUCs 
to demonstrate the similar trends.

Discussion
In our study, we compared breast lesion classification with 
use of radiomic tumor features alone and with a combina-
tion of tumor and parenchymal texture features. We assessed 
the additive role of the breast parenchyma features in cancer 
diagnosis. By combining tumor features with normal paren-
chymal texture features, we observed improved (P = .047)  
lesion classification performance (AUC, 0.84) compared with 
that seen with use of tumor features alone (AUC, 0.79).

We are aware of various publications on the use of lesion ra-
diomic data in the classification of malignant and benign masses, 
and we are aware of the various publications on the use of pa-
renchymal features to predict cancer risk. Given the different da-
tabases and image analysis algorithms, some studies have higher 
AUCs and some have lower AUCs. However, to the best of our 
knowledge, ours is the first study to combine both breast tumor 
and contralateral parenchyma characteristics in the prediction of 
breast lesion malignancy.

The results from our study suggest that parenchymal stroma 
plays an important role in breast tumor formation. Several stud-
ies (8,30,31) have linked mammographic parenchymal patterns 
to the risk of developing breast cancer. Breast cancer is a com-
plex disease involving interactions between tumor cells and host 
stromal cells. In addition, studies (32,33) also found that paren-
chyma stromal cells play an important role in breast tumor for-
mation and development, acting as the stroma fostering tumor 
growth (34,35). These studies provide a biologic basis that sup-
ports our finding that combining both tumor and stromal char-
acteristics may improve the accuracy of digital mammography in 
the diagnosis of breast cancer.

Our study has some limitations. The small data set limited 
us to performing leave-one-case-out cross-validation as op-
posed to using large independent training and testing sets. In 
addition, radiomic analysis of the parenchyma was performed 
only on standard-view images of the contralateral breast, thus 
limiting the cases collected. In addition, the parenchymal 

Radiomic Analysis of Combined Features
When we assessed the additive role of parenchymal stroma in 
breast cancer diagnosis, the classification performance with 
combined lesion and parenchyma classifier was better than 
that with lesion features alone (AUC = 0.84 6 0.03 vs 0.79 
6 0.03, respectively; P = .047) (Table 2, Fig 3). Overall, six 
radiomics features—spiculation, margin sharpness, size, cir-
cularity from the tumor feature set, skewness, and power law 
beta from the parenchymal feature set—were selected more 
than 50% of the time during the feature selection process on 
the combined feature set.

We also investigated the additive role of the parenchyma to 
the cancer diagnosis relative to patient age, BI-RADS rating, and 
breast density. The results followed the same trend as the analysis 
on the entire data set (Appendix E1, Table E3 [online]). Given 

Table 2: Classification Performance with Breast Tumor Features, Parenchymal Features, and Combined Features in the 
Differentiation of Malignant from Benign Breast Lesions

Features AUC* P Value for Difference in AUC†

Tumor features 0.79 6 0.03 (0.71, 0.84) …
Parenchymal features 0.67 6 0.04 (0.59, 0.75) …
Combined features 0.84 6 0.03 (0.78, 0.89) …
Tumor features vs parenchymal features … .044 (0.025) [0.0031, 0.2092]
Parenchymal features vs combined features … ,.001 (0.017) [20.2261, 20.1004]
Tumor features vs combined features … .047 (0.05) [20.1209, 20.0009]

Note.—The Holm-Bonferroni method was implemented to correct for multiple comparisons. AUC = area under the receiver operating 
characteristic curve.
* Data are means 6 standard deviations. Numbers in parentheses are 95% confidence intervals.
† Numbers in parentheses are the significance level, and numbers in brackets are the 95% confidence intervals for the difference in AUC.

Figure 3:  Receiver operating characteristic curves indicate perfor-
mance of computerized analysis in differentiation between malignant 
and benign lesions by using lesion features alone, parenchymal features 
alone, and combined lesion and parenchymal features as decision 
variables. AUC = area under the receiver operating characteristic curve.
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texture features were extracted only from the central breast re-
gion of the contralateral breast. Furthermore, mammographic 
images used in our study were in the “For Presentation” for-
mat. The “For Processing” format (ie, raw data) may have been 
better suited for our study because the raw data could have 
been preprocessed to minimize the effect due to different pre-
processing methods. However, we did not have access to the 
“For Processing” data; thus, we chose to use the “For Presenta-
tion” format (ie, processed data). All mammograms used in our 
study were acquired with mammographic machines from the 
same manufacturer. We expect that this would minimize the 
effect due to different preprocessing methods from different 
manufacturers. In addition, many clinical practices use only 
the “For Presentation” format for interpretation; thus, those 
may be the only ones available for analysis.

In future studies, we plan to evaluate the breast parenchyma 
symmetric to the tumor location on the contralateral breast, 
the entire contralateral breast parenchyma, and parenchyma 
around the breast lesion to further understand the role of pa-
renchyma stroma in the assessment of lesion malignancy. In 
addition, we will perform quantitative imaging analysis on 
both raw and processed images from various manufacturers 
of digital mammography units to assess the robustness of the 
methods for parenchyma analysis and breast tumor character-
ization and to allow for more generalization and flexibility in 
different clinical settings. Further study with a larger data set 
is needed to validate the findings from our study.

In summary, quantitative imaging analysis of both breast le-
sions and normal parenchyma can be conducted to characterize 
the tumor and stroma, yielding a diagnostic signature. Combin-
ing radiomic analysis of breast tumors with that of parenchyma 
may improve the accuracy of digital mammography in the diag-
nosis of breast cancer.
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