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WNT5A is transported via lipoprotein particles
in the cerebrospinal fluid to regulate hindbrain
morphogenesis
Karol Kaiser 1,2, Daniel Gyllborg 2, Jan Procházka3, Alena Salašová2,4, Petra Kompaníková1,

Francisco Lamus Molina5, Rocio Laguna-Goya6, Tomasz Radaszkiewicz1, Jakub Harnoš1, Michaela Procházková3,

David Potěšil7, Roger A. Barker6, Ángel Gato Casado5, Zbyněk Zdráhal7, Radislav Sedláček3, Ernest Arenas 2,

J. Carlos Villaescusa 1,2,8 & Vítězslav Bryja 1

WNTs are lipid-modified proteins that control multiple functions in development and disease

via short- and long-range signaling. However, it is unclear how these hydrophobic molecules

spread over long distances in the mammalian brain. Here we show that WNT5A is produced

by the choroid plexus (ChP) of the developing hindbrain, but not the telencephalon, in both

mouse and human. Since the ChP produces and secretes the cerebrospinal fluid (CSF), we

examine the presence of WNT5A in the CSF and find that it is associated with lipoprotein

particles rather than exosomes. Moreover, since the CSF flows along the apical surface of

hindbrain progenitors not expressing Wnt5a, we examined whether deletion of Wnt5a in the

ChP controls their function and find that cerebellar morphogenesis is impaired. Our study

thus identifies the CSF as a route and lipoprotein particles as a vehicle for long-range

transport of biologically active WNT in the central nervous system.
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Wnt proteins (Wnts) are key players in development and
in adult organisms1. A crucial feature underlying their
function is the ability to spread over long distances

leading to formation of concentration gradients, which elicit and
orchestrate diverse patterning decisions during development2.
Post-translational modification, addition of lipid moieties in the
endoplasmic reticulum by the acyltransferase Porcupine3,4, plays
a central role in the proper maturation of Wnt ligands and their
secretion. The presence of essential lipid modifications in fully
processed Wnts5 represents a challenge for unhindered transport
of Wnts in the water-based extracellular space. Several mechan-
isms for long-range transport of Wnts have been proposed in
Drosophila, such as lipoprotein particles6, incorporation into
exosomes7–9, and direct binding to the transporter protein
Swim10. Other proposed modalities include transport of Wnts via
specialized filopodia such as cytonemes in Drosophila11 or zeb-
rafish12, or via migrating cells, such as neural crest cells in
chicken13. In mammals, Wnts have been found to be transported
via exosomes in the epididymal fluid of mice14 and in vitro, via
binding to the transport protein Afamin15. However, the rele-
vance of some of these mechanisms to the mammalian physiology
remains unclear16.

A previous study has reported that deletion of Otx2 in the
hindbrain choroid plexus (HbChP) increases Wnt4 expression in
this structure as well as the levels of WNT4 in the cerebrospinal
fluid (CSF)17. This study proposed a role of the ChP in regulation
of WNT4 secretion into the CSF and WNT signaling at a distant
site. However, it is unclear whether WNT4 does really control
proliferation in a direct manner at a site distant to where it is
produced in vivo. Moreover, it remains to be determined how can
a lipophilic molecule such as WNT be transported via the CSF.
We thus decided to examine the capacity of the ChP to secrete
WNT proteins into the CSF and investigated the mechanism of
transport of WNT proteins in the CSF.

Our results show that the embryonic HbChP, but not the tel-
encephalic choroid plexus (TelChP), specifically expresses and
secretes high levels of WNT5A into the CSF. Mechanistically, our
data indicate that WNT5A preferentially associates to lipoprotein
particles, rather than exosomes. Moreover, analysis of hindbrain
progenitors that do not express Wnt5a and do not have access to
WNT5A protein from neighboring cells revealed a morphoge-
netic defect upon Wnt5a deletion. Thus, our result identifies
WNT5A as a key regulator of morphogenic behavior of dorsal
hindbrain progenitors near, but not adjacent, to the ChP and
identify lipoprotein particles as the mechanism of transport of
biologically active WNT proteins in the CSF.

Results
Distinct expression of Wnt5a in the choroid plexuses. To
identify the Wnt family members expressed in the various ChPs,
we first analysed expression profiles of all Wnt ligands by means
of in situ hybridization at mouse embryonic day (E) 13.5 (Sup-
plementary Fig. 1a). Wnt5a was the Wnt with the strongest
expression in the HbChP (located in the fourth ventricle) (Fig. 1a,
b and Supplementary Fig. 1a). Wnt5a expression was maintained
from E12.5 to E17.5, as assessed by qPCR (Fig. 1c). These results
were further corroborated by in situ analysis at E13.5 and E17.5
(Fig. 1d). Notably, Wnt5a was not detected in the TelChP
(located in the lateral ventricle) (Fig. 1b, c), a result in line with
previous findings18. On the other hand, Wnt5a was found in the
adjacent cortical hem (CH)19 (Fig. 1b and Supplementary Fig. 1a,
asterisks), where Wnt2b, 3a, 7a, 7b, 8b, and 9a are also expressed
(Supplementary Fig. 1b). Interestingly, high Wnt5a expression
was found in the epithelium of the HbChP (Fig. 1b, d and Sup-
plementary Fig. 2a), while Wnt5b expression was very low at

E13.5 (Supplementary Fig. 1a) or nearly undetectable at E14.5
(Supplementary Fig. 2b–d), suggesting that a possible redundancy
between these two Wnts is unlikely.

Using a specific WNT5A antibody, validated in the Wnt5a-/-
(Wnt5aKO) mice (Supplementary Fig. 3a, b), we found that
WNT5A protein localizes to the HbChP from E12.5 to E17.5, but
it is absent in the TelChP (Fig. 1e, f). At later embryonic and early
postnatal stages, the expression and protein levels of WNT5A in
the HbChP progressively decreased (Fig. 1d and Supplementary
Fig. 3c, d), suggesting a role of WNT5A in the HbChP during
embryonic development. WNT5A was typically found in the
apical part of the cytoplasm of secretory epithelial cells, and on
occasion, in punctuate structures close to or above the apical cell
membrane stained with Aquaporin-1 (AQP1)20 (Fig. 1g).

Analysis of human fetal brains (week 9 post conception)
confirmed that WNT5A protein is found in the HbChP, but not
in the TelChP, also in humans (Fig. 2a). Moreover, WNT5A was
also identified in the apical part of the cytoplasm of the HbChP
epithelium (Fig. 2b) and in punctate structures close to or above
the AQP1+ apical membrane of epithelial cells, in direct contact
with CSF (Fig. 2c, arrowheads), a result suggestive of WNT5A
being secreted from the HbChP to the CSF.

We next examined whether the HbChP expresses mouse
Wntless (Wls; also known as Gpr177), a gene encoding a protein
indispensable for WNT secretion21,22. qPCR analysis revealed
that Wls is expressed in a similar pattern as Wnt5a in the HbChP
from E12.5 to E17.5 (Fig. 3a), with its expression being restricted
to HbChP epithelium at E13.5 (Fig. 3b), while in TelChP Wls
transcripts can be detected only in the adjacent CH region
(Fig. 3b, asterisk). At a protein level, WLS was readily detected in
the HbChP, but not in the TelChP, as assessed by western blot at
E14.5 and E17.5 using a validated WLS antibody (Fig. 3c and
Supplementary Fig. 4a). Immunofluorescence analysis showed
that while WLS was absent from the TelChP at E14.5 (Fig. 3d),
high WLS levels were detected in the HbChP epithelium. WLS
was also detected in the CH adjacent to the TelChP (Fig. 3d,
asterisk). Notably, bothWls expression and its protein abundancy
were highest in HbChP epithelial cells that were most positive for
Wnt5a (Fig. 3e, f, arrowheads). Levels of WLS and WNT5A
showed similar dynamics with high levels at E12.5 and E14.5, by
E17.5 signal intensity decreased and became undetectable by
postnatal day 23 (Fig. 3d and Supplementary Fig. 4b). Thus, our
results are compatible with a possible role of the HbChP in
secreting WNT5A into the CSF during embryonic development.

Active WNT5A is secreted by HbChP cells. To address this
possibility, we first examined whether WNT5A is present in the
embryonic CSF at E11.5, before the formation of the HbChP23,
and after that, at E14.5. Western blot analysis revealed the pre-
sence of WNT5A in the CSF at E14.5, but not at E11.5 (Fig. 4a).
We next established a primary culture of E14.5 ChP epithelial
cells and examined their capacity to secrete WNT5A to the
media. Both TelChP and HbChP cells were positive for the ChP
epithelial markers, ZO124 and AQP1 (Fig. 4b). The analyses of
media conditioned by these cells showed the presence of WNT5A
in media from the HbChP, but not by the TelChP primary cells
(Fig. 4c). These results indicate that WNT5A is indeed produced
and secreted from primary HbChP epithelial cells. Moreover, we
found that the conditioned medium (CM) obtained from the
HbChP, but not from the TelChP, was able to activate Wnt sig-
naling, as shown by the capacity of HbChP-derived CM to induce
phosphorylation of Dishevelled-3 (DVL3) at a level comparable
to that of recombinant WNT5A (Fig. 4d). Thus combined, our
data indicate that the WNT5A secreted by epithelial cells from
the HbChP is biologically active. To determine whether the
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Fig. 1 Wnt5a expression is restricted to HbChP. a Localization of TelChP and HbChP within the embryonic brain and illustrative pictures of in situ
hybridization for ChP marker Transthyretin (Ttr) in sagittal sections of TelChP and HbChP and coronal section of HbChP. Image credit: Allen Institute.
A anterior, P posterior. b Sagittal sections showing Wnt5a expression being restricted to HbChP epithelium and absent from the stromal cells at E13.5.
Wnt5a expression is absent from the TelChP, but present in CH (asterisk). Image credit: Allen Institute. Scale bar: 100 μm. c Real-time qPCR of Wnt5a
expression in TelChP and HbChP at E12.5, E14.5 and E17.5. The expression was normalized against expression level of β-actin in each condition. Graph
shows n= 3 biologically independent samples; error bars represent mean ± s.d.; P-values (two-tailed Student’s t-test with unequal variance): * P < 0.05,
** P < 0.01. TelChP vs HbChP: E12.5 P= 0.012; E14.5 P= 0.0011; E17.5 P= 0.0023. Biological replicates are indicated in the graph. d In situ hybridization
and immunostaining analysis of HbChP coronal sections shows Wnt5a expression level differences between E13.5 and E17.5, n= 3. Immunostaining of
Aquaporin-1 (AQP1) was used as a marker of HbChP epithelial monolayer highlighting the apical membrane of the tissue. Inset: Magnified view of
fluorescent signal of Wnt5a transcripts detected in HbChP epithelium. Scale bar: 50 μm, inset scale bar: 10 μm. e Western blot analysis of WNT5A protein
in lysates of TelChP and HbChP at E12.5, E14.5 and E17.5, n= 3. β-actin serves as a loading control. f Immunofluorescence analyses of WNT5A in TelChP
and HbChP at E14.5, n= 4. Comparison with the AQP1 shows absence of WNT5A in the TelChP. In contrast, WNT5A can be detected in the HbChP
epithelial layer. Scale bar: 100 μm. g High magnification view of HbChP epithelium apical membrane highlighted by AQP1 showing WNT5A in punctate
structures in the extracellular domain of the plasmatic membrane (arrowheads); n= 4. Scale bar: 5 μm. Source data are provided as a Source Data file

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09298-4 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:1498 | https://doi.org/10.1038/s41467-019-09298-4 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


activation of Wnt signaling is mediated by WNT5A and not by
any other Wnt or factors secreted by the HbChP primary culture,
we generated a Wnt5a conditional knock-out mice (Wnt5acKO)
by crossing FoxJ1-CreERT2 and Wnt5afl/fl mice (Fig. 4e, f). We
confirmed that WNT5A was completely absent in the HbChP
(Fig. 4g, h), while it was still present in other embryonal regions
(Fig. 4i), validating efficacy of our strategy. We also demonstrated
a complete absence of WNT5A in the media from embryonic
HbChP primary cultures obtained from Wnt5acKO embryos at
E14.5 (Fig. 4j). Moreover, media derived from these cultures
failed to elicit any activation of Wnt signaling, compared to
medium obtained from wild-type (WT) HbChP primary cultures
(Fig. 4k). We also found that the HbChP media activated only
readouts for Wnt/β-catenin independent signaling such as
phosphorylation of the receptor tyrosine kinase-like orphan
receptor 1 (ROR1) or DVL2/DVL3 (similarly to recombinant
WNT5A), but not unique readouts for Wnt/β-catenin signaling
such as downregulation of Axin1 protein level, accumulation in
the active β-catenin or induction of β-catenin target genes Tcf1
and Axin2. All these readouts could be, however, efficiently

induced by recombinant WNT3A or Wnt3a CM in the same cells
(Fig. 4k and Supplementary Fig. 5a, b). Altogether these results
indicate that WNT5A and no other WNTs are the source of
the WNT signaling activity in the media produced by HbChP
primary cells and that such HbChP-produced WNT5A activates
Wnt/β-catenin independent signaling.

WNT5A associates with lipoproteins in the HbChP epithelium.
Previous studies have described the association of WNTs to either
exosomes or lipoproteins in different cellular models25,26.
Extracellular vesicles, such as exosomes, and lipoprotein particles
can both be separated from cell supernatants by differential
centrifugation. We thus fractionated mouse HbChP supernatants
by ultracentrifugation and characterized the different fractions
(Fig. 5a and Supplementary Fig. 6a). Immunoblot analysis
showed that WNT5A is not present in the fraction containing
exosomes and positive for various exosomal markers, such as
CD63, HSP70, tumor susceptibility gene 101 (TSG101), and
Flotillin-2 (FLOT2). Instead, WNT5A was enriched in the
supernatant, a fraction positive for Apolipoprotein E (APOE) and
Apolipoprotein J (APOJ, also known as Clusterin), which are
integral structural components of lipoprotein complexes (Fig. 5b).
In support of this finding, immunofluorescence analysis of E14.5
mouse embryos revealed that WNT5A does not colocalize with
any exosomal marker (Fig. 5c, arrowheads).

We next decided to investigate the possible association of
WNT5A to lipoprotein particles. Lipoproteins represent a
heterogeneous family of macromolecule complexes classified by
their size, lipid-to-protein ratio and presence of specific
apolipoproteins27. Immunofluorescence showed a high degree
of colocalization between extracellular WNT5A puncta and
different species of apolipoproteins including Apolipoprotein A-
I (APOA1), Apolipoprotein B-100 (APOB) and APOE in HbChP
epithelium (Fig. 5d). Quantitative analysis of the colocalization of
WNT5A and apolipoproteins or exosomal markers in the apical
portion of HbChP epithelium (see methods and Supplementary
Fig. 7a) revealed that 20–30% of WNT5A colocalized with
apolipoproteins: 33.25% with APOJ, 20.77% with APOA1, 31.28%
with APOB, 27.19% with APOE, while only 3-7% co-localized
with exosomal markers—CD63 and TSG101 (Fig. 5e). The
colocalization of WNT5A and apolipoproteins was specific as
shown by the near complete absence of colocalization of
WNT5A+ and APOA1+ puncta in the Wnt5aKO compared to
Wnt5aWT HbChP epithelium (Supplementary Fig. 7b) as well as
by additional controls of antibody specificity (Supplementary
Fig. 7c and 8a–i). Furthermore, quantitative analysis of the
colocalization of WNT5A with APOJ, an apolipoprotein highly
enriched in the central nervous system (CNS)28, and other
apolipoproteins revealed extensive triple co-localization with
APOA1 (71.93%), APOB (48.72%), or APOE (49%) (Fig. 5f). In
contrast, there was almost no triple colocalization of APOJ,
WNT5A, and the exosome marker CD63 (Fig. 5g). From these
data we conclude that WNT5A is mainly found in association
with apolipoproteins in epithelial cells of the HbChP.

Extracellular WNT5A associates with lipoproteins. To study the
association of WNT5A and different classes of lipoprotein par-
ticles outside of the ChP cells, we performed discontinuous
gradient ultracentrifugation of HbChP-derived primary culture
supernatants. WNT5A was found to segregate both with the
low-density lipoprotein (LDL) fraction and the high-density
lipoprotein (HDL) fraction, (Fig. 6a and Supplementary Fig. 9a).
In addition, mouse V5-tagged WNT5A (WNT5A-V5) co-
immunoprecipitated HA-tagged APOJ or APOE (Fig. 6b, c,
asterisk) in HEK293T cells. Likewise, APOE or APOJ were able to
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Fig. 2 WNT5A is restricted to HbChP in human embryos.
a Immunofluorescence analysis of WNT5A in 9 weeks old human fetal
samples shows the absence of signal in TelChP, while WNT5A can be
readily detected in HbChP, n= 3. AQP1 is a marker of apical part of ChP
epithelial cells. Scale bar: 200 μm. b Magnified portion of HbChP epithelial
layer. Scale bar: 50 μm. c Magnified view of picture in 2b, showing the
apical membrane of HbChP epithelium highlighted by AQP1, demonstrates
presence of WNT5A in the punctate structures located at the cell surface
(arrowheads). Scale bar: 2 μm
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coronal sections confirms Wls expression levels difference between E13.5 TelChP and HbChP, n= 6. Wls and Wnt5a expression in TelChP region is
restricted mostly to CH (asterisk) and not to TelChP epithelium. Scale bar: 50 μm. Inset images show higher magnification view of fluorescent signal
corresponding to Wls and Wnt5a transcripts in corresponding TelChP and HbChP epithelium. Scale bar: 10 μm. c Western blot analysis of WLS levels in
tissue lysates of TelChP and HbChP isolated at E14.5 and E17.5, n= 3. β-actin serves as a loading control. d Representative images from immunofluorescent
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epithelial cells at E13.5 (arrowhead - Wnt5ahigh/Wlshigh; empty arrowhead - Wnt5alow/Wlslow), n= 6. Scale bar: 5 μm. f Magnified image of
immunofluorescent analysis of HbChP epithelium at E14.5 shows high degree of correlation between WNT5A and WLS levels observed within HbChP
epithelial cells (arrowheads), n= 4. Scale bar: 5 μm. Source data are provided as a Source Data file
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pull-down WNT5A-V5 indicating that WNT5A and APOE or
APOJ can form a complex (Fig. 6d, e). In addition, WNT5A-V5
was able to pull-down endogenous APOJ from the lipoprotein
fraction isolated from the media of TR-CSFB cells, a ChP-derived
cell line29, (Supplementary Fig. 9b). Moreover, mass spectrometry

analysis of a WNT5A-V5 pull-down from TR-CSFB cells CM
identified enrichment in additional proteins commonly associated
with the HDL-specific proteome, such as Apolipoprotein A-I,
Apolipoprotein A-II or Vitamin D-binding protein (Supple-
mentary Fig. 9c). Strengthening these observations, we also
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n= 4. AQP1 and ZO1 - marker of tight junctions. Scale bar: 10 μm. c Western blot detection of WNT5A in cell lysate and supernatants from TelChP and
HbChP primary cultures characterized in b, n= 4. GAPDH serves as a loading control (cell lysate) and as a control for cell contamination (supernatant).
d Supernatants from HbChP epithelium primary culture (E14.5) can activate Wnt pathway as demonstrated by western blot analysis of DVL3 shift
(phosphorylation, see arrowheads) in MEF cells treated with the supernatant, n= 3. Loading control: β-actin. Negative control: 10% FBS DMEM medium;
positive control: recombinant WNT5A (rcWnt5a, 200 ng/ml), recombinant WNT3A (rcWnt3a, 200 ng/ml). e Schematic representation of mouse strains
used to generate conditionalWnt5acKO in the ChP. f Immunostaining images of sagittal section from E14.5 FoxJ1-CreERT2-tdTomato embryos with tamoxifen
injection at E10.5. Inset: recombination in HbChP epithelium tracked by tdTomato, n= 3. Scale bar: 500 µm, inset scale bar: 50 µm. g Immunostaining of
coronal section of HbChP epithelium in Wnt5aWT and Wnt5acKO mouse embryo at E14.5, n= 4. Signal for WNT5A is completely absent from Wnt5acKO

HbChP epithelium as compared to Wnt5aWT littermate. Scale bar: 20 µm. For g-k: Tamoxifen injection at E12.5. (h, i) Western blot for WNT5A in tissue
lysates at E14.5. WNT5A is missing in Wnt5acKO HbChP h but not in the other analysed tissues i, n= 3. Loading control: β-actin. j Primary cultures of
Wnt5acKO-HbChP do not produce and secrete WNT5A, n= 3. Loading control: β-actin. k Wnt5acKO-HbChP primary culture CM fails activate Wnt pathway
in MEF cells. MEF cells were treated for 4 h as indicated and Wnt pathway signalling components activation was assessed by western blotting, n= 3.
Phosphorylation-dependent shift in the readouts of WNT5A-triggered signalling (ROR1, DVL2, and DVL3) is indicated by the arrowheads. Positive control:
recombinant WNT5A (rcWnt5a, 200 ng/ml), recombinant WNT3A (rcWnt3a, 200 ng/ml). Loading control: β-actin
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demonstrate direct in vitro interaction of WNT5A with human
APOJ as shown via co-immunoprecipitation analysis (Fig. 6f).

To further investigate the necessity of lipoprotein particles for
WNT5A transport, we used a lipid removal agent (LRA)30 to

delipidate the serum used in primary HbChP epithelial cell
cultures (Fig. 6g). Upon lipid removal, WNT5A was not detected
in the supernatants of primary HbChP epithelial cultures, while it
slightly increased in cell lysates, suggesting that the ligand was
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retained inside the cells (Fig. 6h). On the other hand, when cells
grown in delipidated serum for 3 days, were treated with serum
(which does not contain WNT5A), WNT5A was again found in
the media (Fig. 6h). Moreover, treatment of delipidated cultures
with HDL or LDL fractions isolated from mouse serum rescued
the presence of WNT5A in the media (Fig. 6i), indicating that
lipoproteins are sufficient to restore the presence of soluble
WNT5A in the media of HbChP epithelium primary cultures. In
addition, in vitro experiments showed that recombinant WNT5A
physically binds to LDL and forms a high-molecular weight
complex (Fig. 6j, k) that retains capacity to activate Wnt signal
transduction (Fig. 6l, m). Thus, our results indicate that
apolipoproteins are required for the secretion of WNT5A by
HbChP cells and that the WNT5A-lipoprotein complexes are
functional.

WNT5A derived from HbChP regulates hindbrain morpho-
genesis. After demonstrating that active WNT5A is secreted into
the CSF by epithelial cells of the HbChP, we focused our attention
on the possible effect of HbChP-derived WNT5A on target cells
in vivo. For our analysis we selected the ventricular zone of the
developing cerebellum since it is in the proximity of the HbChP,
and it is exposed to high local concentrations of HbChP-derived
factors, as previously described for Shh31. Dorsal hindbrain
progenitor cells lining the ventricle, anterior to the HbChP,
devoid of Wnt5a expression at E13.5 (empty arrowheads in
Fig. 7a) were found to express WNT receptors, such as the Fzd3
and Fzd10, and WNT/PCP signaling components, such as Vangl2
or Celsr2 (Supplementary Fig. 10a, arrowheads)32. In addition,
lipoprotein receptors such as Scarb133, Lrp234, and Lrp435,
receptors previously shown to be involved in Wnt signaling36, are
also expressed in this region (Supplementary Fig. 10b). Moreover,
while WNT5A protein was found in the apical surface of WT
hindbrain progenitors, colocalizing with APOE and APOJ, it was
not found in the Wnt5aKO embryos (Fig. 7b, c). These findings
support the hypothesis that WNT5A/apolipoprotein complexes
target hindbrain progenitor cells lining the ventricular cavity. We
thus decided to investigate the developing cerebellum and
examine whether WNT5A produced by HbChP cells can control
developmental processes typically regulated by WNT5A, such as
morphogenesis or the balance between cell proliferation and
differentiation37,38. Analysis of either complete or conditional
HbChP Wnt5a knock-out (Wnt5aKO or Wnt5acKO) embryos
revealed a robust reduction of the size (area) of the developing
cerebellum (Fig. 7d–h). While the dorso-ventral axis in the
midline decreased (Fig. 7i), no major difference was found in the
latero-medial axis (Fig. 7j). Diminished tissue size can be thus
described as a disproportionate shortening of the medial dorso-
ventral axis and an increase in the width-to-length ratio (Fig. 7k).

Analysis of the proliferative markers in this region showed a
significant increase in the number of KI67+ but not EdU+ cells
in Wnt5aKO embryos at E16.5 (Supplementary Fig. 11a–d).
However, no change in KI67+ cells was observed in Wnt5acKO

embryos at E16.5 (Supplementary Fig. 11e, f). Additionally, we
did not observe any change in the number of activated caspase 3-
positive cells in either Wnt5aKO or Wnt5acKO embryos (Supple-
mentary Fig. 11g, h). Altogether this indicates that changes in
cerebellum morphology in the Wnt5aKO and Wnt5acKO are not
due to an alteration of proliferation or survival, but rather can be
attributed to an aberrant morphogenesis.

Discussion
In the present study, we demonstrate that WNT5A is produced in
the epithelial cells of the HbChP in a very specific temporal
developmental window, from E12.5 to early postnatal age in
mouse. Likewise, analysis of human fetal brains at week 9 con-
firmed the presence of WNT5A in the HbChP. Our results show
that WNT5A colocalizes with lipoproteins in the apical part of
both the HbChP epithelium, a cell type that expressesWnt5a, and
in target hindbrain progenitors lining the ventricle, that express
Wnt receptors, signaling components as well as receptors for
lipoprotein particles, but do not express Wnt5a. Moreover, we
found that the HbChP secretes WNT5A, which associates with
lipoprotein particles in the CSF. We thus suggest that lipoprotein
particles provide a vehicle for the transport of WNT5A through
the CSF, from the HbChP to target cells lining the ventricle. In
agreement with this possibility, we found that Wnt5a is required
for morphogenesis of dorsal hindbrain. This observation is in line
with previous reports highlighting the pivotal role of Wnt5a in
morphogenesis of various regions of the developing CNS,
including the ventral midbrain39 and the cerebellum40. However,
unlike the developing ventral midbrain41, we did not observe an
effect on proliferation in the Wnt5acKO, or on cell survival, sug-
gesting a selective alteration of morphogenesis.

With regards to the mechanism of the transport of WNT5A in
the CSF, several lines of evidence support WNT5A being trans-
ported via lipoproteins rather than exosomes. Firstly, immuno-
fluorescence analysis indicates that WNT5A mainly colocalizes
with apolipoproteins rather than with exosomal markers in the
apical part of the HbChP epithelium. Second, biochemical frac-
tionation of media from HbChP cultures showed that WNT5A
segregated with apolipoproteins, but not with exosomal markers.
Third, WNT5A was also found to co-localize with apolipopro-
teins in target cells lining the ventricle, highlighting the role of
lipoproteins in the transport of WNT5A from its source to target
cells. Notably, we found that WNT5A interacts with several
apolipoproteins, such as APOA1, APOB, APOE, and APOJ, a
result in agreement with the previous identification of all major

Fig. 5WNT5A is secreted and associated with lipoproteins in HbChP epithelium. a Schematic representation of the differential centrifugation protocol used
for the isolation of exosomes and enrichment of lipoproteins from primary culture supernatants. b Western blot analysis of HbChP epithelial primary
culture CM (Input), lipoprotein (100gSN) and exosomal (Exo) fractions, n= 3. Exosomal markers: FLOT2, HSP70, TSG101, CD63; lipoproteins: APOE and
APOJ; negative control: Golgin97 (marker of Golgi) and epithelial markers: Claudin-1 and AQP1. c, d Immunofluorescent analysis of co-localization between
markers of exosomes - CD63 and TSG101 c or various apolipoproteins d with WNT5A in E14.5 in HbChP epithelium, n= 3. WNT5A puncta only poorly
overlap with exosomal markers CD63 and TSG101 (arrowheads) but show significant degree of overlap (arrowheads) with APOA1, APOB, APOE and APOJ.
Scale bar: 5 μm. e Quantification of co-localization between WNT5A puncta and apolipoproteins (APOA1, APOB, APOE, APOJ) or exosomal markers
(TSG101 and CD63). Graph shows n= 3 biologically independent samples. 3 representative images from 3 consecutive sections – 1 image per section -
have been analyzed for each combination of markers and graphs show mean ± s.d. Quantification has been performed by IMARIS software and differences
analysed by two-tailed Student’s t-test with unequal variance (*P < 0.05; **P < 0.01; ****P < 0.0001). WNT5A+/APOs+ puncta vs WNT5A+/CD63+ and
WNT5A+/TSG101+, respectively: APOA1+ P= 0.0076 and P= 0.009; APOE+ P= 0.0014 and P= 0.009; APOB+ P= 0.0048 and P= 0.0094, APOJ+
P= < 0.0001 and P= < 0.0001. f Quantification of co-localization between puncta double-positive for WNT5A and APOJ which are also positive for
APOA1, APOB and APOE, respectively. g Representative image directly illustrating the extent of immunofluorescent signal overlap between WNT5A and
either APOJ as a marker of lipoproteins and CD63 as a marker of exosomes, n= 3. Scale bar: 5 μm. Source data are provided as a Source Data file
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classes of lipoprotein particles in CSF by proteomic analyses42–45.
This is also in agreement with the putative role of the ChP as the
main entry point for lipoprotein particles into the CSF for their
distribution into the CNS46.

Our study also identifies WNT5A as an additional member of a
growing family of biologically active signaling molecules pro-
duced in the ChP that are present in the CSF47, and are trans-
ported in lipoprotein particles48. Moreover, WNT5A shares with
another lipid-modified morphogen, SHH, the fact that it is pro-
duced in the HbChP, distributed in a transventricular fashion,
transported via lipoproteins and capable of regulating neural
development in progenitor cells lining the ventricular

cavity31,49,50. On the other hand, lipoproteins such as LDL, have
been found to contribute to the capacity of the CSF to control
neural development and promote neuronal differentiation51.
Interestingly, we found expression of various receptors for lipo-
protein particles within the ventricular zone of developing brain,
which combined with the previously reported accumulation of
lipoprotein particles in the ventricular zone of the brain46, sug-
gests a possible role for lipoproteins complexes to act as a uni-
versal vehicle for distribution of lipids and lipid-modified
signaling molecules within the CNS. Our data suggest that one of
the mechanisms by which lipoproteins may control neural
development is by associating to and transporting signaling
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molecules such as WNT5A. Indeed, deletion of Wnt5a eliminated
the presence of WNT5A associated to lipoprotein particles in the
apical part of hindbrain progenitor cells lining the ventricle,
indicating the necessity of WNT5A for lipoprotein particles to
gain such localization. Notably, our results also show overlapping
expression domains of lipoprotein receptors and Wnt ligands
receptors such as Frizzled receptors in ventricular zone of
developing cerebellum. Moreover, Syndecans, a class of heparan
sulfate proteoglycans that bind Wnts and are implicated in reg-
ulating the formation of Wnt ligand gradients and Wnt signal-
ing52, can interact with lipoprotein particles53,54. Combined, our
results and data in the literature support the notion that lipo-
proteins, WNT5A and their receptors are required for proper
neural development.

In sum, our study provides key evidence supporting the asso-
ciation of Wnts with lipoprotein particles, not only in WNT-
producing cells of the ChP, but also after their secretion to the
CSF and in target cerebellar progenitor cells lining the ventricular
cavity. Our results thus support the hypothesis that the incor-
poration of Wnts, e.g., WNT5A, to lipoprotein particles, provides
a mean for their secretion, extracellular dispersal and cell tar-
geting. It remains to be determined whether the association of
WNT5A to lipoprotein particles is a specific mechanism restric-
ted to the HbChP or part of a more general strategy used by
different cells to transport Wnts.

Methods
Mouse strains. Embryos were obtained from female mice of CD1 IGS mouse
strain (Crl:CD1(ICR) mice, Charles River Laboratories, Germany), Wnt5atm1Amc

(referred to as Wnt5aKO in the article)55 or newly generated conditional knock-out
mouse strain described below (referred to as Wnt5acKO in the article).

Mouse strain Wnt5atm1.1Krvl/J (referred to Wnt5aflox/flox in this article)56 was
purchased from Jackson laboratories; Foxj1tm1.1(cre/ERT2/GFP)Htg (referred to FoxJ1-
creERT2 in this article)57 and Gt(ROSA)26Sortm14(CAG-tdTomato)Hze (referred to as
tdTomato in this article)58 were shared with Karolinska Institutet, Sweden on
collaboration agreement. Induction of conditional knock-out or tdTomato reporter
was induced by single dose tamoxifen (Sigma) intra-peritoneal injection of
pregnant female mice in concentration of 4.5 mg of tamoxifen dissolved in sterile
sunflower oil per 20 g weight of mouse. Embryos were harvested at E14.5 or
E16.5. All mice strains were housed, bred, and treated in accordance with protocols
approved by the local ethical committees (Stockholm's Norra Djurförsöksektiska
Nämnd - N158/15, N326/12 or Czech Centre for Phenogenomics (Institute of
Molecular Genetics, CAS) and Central Commission for Animal Welfare of
Ministry of Agriculture Czech Republic - PP-90-2015).

Embryonic CSF isolation. Embryonic CSF was isolated from embryos of pregnant
CD1 IGS mice. Embryonic CSF was obtained by microaspiration from E11.5 and
E14.5 embryos, using pulled tip glass microcapillary pipette glass. Needle was
inserted into the fourth brain ventricle with embryo being placed on its side. CSF
collected for the analysis was obtained from 2 or 3 entire litters depending on the
embryonic stage (20–25 embryos). Samples were microscopically controlled for

presence of blood contamination and samples showing signs of the contamination
were discarded.

Choroid plexus epithelial cells primary culture. ChP tissue was collected from
E14.5 embryos isolated from sacrificed pregnant CD1 mice and choroid plexus
epithelial cells (CPEC) were isolated from TelChP and HbChP. During isolation,
extracted tissue was kept at room temperature (RT) in HBSS solution (Gibco).
After isolation, extracted tissue was briefly centrifuged (200 g, 10 s at RT). Fol-
lowing aspiration of supernatant, 500 µl of 2 mg/ml solution of Pronase
(Sigma–Aldrich) was added to the extracted tissue and incubated for 5 min at 37 °
C. Solution was then transferred to DMEM/F-12 medium containing 10% FBS
(Gibco) and centrifuged (300 g, 2 min at RT). Tissue was transferred to complete
culture medium consisting of DMEM/F-12 supplemented with 10% FBS, 10 ng/ml
EGF (Invitrogen), 20 µM cytosine arabinoside (Sigma) 50 U/ml penicillin, and
50 U/ml streptomycin. Cells were mechanically dissociated by 6–8 times forced
passage through a 21-gauge needle, followed by gentle repeated resuspension with
200-µl pipette. Finally, cells were seeded onto laminin (Invitrogen) coated 24-well
plates (2–3 × 105 cells per well). To achieve higher purity of epithelial cells,
adhering-off method has been applied to reduce fibroblast contamination. After the
initial seeding, supernatant containing unadhered cells was transferred to new
laminin coated well thus removing from culture fibroblasts characterized by higher
adherence affinity.

In order to produce CM, CPEC primary cultures were maintained in complete
culture medium. CM was collected every 48 h up to 10 days after seeding.
Supernatant was subjected to sequential centrifugation steps of 200 g for 5 min (to
remove viable cells), 1500 g for 10 min (to remove dead cells), and 6000 g for 15
min (to remove cell debris). Used reagents are listed in the Supplementary Table 1.

Fetal tissue section. Ethical approval allowing human fetal tissue acquisition and
analysis was provided by the National Research Ethics Service Committee East of
England—Cambridge Central, UK (ethics number 96/085).

Cell culture and transfection. HEK293T cells were seeded in complete DMEM
medium containing 10% FBS, 2 mM L-glutamine, 50 U/ml penicillin, and 50 U/ml
streptomycin (Gibco) on 10 cm dishes 24 h prior transfection. The cells were
transfected with total of 5 µg of DNA at ~40% confluency in DMEM medium only.
The transfection reaction mixture was prepared using OptiMEM (Gibco) and
Lipofectamine 2000 (Invitrogen), with ratio of 1 µg DNA: 2 µl Lipofectamine 2000,
followed by incubation with cells for 4–6 h. Afterwards the transfection medium
was exchanged for the complete medium. Used constructs are listed in the Sup-
plementary Table 2.

TR-CSFB cells were seeded in DMEM containing 10% FBS, 2 mM L-glutamine,
50 U/ml penicillin, and 50 U/ml streptomycin (Gibco) on 10 cm dishes 24 h prior
transfection. The cells were transfected with total of 8 µg of DNA in ~70% density
in DMEM medium only. The transfection reaction mixture was prepared using
PEI (Sigma) with ratio of 1 µg DNA: 2.5 µl PEI, followed by incubation of cells for
3 h. Afterwards the transfection medium was exchanged for the complete DMEM
medium. CM was collected after 48 h and same pre-clearing protocol as mentioned
for primary culture medium has been applied to remove any cell contamination.
Used constructs are listed in the Supplementary Table 2.

Wnt3a and Wnt5a CM was isolated either from L-Wnt3a (ATCC CRL-2647)
or L-Wnt5a cells (ATCC CRL-2814) according to ATCC instructions.

Western blotting. For western blot, samples were subjected to SDS-PAGE,
electrotransferred onto Hybond-P membrane (GE Healthcare), immunodetected
using appropriate primary and secondary antibodies and visualized by ECL

Fig. 6 WNT5A is present in lipoprotein complexes. a CM from HbChP primary culture was subjected to KBr gradient-based ultracentrifugation and
different isolated fractions (VLDL, LDL, and HDL) were analysed for the presence of WNT5A, APOE and APOJ by western blot, n= 3. (b–e) WNT5A-V5
and HA-tagged APOJ (b, d) or APOE (c, e) were overexpressed in HEK293T cells. WNT5A-V5 (b, d) and APOJ/E (c, e) were immunoprecipitated using
anti-V5, anti-HA antibody and control IgG, respectively, and detected by western blotting, n= 3. Input is the loading control. Asterisk indicates non-specific
immunoglobulin light chain. f Recombinant WNT5A (rcWNT5A) interacts with isolated APOJ protein. WNT5A and APOJ co-immunoprecipitated together.
IgG served as a control, n= 3. Input represents the initial mixture. g Schematic depiction of the experimental design for delipidation and rescue
experiments. h Delipidated FBS (Delipid) prevents production of WNT5A that is restored by relipidation (Relipid). Presence of WNT5A in cell lysates and
CM from primary HbChP cultures has been analyzed using western blot, n= 3. Loading control: β-actin. iWNT5A secretion was restored after the addition
of different mouse lipoprotein fractions to primary HbChP cultures cultivated in presence of delipidated conditions. j Recombinant rcWNT5A was
incubated with either 0.6% CHAPS or human LDL (hLDL)- lipoprotein fraction for 4 h at 37 °C and filtered through 150 kDa cut-off protein concentrator.
Western blot confirmed presence of WNT5A only in >150 kDa fraction but not in the <150 kDa fraction, n= 3. k Separation of >150 kDa fraction into VLDL,
LDL, and HDL fractions using KBr gradient confirmed presence of rcWNT5A in LDL and its co-fractionation with APOB and APOE specific for LDL fraction,
n= 3. l Only >150 kDa fraction of LDL/rcWNT5A mixture can trigger DVL3 phosphorylation (indicated by arrowhead) in MEF cells, n= 3. Negative control:
10% FBS DMEM; positive control: rcWNT5A; loading control: β-actin. m Statistical analysis of DVL3 shift assay. Graph shows n= 3 biologically
independent samples; error bars represent mean ± s.d.; P-values (two-tailed Student’s t-test with unequal variance): * P < 0.05. Control CM vs >150 kDa
hLDL+ rcWNT5A: P= 0.0231. Biological replicates are indicated in the graph. Source data are provided as a Source Data
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(GE Healthcare) or Supersignal Femto solution (Thermo Fisher). Western blot
signal intensities were calculated using ImageJ. Briefly, area of the peak intensity
for the protein of interest was divided by corresponding values of peaks intensity
obtained for control protein. Uncropped images for all the western blots pre-
sented in the article can be found in Supplementary Fig. 12. Used reagents are
listed in Supplementary Table 1. Used antibodies are listed in Supplementary
Table 3.

Co-Immunoprecipitation. Dishes with transiently transfected HEK293T cells were
placed on ice, washed twice with ice-cold PBS and lysed in 1 ml of lysis buffer for
20 min. Lysis buffer contained 50 mM Tris pH 7.6, 200 mM NaCl, 1 mM EDTA,
0.5% NP40, fresh 0.1 mM DTT (Sigma), and protease inhibitor cocktail (Roche).
The lysis was centrifuged at 4 °C at 20,000 g for 20 min. After the centrifugation, an
aliquot of the input sample representing 4% of the total cell lysate was taken from
each condition. The lysates were then pre-cleared using 20 µl/sample DynaBeads
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(Invitrogen) on a rotating shaker at 4 °C for 45 min. First, 400 µl of the pre-cleared
samples was incubated with 1 µg of either anti-V5 (96025, Invitrogen), anti-HA
(ab9110, Abcam) antibodies for 3 h and afterwards together with 30 µl DynaBeads
for an additional 12–14 h. The samples were washed five times in 800 µl of lysis
buffer (DTT- and protease inhibitors- free). Protein complexes were eluted with
50 µl of 1X Laemmli buffer in 95 °C for 5 min and were loaded directly onto a 10%
acrylamide gel for western blot analysis.

In case of co-immunoprecipitation from supernatant, CM was collected after
48 h and same protocol as mentioned for primary culture medium was applied to
remove any cell contamination. CM was next pre-cleared using 0.25 volume of G-
protein Sepharose beads (GE Healthcare) and then incubated overnight with 0.5
µg/ml of anti-V5 antibody (cat.no. 96025, Invitrogen). Afterwards, the supernatant
has been incubated with 50 µl of G-protein Sepharose beads. Resulting
immunoprecipitates were washed several times with lysis buffer (DTT- and
protease inhibitors-free) and twice in detergent-free lysis buffer. Protein complexes
were eluted with 50 µl of 1X Laemmli buffer in 95 °C for 5 min and were loaded
directly onto a 10% acrylamide gel for western blot analysis. Used reagents are
listed in the Supplementary Table 1. Used constructs are listed in the
Supplementary Table 2. Used antibodies are listed in the Supplementary Table 3.

In vitro protein binding assay. To assess physical interaction of WNT5A and
apolipoproteins, 2 μg of human native APOJ (RD162034025, Biovendor) or human
native APOE (cat.no. SRP6303, Sigma) were incubated with 150 ng of recombinant
WNT5A (P22725, R&D Systems) in 200 μl of binding buffer (50 mM Tris pH 7.6,
100 mM NaCl, 1 mM EDTA) overnight at 4 °C. Next day, 50 μl of the mixture was
incubated with 2 μg of corresponding antibody for several hours before the addi-
tion of 20 μl of DynaBeads followed by overnight incubation at 4 °C. Subsequently,
solution containing the beads has been transferred to new tubes followed by quick
wash three times with ice-cold binding buffer containing 0.5% NP40. After the last
wash the beads were transferred again to a new tube. After aspiration of the
remaining binding buffer, the beads were mixed with 1X Laemmli buffer and
boiled for 2 min at 95 °C. Before loading onto gel, beads were removed from the 1X
Laemmli buffer solution. Used reagents are listed in the Supplementary Table 1.
Used antibodies are listed in the Supplementary Table 3.

Mass spectrometry. Beads with extracted proteins were washed three times with
50 mM ammonium bicarbonate buffer and subjected to digestion by trypsin (2 h,
37 °C; sequencing grade, Promega). Tryptic peptides were extracted into LC-MS
vials by 2.5% formic acid (FA) in 50% acetonitrile with addition of polyethylene
glycol (20,000; final concentration 0.001%) and concentrated in a SpeedVac con-
centrator (Thermo Fisher Scientific).

LC-MS/MS analyses of tryptic peptide mixture were done using RSLCnano
system connected to Orbitrap Elite hybrid mass spectrometer (Thermo Fisher
Scientific). Prior to LC separation, tryptic digests were desalted using trapping
column (100 µm × 30 mm, 3.5 µm X-Bridge BEH 130 C18 sorbent, Waters) and
separated on Acclaim Pepmap100 C18 column (2 µm particles, 75 µm × 500mm;
Thermo Fisher Scientific) by 1 or 2 h gradient program (mobile phase A: 0.1% FA
in water; mobile phase B: 0.1% FA in acetonitrile). The analytical column outlet
was directly connected to the Nanospray Flex Ion Source. Up to top 10 precursors
from the survey scan (350–2000 m/z, resolution 60,000) were selected for HCD
fragmentation (target 50,000 charges; resolution 15,000, isolation window 2m/z)
with enabled dynamic exclusion (up to 45 s). Two independent LC-MS/MS
analyses were done for on-beads digests. The analysis of the mass spectrometric
RAW data files was carried out using the Proteome Discoverer software (Thermo
Fisher Scientific; version 1.4) with in-house Mascot (Matrixscience; version 2.3.1)
and Sequest search engines utilization. MS/MS ion searches were done against the
UniProtKB protein database for mouse downloaded from ftp://ftp.uniprot.org/pub/
database/uniprot/current_release/; version 20141001; 85,893 protein sequences

with additional sequences from cRAP database (www.thegpm.org/crap/). Mass
tolerances for peptides and MS/MS fragments were 10 ppm and 0.05 Da,
respectively. Oxidation of methionine and deamidation (N, Q) as optional
modifications and two enzymes miss cleavages were set for all searches.
Propionamidation of C as optional modification was set for database searches after
in-gel digestion. Percolator was used for post-processing of Mascot search results.
Peptides with false discovery rate (FDR; q-value) <1%, rank 1 and with at least six
amino acids were considered. Proteins matching the same set of peptides were
reported as protein groups. Protein groups/proteins were reported only if they had
at least one unique peptide. Label-free quantification using protein area calculation
in Proteome Discoverer was used (top 3 protein quantification). Two analyses of
on-beads digests and analyses for all gel area within single gel line were searched as
one dataset

Wnt pathway activation readouts. To analyze shift in DVL3 or ROR1 mobility
upon treatment with conditioned medium, MEF cells were seeded on 24-well plates
and grown to reach 70–80% confluency in DMEM medium supplemented with
10% FBS. Cells were treated overnight with recombinant human WNT3A (5036-
WN-CF, R&D), WNT5A (645-WN-010, R&D), control-, Wnt3a- and Wnt5a-L-
Cells-derived CM or CM obtained from TelChP- and HbChP- primary culture
derived from either Wnt5aWT or Wnt5acKO embryos. Twenty-four hour prior to
the treatment cells was incubated with 1 µm/ml LGK974 inhibitor (974-02,
StemRD). Used reagents are listed in the Supplementary Table 1. Used antibodies
are listed in the Supplementary Table 3.

Molecular sieve asay. 100 ng of recombinant WNT5A were incubated with 0.6%
CHAPS solution (C3023-5G, Sigma) or 50 ug of native LDL (LP3-5MG, Millipore)
in 800 µl of serum-free DMEM for 4 h at 37 °C. Following incubation, sample was
filtered through 150 kDa cut-off protein concentrator (PI89922, Thermo Scientific)
at 20 °C, until dead-stop volume of ultrafiltrate was reached. This step was per-
formed to separate high-molecular form of bound recombinant WNT5A from the
unbound protein as described before for FGF protein48. The flow-through sub-
jected to filtration through 3 kDa cut-off protein concentrator (PI88514S, Thermo
Scientific) to concentrate the sample to the volume of ultrafiltrate obtained in the
previous filtration step. Used reagents are listed in the Supplementary Table 1.

Exosome purification. Exosomes were purified by differential centrifugation
as described previously59. In short, CM from E14.5 HbChP-derived primary cul-
ture was processed in series of centrifugation steps of 200 g, 1500 g, 6,000 g, and
14,000 g before pelleting exosomes at 100,000 g in SW55 swinging bucket (k factor
—139) rotor for 2 h using Optima L-90 Xp Centrifuge (Beckman Coulter). Sucrose
cushion step was included to increase the purity of exosomal fraction. The
supernatant was discarded, and exosomes were resuspended in filtered PBS.

Lipoproteins isolation and fractionation. Lipoprotein isolation was performed
using the protocol described previously60. In brief, lipoproteins from mouse serum
and ChP primary culture were separated from soluble proteins using KBr dis-
continuous gradient. To remove excessive KBr, fractions were filtered using con-
centration columns (Millipore) and washed several times in PBS. Finally, the
ultrafiltrate of lipoproteins fractions was resuspended in PBS before further
applications. Used reagents are listed in the Supplementary Table 1.

Delipidation. Serum was mixed with suitable amount of LRA (13358-U, Sigma)30

following slightly adapted manufacturer’s instructions (80 g/L). Solution was mixed
for 10min, followed by two successive centrifugation steps at 8,000 g for 20min to
pellet LRA. In each step, the supernatant was carefully isolated to prevent con-
tamination with the LRA sedimented at the bottom of the tube. Finally, delipidated

Fig. 7 WNT5A secreted by HbChP controls morphogenesis of embryonic cerebellum. a In situ analysis of Wnt5a and Wls expression in the dorsal
neuroepithelium adjacent to HbChP at E13.5 shows transcripts restriction to the HbChP epithelium, n= 4. Lower panel highlights absence of Wnt5a and
low Wls expression in cerebellar ventricular zone (cVZ, empty arrowheads) compared to the HbChP (arrowheads). Scale bar: top 50 µm, bottom 10 μm.
b WNT5A observed in the apical cVZ at E14.5 (arrowheads) is absent in Wnt5aKO embryos (empty arrowheads), n= 3. Scale bar: top 5 μm, inset 2 μm.
c WNT5A and APOE (arrowheads) or APOE with APOJ (empty arrowhead) immunostaining in the apical cVZ (dotted line) at E14.5, n= 4. Scale bar: top
5 μm, bottom 2 μm. (d) Scheme of analyzed cerebellar parameters: total area (dash line), width (latero-medial, L-M, horizontal arrows) and length (dorso-
ventral, D-V, vertical arrows). Scale bar: 200 μm. e Coronal sections of cerebellum in Wnt5aWT and Wnt5aKO embryos. Scale bar: 200 μm. f tdTomato
staining in E14.5 FoxJ-CreERT2 embryo demonstrates recombination in HbChP epithelium, which is absent in the cVZ (inset, empty arrowhead) compared
to HbChP (arrowheads), n= 3. Scale bar: top 50 µm, inset 20 µm. g Coronal sections of cerebellum in Wnt5aWT vs Wnt5acKO embryos. Scale bar: 200 μm.
h–k Analysis of the h total area, i length, j width j, and k width/length ratio of cerebellum in Wnt5aWT, Wnt5aKO and Wnt5acKO embryos. Graphs show
individual data points (dots) from n= 3 biologically independent samples; error bars represent mean ± s.d.; P-values (two-tailed Student’s t-test with
unequal variance): * P < 0.05, ** P < 0.01, **** P < 0.0001. Corresponding P-values for differences between Wnt5aWT (WT), Wnt5aKO (KO) and Wnt5acKO

(cKO)—h: WT vs. KO: 0.0004, WT vs. cKO: 0.0001; i WT vs KO: 0.0353, WT vs cKO: 0.0098; j WT vs. KO or cKO: – not significant; k WT vs KO: 0.016,
WT vs cKO: 0.0115. l Schematic depiction of the model for WNT5A secretion by HbChP and its transventricular delivery to recipient regions. Source data
are provided as a Source Data file
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supernatant corresponding to delipidated serum was aliquoted and stored for further
use at −80 °C. Used reagents are listed in the Supplementary Table 1.

Immunofluorescence and EdU staining. For mouse embryo immunofluorescent
analysis and in situ hybridization, WT CD1 mice, Wnt5aKO or Wnt5acKO mice
were dissected and isolated embryos were transferred into ice-cold PBS, fixed in
4% paraformaldehyde (PFA) in PBS for several hours followed by several washes
in ice-cold PBS and finally cryoprotected by sequential incubation in 15% and
then 30% sucrose solutions. Embryos were next frozen in Tissue-Tek optimum
cutting temperature (OCT) compound (25608-930, Sakura Fine-Tek) on dry ice.
Serial 14 µm coronal sections were used for immunofluorescence analysis.
Human fetal tissue for cryosectioning was immersion-fixed overnight in 4% PFA
at 4 °C, then cryoprotected in sucrose before embedding in OCT compound and
then 14 µm sections were cut using a Leica cryostat. Human fetal tissue samples
were processed using an identical immunofluorescence protocol as indicated for
the mouse samples.

For immunofluorescent analysis, all the sections underwent antigen retrieval by
direct boiling for 10 min at 550W in the microwave using antigen retrieval solution
(DAKO). Sections were washed in PBT (PBS with 0.5% Tween-20) and blocked in
PBTA (PBS, 5% donkey serum, 0.3% Triton X-100, 1% BSA). Samples were
incubated overnight at 4 °C with primary antibodies diluted in PBTA. Following
washes in PBT, samples were incubated with corresponding Alexa Fluor secondary
antibodies (Invitrogen) for 1 h at RT, followed by 5 min incubation at RT with
DAPI (1:5000). Finally, samples were mounted in DAKO mounting solution
(DAKO).

EdU (Life Technologies) was injected 72 h before the embryos were harvested at
a concentration of 65 mg/g. Cells with incorporated EdU were visualized using a
Click-iT EdU Alexa Fluor 555 Imaging Kit (C10338, Life Technologies).

For immunocytofluorescent analysis of ChP primary culture, cells grown on
laminin coated cover slips were first washed several times in ice-cold PBS, followed
by fixation for 15 min in ice-cold 4% PFA. Later, cells were washed several times in
PBT, blocked with PBTA for 30 min and incubated overnight at 4 °C with primary
antibodies. Following repeated washing in PBT cells have been incubated for 1 h at
RT with appropriate secondary antibodies, DAPI for 5 min and mounted in DAKO
mounting medium (DAKO). Used reagents are listed in the Supplementary
Table 1. Used antibodies are listed in the Supplementary Table 3.

Processing of immunofluorescent images and quantitative assessment of
signal overlap for WNT5A puncta was performed using vesicles colocalization
function as a part of microscope image analysis software Imaris© (Bitplane).
Parameters used for image processing were as follows: 0.4 µm cut-off for
analyzed particles size, 0.1 distance for the signal overlap analysis using vesicles-
colocalization function. Quantification of KI67+ and EdU staining was
performed using ImageJ software.

Transmission electron microscopy analysis. For negative contrasting exosomes
were adsorbed at activated formwar membrane coated with carbon EM grids
(Pyser–SGI Limited), stained with 2% solution of ammonium molybdate, and
visualized using transmission electron microscopy (TEM) Morgagni 268D (FEI)
equipped with Mega ViewIII (Soft Imaging System) at 70 kV.

In situ analysis. In situ analysis of the gene expression was done on 14 µm
cryosections of embryos at various stages of embryonic development isolated
from CD1 mice. After isolation, embryos were immediately transferred and kept
in fresh 4% PFA for 2 h, washed briefly in ice-cold PBS, incubated for 6 h in 30%
sucrose solution at 4 °C, and frozen at −80 °C. Transcripts were detected using
the RNAscope 2.0 assay for fresh frozen tissue (Advanced Cell Diagnostics).
Staining was performed using the RNAscope Fluorescent Multiplex Reagent Kit
(320850, Advanced Cell Diagnostics). Used reagents are listed in the Supple-
mentary Table 1.

Indicated in situ images were adopted from Allen Institute for Brain Science: Allen
Developing Mouse Brain Atlas61 (Available from: http://developingmouse.brain-map.
org) or from eurexpress.org62 (Available from: http://www.eurexpress.org/ee/).

Real-time qPCR. RNA was isolated from 3 different litters of WT CD1 embryos
collected at indicated developmental stages. Samples were treated with DNase
(M6101, Promega) to prevent contamination with genomic DNA. The specificity of
primers was determined by BLAST run of the primer sequences. The sequences of
primers are displayed in the Supplementary Table 4 and their annealing tem-
perature is 57 °C for all used primers

qPCR reactions were performed once for every gene/sample in triplicate. PCR
was done according to the manufacturer’s protocol (Lightcycler 480 SYBR Green 1
Master Mix,Roche). The following thermo cycling program parameters were used
for qPCR analysis: Incubation step at 95 °C for 5 min, then 45 cycles 95 °C for 10 s,
57 °C for 10 s, and 72 °C for 10 s. qPCR analysis was carried out using LightCycler©

480 Instrument II (Roche).
ΔCp values were calculated in every sample for each gene of interest with

β-Actin as the reporter gene. Relative change of expression level for analyzed gene
(ΔCp) was performed by subtraction of the gene expression levels in TelChP or
HbChP from the gene expression level of housekeeping gene (β-actin). Next ratio

of the gene expression level between β-actin and gene of interest in either HbChP
or TelChP was calculated using following formula: 2^-ΔCp

Statistics. Gene expression data—Replicates are independent experiments. Data in
Fig. 1c, Fig. 3a, Supplementary Fig. 5a and 5b are expressed as columns showing
the mean with standard deviation (s.d.). Significance measured with paired two-
tailed Student’s t-test with unequal sample variance. Biological replicates per
condition are indicated in the corresponding graphs.

Confocal images—Images used for quantitative analyses reported in Fig. 5c and
Fig. 5d are representative images chosen from the results obtained in three
consecutive sections obtained from three individual embryos processed in three
separate experiments. Confocal images reported in Fig. 7e, g are representative
images chosen from results obtained in three individual embryos. Confocal images
reported in Supplementary Fig. 11a representative images chosen from the results
obtained from six individual embryos. Confocal images reported in Supplementary
Fig. 11c, e, g and h are representative images chosen from the results obtained in
three individual embryos. Data in Fig. 5e, f, Fig. 7h-k and Supplementary Fig. 11b,
d and f are expressed as columns showing the mean with s.d. Significance measured
with unpaired or paired two-tailed Student’s t-test with unequal sample variance.
Except for Fig. 5f, biological replicates or sections used per condition are indicated
in the corresponding graphs.

Western blot images—Image used for quantitative analysis reported in Fig. 6l is
a representative image chosen from the results obtained in three separate
experiments. Significance measured with unpaired two-tailed Student’s t-test with
unequal sample variance. Biological replicates per condition are indicated in the
corresponding graph.

All the displayed immunostaining images and western blots are representative
of at least three independent experiments.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The authors declare that all data supporting the findings of this study are available within
this published article and its Supplementary Information files and from the
corresponding author upon reasonable request. In situ hybridization data used in Fig. 1a,
b and Supplementary Figs 1a, b and 3c are available from the Allen Developing Mouse
Brain Atlas (www.alleninstitute.org). In situ hybridization data used in Supplementary
Figs 2a–d and 10a–b are available from the Eurexpress atlas (www.eurexpress.org). The
mass spectrometry proteomics data have been deposited at the ProteomeXchange
Consortium via the PRIDE partner repository63 with the dataset identifier PXD011918.
Figures are deposited in figshare depository with the identifier [https://doi.org/10.6084/
m9.figshare.7588481.v2]. A reporting summary for this Article is available as a
Supplementary Information file. The source data underlying Figs. 1c, 3a, 5e–f, 6m, 7h–k
and Supplementary Figs 5a–b, 7b; and 11b, d and f are provided as Source Data File.
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