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As photoacoustic (PA) imaging makes its way into the clinic, accuracy of PA-based metrics 

becomes increasingly important. To address this need, a method combining finite-element-based 

local fluence correction (LFC) with signal-to-noise-ratio (SNR) regularization was developed and 

validated to accurately estimate oxygen saturation (SO2) in tissue. With data from a Vevo LAZR 

system, performance of our LFC approach was assessed in ex vivo blood targets (37.6% – 99.6% 

SO2) and in vivo rat arteries. Estimation error of absolute SO2 and change in SO2 reduced from 

10.1% and 6.4%, respectively, without LFC to 2.8% and 2.0%, respectively, with LFC, while 

accuracy of the LFC method was correlated with the number of wavelengths acquired. This work 

demonstrates the need for SNR-regularized LFC to accurately quantify SO2 with PA imaging.
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I. Introduction

ASSESSMENT of tissue hypoxia is useful for cancer diagnosis and therapy as tumor 

growth, malignancy, and therapeutic resistance have been shown to correlate with the 

presence of hypoxic tumor microenvironments [1]–[4]. Specifically, disease progression and 

poor treatment response characterized by accelerated tumor growth have been linked to 

increased levels of hypoxia for solid tumors [5], [6]. Therefore, developing an imaging 

biomarker that correlates with tumor hypoxia would be beneficial for improving the 

diagnosis and treatment response for multiple types of cancer [7].

The most direct method to assess tissue hypoxia in vivo is to use fiber-optic fluorescence 

probes or polarographic electrodes to measure oxygen partial pressure (pO2), which has 

been shown to correlate with extracellular hypoxia [8]. Such instruments, however, are 

limited to invasive point measurements, which can affect tissue physiology and provide only 

a time-averaged value for a single sampling location [9]. Nuclear medicine imaging 

methods, such as positron emission tomography or single-photon emission computed 

tomography, have been used for non-invasively assessing tissue hypoxia [10], [11]. Limited 

spatiotemporal resolution and a need for exogenous radioactive agents, however, make these 

modalities far from ideal. Blood-oxygen-level dependent (BOLD) magnetic resonance 

imaging is a tracer-free method that provides relative measurements of oxygenated (HbO2) 

and deoxygenated (HHb) hemoglobin, but its implementation can present quantification 

challenges due to its dependence on blood volume and magnetic-field inhomogeneities, 

which can be difficult to characterize [12]. Diffuse optical tomography (DOT) has also 

shown promise in imaging hemoglobin concentration and oxygenation state, but its poor 

spatial resolution restricts its ability to image the heterogeneity of intratumoral blood oxygen 

saturation (SO2) [13], [14], which is the ratio of HbO2 to total hemoglobin.

Photoacoustic (PA) imaging is a non-invasive and tracer-free modality that can provide high-

contrast data based on ultrasonic (US) imaging of acoustic sources that result from local 

optical absorption of a scattered laser pulse [15]. Because of its use of US detection rather 

than optical detection, PA imaging is capable of higher spatial resolution at greater 
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penetration depths than purely optical techniques, such as DOT [13], [14]. Spectroscopic PA 

(sPA) imaging, which utilizes different laser irradiation wavelengths, can readily estimate 

relative HbO2 and HHb concentrations and thus provide PA-based SO2 estimates [16], [17]. 

sPA imaging forms the basis of a number of quantitative PA imaging approaches that 

provide local assessment of photo-absorber (e.g., HbO2 or HHb) concentration in tissue.

Although SO2 quantification does not give a direct measurement of tissue hypoxia, it has 

been shown to correlate with pO2 of tissue proximal to vasculature and therefore is a 

promising surrogate biomarker for assessing tissue oxygenation [18]. Given the observed 

spatial heterogeneity of hypoxia in solid tumors, the improved spatial resolution afforded by 

PA imaging is critical to ensure that tumor-specific imaging features are not lost through 

volume averaging, which could mitigate diagnostic sensitivity or reduce precision of local 

therapy monitoring [19], [20]. In addition, more accurate and high-resolution SO2 images 

could help improve our burgeoning understanding of the mechanistic interplay between 

tumor microenvironment and disease progression or treatment response [21].

Unfortunately, accurate estimation of SO2 with quantitative PA imaging is not 

straightforward due its dependence on local fluence and its often poor signal-to-noise ratio 

(SNR), particularly at depth [17]. Estimation of local fluence distributions requires solving 

an ill-posed inverse problem with a large number of unknown and heterogeneous tissue 

properties and a non-unique solution (i.e., absorption-scattering non-uniqueness) [22]. 

Additionally, sPA data tend to be signal-limited at depth (i.e., > 1 cm) due to the exponential 

decay of fluence that occurs in turbid tissues. Consequently, utilization of poor-SNR sPA 

data can result in significant noise bias when estimating SO2. In fact, noise can be the 

dominant contribution in large portions of the image – particularly for deeper-lying voxels – 

and thus lead to erroneous SO2 quantifications.

There are a number of methods that have been proposed and validated (to varying extents) 

for the purpose of quantitative PA imaging, which generally involves optical and acoustical 

inversion problems to obtain estimates of absolute distributions of absorber concentrations 

[22]. However, in the specific case of SO2 estimation considered here, only relative absorber 

concentrations are needed, and thus reconstructed PA image intensity is often assumed to be 

proportional to initial pressure through a single constant, obviating the need for an acoustical 

inversion step. Consequently, the primary focus for inversion becomes modeling the effects 

of spectral coloring through pixel-wise normalization of data by wavelength-dependent 

fluence, which directly impacts PA image intensity.

If only relative concentrations are needed and local fluence is assumed constant or just 

proportional to measured laser-pulse energy, then the simplest and most commonplace 

method for absorber estimation is linear inversion, which is typically straightforward to 

solve with matrix inversion [23], [24]. If light propagation in the medium is modeled 

analytically with the radiative transfer equation (RTE), it is possible to implement direct 

inversion methods [25], [26]. For relatively homogenous [16] or superficial imaging [27] 

(e.g., PA microscopy), an analytical model for local fluence correction can be used. 

However, such an approach is often intractable for heterogeneous media, in which case 

numerical modeling (e.g., Monte Carlo methods [28]–[30] or finite element methods [FEMs] 
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using the diffusion approximation of the RTE [31]) can provide accurate local fluence 

estimation based on heterogeneous optical properties and an arbitrary photon-source 

distribution. Modeled optical properties can be based entirely on a priori assumptions (e.g., 

values from the literature) or on supplemental information from other modalities, such as 

DOT. Additionally, given the known relationship between a PA image and local optical 

absorption, it is possible to rewrite the model equations such that an unknown parameter 

(i.e., absorber concentration) equals a known function of itself, leading to fixed-point [32] or 

model-based [22] iteration approaches. While a fixed-point approach can converge to a 

correct solution, a model-based approach relies on minimization of a cost function relating 

known output to an estimate of this output obtained by a forward calculation with iteratively 

updated estimates of the unknown parameters. Since these iterative approaches depend on 

acquired data, which inherently contain noise, regularization in the cost function should be 

implemented to avoid model over-fitting to noise, which reduces overall accuracy. In 

addition, such model-based minimization tends to be ill-posed and usually does not provide 

a unique solution [22]. Approaches based on tissue segmentation [33] and multiple 

illuminations [34] have been implemented to reduce ill-posedness and to improve the 

uniqueness of the solution. However, the need for sufficient contrast to implement tissue 

segmentation and additional hardware to achieve multiple illuminations limits the 

application of such approaches in practice.

In this work, we developed an SNR-regularized local fluence correction (LFC) approach to 

obtain improved estimation and visualization of local SO2 in tissue. Validation of our 

approach was performed on blood targets in rats postmortem and on in vivo rat arteries. 

Results from these studies demonstrate that SNR-regularized LFC significantly improves 

accuracy for estimates of absolute SO2 and change in SO2 in ex vivo and in vivo 
environments.

II. Methods

In brief, we acquired sPA and US imaging data (II.A) on ex vivo (II.D.2) and in vivo (II.D.3) 

normal Buffalo rats. These imaging data and matched noise acquisitions (II.B) were then 

processed with the work flow summarized in Fig. 1 to obtain acquisition-specific SNR 

images and achieve LFC (II.C). Fluence-corrected SO2 estimates were then compared to 

gold-standard CO-oximeter measurements and assumed arterial oxygenation levels (i.e., 

near 100%) for the ex vivo and in vivo models, respectively, to assess overall performance.

A. Imaging System

A Vevo 2100-LAZR photoacoustic-ultrasonic (PAUS) imaging system (FUJIFILM 

VisualSonics Inc., Toronto, Canada) was used to perform three-dimensional (3D) B-mode 

and PA imaging in all experiments. An LZ-201 transducer array with 256 elements and a 

nominal 15-MHz center frequency was used with narrow-field (~1 cm) fiber-bundle outputs 

centered and flanking the posterior/anterior aspects of the US array and tilted such that they 

concentrate laser output toward the imaging plane. sPA imaging data were acquired at the 

following wavelengths: 710, 734, 760, 800, and 850 nm (Fig. 1B). These wavelengths were 

selected to include the local minimum and maximum of the HHb extinction spectrum, the 
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isosbestic point for hemoglobin at 800 nm, as well as the furthest extents of this 

aforementioned NIR range (e.g., 710 and 850 nm), which provide the greatest contrast 

between HbO2 and HHb. Ten imaging frames were averaged to form a single, two-

dimensional (2D) PA image at each wavelength. The US transducer was then mechanically 

translated in the elevation dimension with a 0.27-mm step size to acquire a 3D data set. 

Conventional delay-and-sum beamforming was utilized for all image reconstruction. Pulse 

energy was measured for each imaging frame with an energy meter and beam splitter 

incorporated in the Vevo system; these frame-specific energy values were then used for 

pulse-to-pulse energy correction of each PA imaging frame and for the SNR analysis 

detailed in II.D.1. Note that pulse-to-pulse energy correction was applied to all images, even 

those not undergoing LFC.

B. Establishment of SNR Mask

To estimate the voxel-wise noise level for specific operating parameters (e.g., a particular 

overall gain, time-gain compensation [TGC], and field of view [FOV]), a hundred frames of 

PA noise data were acquired in room-temperature water without pulsed laser irradiation (i.e., 

Q-switch of the laser was disengaged; Fig. 1C). The noise histogram was determined to be 

log-normal distributed based on the Kolmogorov-Smirnov goodness-of-fit test (p-value=0.8) 

and on previous results [35]. The mean (μ) and standard deviation (σ) at each pixel were 

calculated assuming a log-normal distribution of the 100-frame ensemble, and SNR (Fig. 

1H) is given by [35]

SNRi, j, λ = 10 log PAi, j, λ − μi, j

σi, j , (1)

where PA is PA image intensity, and μ and σ are the mean and standard deviation, 

respectively, of matched (i.e., same FOV, TGC, etc.) PA noise data. Note that in all 

equations, bold indicates an array with elements defined by the superscript (e.g., i = 1,…, m; 

j = 1,…, n; and λ = λ1,…, λN). The tissue surface for all PA imaging frames was then 

automatically segmented based on their co-registered B-mode US frame, as is shown in Fig. 

1D. These tissue-surface segmentations were used to mask the near-field coupling stand-off 

(i.e., gel or water) of each PA frame from subsequent analysis and display. Voxel-wise SNR 

was calculated using Eq. 1 for each PA image. An SNR threshold was then determined based 

on minimization of a cost function equal to the squared error of SO2 estimates in known 

blood samples (described in II.D.2) divided by the number of voxels within the SNR 

threshold mask. For optimization purposes, SNR thresholds ranging from 5 dB to 13 dB 

were tested, while the number of wavelengths (i.e., for a given pixel) that were required to 

exceed that threshold ranged from 2 to 5 wavelengths. The dB-threshold and wavelength-

number criterion that resulted in minimization of the cost function was then used to generate 

SNR masks for all other experiments. Optimizing the SNR threshold and number of 

wavelengths used is expected to provide a reasonable trade-off between effective imaging 

depth and overall accuracy, respectively. It is important to note that the number of 

wavelengths considered for purposes of SNR mask generation is not the same as the number 

of wavelengths used for SO2 estimation. With the exception of the experiment investigating 
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the impact of the number of wavelengths used for spectral unmixing, all 5 wavelengths were 

always used for SO2 estimation for any pixels included in an SNR mask. This SNR mask 

was then used to regularize PA data for assessing model optimization (II.C.3) and to 

determine which voxels to display in PAUS overlay images (Fig. 1G, I, and J). Acquisition-

specific TGC arrays were obtained by averaging PA noise acquisitions in the lateral 

dimension.

C. Local Fluence Correction Model

Empirically determined estimates of tissue-surface fluence (II.C.1) were used as inputs to an 

FEM-based model of local fluence within the relevant extent of the imaging FOV, as defined 

by an SNR threshold (II.B). The predicted fluence distribution for each frame was then 

determined through iterative optimization of the inverse model, described in II.C.3. The 

flowchart (Fig. 2) summarizes the algorithm used for SO2 estimation with and without LFC. 

In both approaches, tissue-surface segmentation and assessment of electronic noise within 

the FOV are required to generate the SNR mask used for regularization.

1) Tissue-Surface Fluence Estimation: Frame-specific laser fluence at the tissue-

surface interface was measured as input for forward calculations of local fluence. To 

estimate tissue-surface fluence for arbitrary imaging depths and tissue-surface profiles, a 1-

mm-diameter ball bearing embedded on the surface of a gelatin stand-off was raster-scanned 

at different lateral, axial (i.e., depth), and elevational locations relative to the center of the 

imaging transducer. To ensure elevational alignment, the maximum average PA signal at 710 

nm within an ROI containing the ball bearing was determined through elevation and 

obtained for each lateral-axial position; these data were used to generate a normalized 

fluence look-up table for all expected tissue-surface locations, as is shown in Fig. 3A. An 

example of the normalized fluence profile at an axial position of 18.5 mm is shown in Fig. 

3B. Based on the lateral-axial positions of all segmented tissue-surface voxels (II.B), an 

estimate of normalized tissue-surface laser fluence was obtained and used as a frame-

specific input for numerical modeling of fluence, as is described in II.C.3.

2) Relationship of PA Image to Hemoglobin Concentration and Local 
Fluence: PA image intensity is proportional to the initial pressure generated by absorbed 

laser energy and is given by [36], [37]

PAi, j, λ = Γi, jαi, jμa
i, j, λφi, j, λ, (2)

where Γ [unitless] is the thermal expansion Grüneisen parameter; α [unitless] includes the 

acoustic response (e.g., frequency-dependent attenuation) of the medium and the US-system 

response (e.g., TGC); μa [mm−1] is the optical absorption coefficient; and φ [J mm−2] is 

local fluence, which is a function of μa and the reduced scattering coefficient, μs′. In the near-

infrared window, hemoglobin tends to be the dominant absorber in tissue, and therefore the 

absorption coefficient can be approximated by
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μa
i, j, λ = cHbO2

i, j εHbO2
λ + cHHb

i, j εHHb
λ , (3)

where cHbO2 and cHHb [M] are concentrations of HbO2 and HHb, respectively, while εHbO2 
and εHHb [M−1 mm−1] are their molar extinction coefficients, respectively. For the purpose 

of the modeling presented herein, μs′ is assumed to follow a spatially-invariant, wavelength-

dependent power law given by [38]

μs
′i, j, λ, a, b = a λ

500(nm)
−b

, (4)

where the coefficients a [mm−1] and b [unitless] are assumed to be the same for all voxels in 

a given imaging frame. This constraint is imposed for regularization and to reduce the 

illposedness of the inverse problem. Finally, PA image intensity can be expressed as

PAi, j, λ = Γi, jαi, j cHbO2
i, j εHbO2

λ + cHHb
i, j εHHb

λ φi, j, λ, a, b, (5)

where φ represents the fluence estimated by a numerical model using a, b, cHbO2, and cHHb 

as inputs.

3) Inverse Model and SO2 Estimation: We used a two-part inverse model that first 

uses a fixed-point iteration method to estimate relative voxel-wise hemoglobin 

concentrations at specific reduced-scattering parameters, a and b, then regularizes the 

hemoglobin concentrations to estimate μa for the next iteration. The regularized hemoglobin 

concentration estimates are then used in an objective function (Eq. 8) to determine the error 

between measured PA data and PA estimates. In Eq. 5, the values of Γ and α are unknown; 

however, since only relative hemoglobin concentrations are to be reconstructed and realizing 

that αi,j = α′i,j TGCi,j, we can set the values of Γ and α′ to 1 and estimate TGC from the PA 

noise image, as described in (II.B). Relative hemoglobin concentrations can then be 

expressed as

cHbO2
i, j

cHHb
i, j

= 1
TGCi, j

εHbO2

λ1 εHHb
λ1

⋮ ⋮

εHbO2

λN εHHb
λN

† PA
i, j, λ1

φ
i, j, λ1, a, b

⋮

PA
i, j, λN

φ
i, j, λN, a, b

, (6)

where † indicates the Moore-Penrose inverse, and c̄ [unitless] indicates a relative 

concentration. Given that an absolute reduced scattering coefficient is used in the model, 
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relative hemoglobin concentrations were converted to absolute concentrations through 

regularization by setting the maximum value of the concentrations to an unknown constant 

value, β [M], such that

cHbO2, est
i, j

cHHb, est
i, j

= β

cHbO2
i, j ; cHHb

i, j

cHbO2
i, j

cHHb
i, j

. (7)

For given reduced-scattering coefficient parameters (i.e., a and b), estimated hemoglobin 

concentrations (i.e., cHbO2,est and cHHb,est [M]), and an assumed tissue-surface fluence 

distribution (II.C.1), the local fluence φ̄ can be calculated numerically using the diffusion 

approximation of the RTE and the FEM method, which is described in II.C.4.

Eqs. 6 & 7 then transform to a fixed-point iteration method over iteration number, k, by 

setting φi, j, λ, a, b φi, j, λ, a, b, k − 1; ci, j ci, j, k; cest
i, j cest

i, j, k; and cest
i, j, k = 0 = 0. Because β is 

unknown, a range of values was tested for each unique combination of a and b to find the 

best estimate of β, corresponding to the minimum error between the estimated and measured 

PA image arrays. Numerical experiments indicate the fixed-point iteration is independent of 

the initial condition and converges approximately in one iteration. Therefore, to estimate the 

fixed point for an array of beta values, we replace β by βk and increase βk at each iteration 

by steps of 0.01 M starting from β0 = 0 M. The estimated hemoglobin concentrations that 

correspond to the previous iteration (i.e., cest
i, j, k − 1) are then used for estimation of φ in the 

current iteration.

We define an objective function at iteration k as the l1-norm (used because of its robustness 

to noise) of the difference between the measured and estimated PA image arrays within the 

optimization ROI by

f a, b, k = ∑
i, j

PAi, j, λ − TGCi, j × (cHbO2
i, j, k εHbO2

λ + cHHb
i, j, kεHHb

λ )φi, j, λ, a, b, k − 1
1

. (8)

The iterative calculation of voxel-wise hemoglobin concentrations continues at increasing 

values of βk until one of three conditions is achieved: (1) a local minimum of the objective 

function is reached (i.e., f a, b
k > f a, b

k − 1); (2) the maximum μa value exceeds the minimum μs′

value used for fluence estimation; or (3) βk reaches its maximum value of 1. The values of a 
and b, ranging from 1 to 2.5 mm−1 and 0.5 to 2.0, respectively, were tested with a step size 

of 0.5 for each, resulting in 16 unique combinations of a and b. These ranges were based on 

values found in the literature for the following tissue types: liver tissue, with average values 

for a and b of 0.9 mm−1 and 0.6, respectively; adipose tissue, with average values of 1.8 mm
−1 and 0.7, respectively; and skin tissue, with average values of 4.6 mm−1 and 1.4, 

respectively [38]. The minimization problem was solved sixteen times in order to consider 

all combinations of a and b values tested, generating an array of minimum objective function 

values (i.e., fa,b). The final estimates for voxel-wise hemoglobin concentrations were 
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considered to be those corresponding to the global minimum of fa,b, defined as (a*, b*) = arg 

fa,b, such that

cHbO2, final
i, j

cHHb, final
i, j

=
cHbO2, est

i, j, a∗, b∗

cHHb, est
i, j, a∗, b∗

. (9)

Finally, an image of percent SO2 was calculated from these final hemoglobin concentrations 

by

SO2
i, j =

cHbO2, final
i, j

cHbO2, final
i, j + cHHb, final

i, j × 100 % . (10)

4) Specific Modeling and Computational Parameters: For FEM modeling of the 

fluence distribution, the segmented tissue surface of a matched B-mode image (Fig. 1D) was 

used to create a binary mask of the tissue ROI and then used to establish a 2D FEM mesh 

(Fig. 1E) for each imaging frame using NIRFAST, an open-source software package for 

modeling NIR light transport in tissue [31], [39]–[43]. The average number of nodes and 

tetrahedron elements of the 2D FEM mesh for an imaging frame were 6,311 and 12,270, 

respectively. Estimated normalized laser irradiation (II.C.1) at the proximal FEM surface 

nodes was used as an input for forward calculations where Robin-type boundary conditions 

were assumed to estimate local fluence distributions (Fig. 1F) using the diffusion 

approximation of the RTE and a solver developed in previous work [44], [45]. Calculated 

local fluence at the FEM mesh nodes was then interpolated to obtain the local fluence, φ, at 

all voxels of the PA image. An imaging frame’s SNR mask (i.e., thresholding of Fig. 1H) 

was used to define the optimization region in an ROI (defined by the smallest rectangular 

region aligned with the FOV coordinate axes that completely contains the SNR mask) 

wherein the objective function in Eq. 8 was minimized; only those voxels then included 

within the SNR mask were considered in the l1-norm calculation.

When LFC is not applied, there is no iteration required, and Eq. 6 can be used to obtain 

cHbO2,final and cHHb,final by assuming local fluence is unity (i.e., φ = 1) for all wavelengths. 

It then becomes straightforward to estimate SO2 using Eq. 10. The two-chromophore model 

assumption (i.e., HbO2 and HHb) employed for unmixing with and without LFC can then be 

assessed pixel-wise by relative model error, which is calculated using the l1-norm from Eq. 

8, where φ = 1 and cHbO2
 and cHHb equal cHbO2,final and cHHb,final, respectively, for the non-

LFC case. This residual is then divided by the summation of the sPA data through 

wavelength and multiplied by 100 to provide an error percentage. Relative model error is a 

measure of the goodness-of-fit of a pixel’s PA spectrum to the hemoglobin absorption 

spectrum associated with the pixel’s estimated SO2 level. Average computation times 

required for SO2 estimation for an imaging frame with and without LFC were 470 and 0.5 
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seconds, respectively. All simulations were performed using a PC with an Intel Core 

i5-6300U CPU at 2.4 GHz and 8 GB RAM.

D. Experimental Validation

Our SNR-regularized LFC method was assessed in two recently euthanized (i.e., “ex vivo 
Rat 1 & 2”; II.D.2) and seven anesthetized (i.e., “in vivo Rat 1-7”; II.D.3) male Buffalo rats. 

Ex vivo validation was performed on bovine blood samples of known SO2 introduced in rat 

liver postmortem, while in vivo validation was performed on intrahepatic arteries in rats 

during inhalation of 100% oxygen.

1) SNR Mask Validation: The SNR mask was validated using 6 imaging frames to 

match the number of frames used for definition of tube ROIs (II.D.2) in ex vivo Rat 2 and in 
vivo Rat 1. First, imaging data were acquired and SNR masks were established based on the 

steps described in II.A and II.B, respectively. Based on these data, SO2 images were 

generated for each imaging frame (II.C.3), and average SO2 was calculated for all voxels 

included in (i.e., “Mask”) and excluded from (i.e., “1-Mask”) the SNR mask with and 

without LFC applied; an average and standard deviation across all 6 frames of these average 

SO2 estimates was then calculated. Two “noise” ROIs (Fig. 4A,C) were then chosen at 

maximal depth extent and lateral offset to include a region assumed to be only noise. The 

SO2 estimate in this region was then compared to SO2 estimates obtained from the inverse of 

the energy-meter spectrum (i.e., pulse energy vs. wavelength) used for pulse-to-pulse energy 

normalization. A two-sample Student’s t-test (α = 0.05) was used to assess statistical 

significance for all experiments.

2) Ex Vivo Validation: Ex vivo Rats 1 & 2 were used for SO2 estimation validation. 

Heparinized bovine blood was employed to prepare samples with different SO2 values, as 

described in previous work [16], [46]. Briefly, two flasks of blood were used with an inlet in 

each to allow mixing with pure oxygen or pure nitrogen gas to prepare fully oxygenated or 

deoxygenated blood, respectively. Using different ratios of oxygenated and deoxygenated 

blood, samples with varied SO2 were obtained and measured by a GEM OPL CO-oximeter 

(Instrumentation Laboratory, Bedford, MA), which has a reported measurement uncertainty 

of ±1.5%. To create an imaging target, 1-mm-inner-diameter polyethylene (PE) tubes were 

introduced under US imaging guidance at depths ranging from 2.4 mm to 10 mm into each 

rat liver. Blood samples were then injected into each PE tube and imaged, as detailed in II.A. 

Tubes were flushed with deionized water between injections of different SO2 samples.

3D B-mode data and co-registered SO2 data were used to manually segment PE tube 

boundaries. As shown in Fig. 5A-D, four tubes could be fully segmented through elevation 

(i.e., the US transducer translation direction). Six consecutive elevational frames (i.e., spaced 

at 0.27 mm) were used to define a unique analysis ROI; analysis was limited to six 

consecutive frames to ensure intra-frame tube-depth variation remained <0.2 mm. Two of 

the tubes contained two analysis ROIs, which were located at different elevational positions 

in the 3D data set. A detailing of the analysis ROIs, their average depth from the tissue 

surface, and the CO-oximeter-measured SO2 values for samples imaged in each is provided 

in Table I.
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To analyze the accuracy of SO2 estimation, PA-estimated SO2 values, with and without LFC, 

were compared to matched Co-oximeter measurements. Additionally, to measure the limit of 

detectability between two different SO2 values, the change in SO2 (ΔSO2) was calculated 

between two regions of tube located at similar depths (i.e., within 0.3 mm of each other). 

ΔSO2 was calculated between two ROIs within the same tube (e.g., Tubes 2A and 2B in Rat 

2) or in different tubes (e.g., Tube 1B in Rat 1 and Tube 2A in Rat 2).

As an additional assessment of our SO2 estimation method, we investigated the impact of the 

number of wavelengths used for spectral unmixing. Wavelength groups included 

combinations of 2, 3, 4, and 5 wavelengths; the specific wavelengths used are detailed in 

Table II. For all wavelength-number combinations, an SNR-thresholding criterion of ≥2 

wavelengths and ≥9 dB SNR was used; only those wavelengths used for unmixing were used 

for SNR thresholding.

3) In Vivo Validation: The abdominal section of in vivo Rats 1-7 was imaged (as 

described in II.A) during an oxygen challenge (i.e., 100% oxygen inhalation). Acquired sPA 

data were then used to reconstruct SO2 imaging frames with and without LFC using the 

methodology detailed in II.B and II.C. Ten imaging frames (i.e., 3 rats contained 2 analysis 

frames each) were chosen to be in the liver wherein an artery could be manually segmented 

based on B-mode and SO2 data (i.e., regions of uniform uncorrected SO2 values in excess of 

85%) with a high degree of certainty. During imaging, rats were anesthetized using 2% 

isoflurane and placed on a heating pad to maintain normal body temperature; ECG and 

respiration-cycle data were monitored to assess animal health. All in vivo imaging was done 

with approval from MD Anderson Cancer Center’s Institutional Animal Care and Use 

Committee.

III. Results

A SNR Mask Selection

Fig. 6A,B shows regions of SNR ≥5, ≥9, and ≥13 dB with criteria of ≥2 and =5 wavelengths, 

respectively, exceeding this threshold. Increasing the dB-threshold or increasing the number 

of wavelengths that must be above that threshold predictably decreased the number of voxels 

included in a thresholded ROI. The number of voxels in the smallest SNR mask (i.e., =5 

wavelengths with ≥13 dB SNR) is 13% of the number of voxels of the largest SNR mask 

(i.e., ≥2 wavelengths with ≥5 dB SNR). Fig. 6C shows the results of the investigation into 

the impact of the number of wavelengths used for spectral unmixing. The average SO2-

estimation error with increasing number of wavelengths does not change significantly 

without LFC applied; however, it decreases from 11.2% to 2.8% when using 5 instead of 2 

wavelengths with LFC applied.

Fig. 7A shows the square of the average absolute error (i.e., compared to matched CO-

oximeter measurements) of estimated SO2 in the ROIs from the ex vivo experiment in II.D.2 

as a function of SNR threshold and number of wavelengths exceeding this threshold. The 

larger errors in SO2 estimation obtained at low-SNR thresholds (i.e., <9 dB) are due to 

contributions from Tube 4, which was the deepest tube analyzed (10-mm depth). The error 

significantly decreased by increasing the SNR threshold (i.e., ≥9 dB) as this excluded Tube 4 
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from the SNR mask, and thus error analysis. As Fig. 7B shows, increasing either the SNR 

threshold or the wavelength number tends to decrease the number of voxels included in the 

mask. For example, the optimized mask (i.e., ≥2 wavelengths & ≥9 dB SNR) contained only 

63% of the pixels contained in the most lenient mask tested (i.e., ≥2 wavelengths & ≥5 dB 

SNR). Fig. 7C offers a plot of the mask-optimization cost function defined in II.B, which 

has a minimum at ≥2 wavelengths with an SNR threshold ≥9 dB; unless otherwise noted, 

these SNR-mask parameters were used for all other results.

B Assessment of SNR Mask

As is shown in Fig. 4A,C, mean±SD SO2 estimates across 6 frames of ex vivo and in vivo 
ROIs within the SNR mask (“Mask”) and without LFC applied are 35.7±1.0% and 

67.1±1.3%, respectively, while outside of the mask (“1-Mask”) they are 63.8±1.4% and 

72.0±0.4%, respectively. With LFC applied, SO2 estimates of ex vivo and in vivo ROIs 

within the mask are 21.6±1.7% and 72.5±0.7%, respectively. Based on unmixing of noise-

ROI data (i.e., green dashed boxes in Fig. 4A,C), SO2 estimates are 69.1±1.5% and 

72.5±0.7% for ex vivo and in vivo ROIs, respectively. Based on linear unmixing of the 

reciprocal of laser-pulse-energy spectra (as are shown in Fig. 4D), SO2 estimates of 

69.8±1.8% and 72.3±0.5% were obtained, which are not statistically different than their 

matched noise-ROI SO2 estimates.

C Ex Vivo and in Vivo Validation

The SO2 in the tubes in ex vivo Rat 1 and Rat 2 were measured by the CO-oximeter to be 

98.4% and 99.6%, respectively, for the representative SO2 overlay images shown in Fig. 5. 

Use of LFC results in lower estimates of SO2 (i.e., bluer image) than when no LFC is 

applied. Note that application of the SNR mask excluded Tube 4 (10 mm depth) from 

analysis. The CO-oximeter readings of all tested SO2 values for tubes in ex vivo Rats 1 and 

2 are shown in the first column of Table I. Percent errors for each tube with and without LFC 

are provided in subsequent table columns. The percent errors with LFC are lower than that 

without LFC for all tubes and at all tested SO2 values except for estimates at 98.4% for 

Tubes 1 and 3 and at 99.6% for tube 2B. With and without LFC, average percent errors tend 

to increase with depth (e.g., Tube 3 compared to Tubes 1 and 2).

As is shown in Fig. 8A, SO2 tends to be overestimated (i.e., compared to matched CO-

oximeter values) without LFC. The maximum and average percent errors are 24.5% and 

10.1%, respectively, without LFC (red traces in Fig. 8A), while these decrease to 10.4% and 

2.8%, respectively, with LFC (Fig. 8A, green lines). Fig. 8B shows calculated ΔSO2 values 

with and without LFC compared to expected changes based on matched CO-oximeter 

measurements. Use of LFC provides better accuracy in estimating ΔSO2 in all cases shown. 

With LFC, the estimated ΔSO2 magnitude and direction of change are consistent with CO-

oximeter-measured ΔSO2 values. However, without LFC, six cases show ΔSO2 estimates 

with either significantly incorrect magnitude and/or direction when compared to CO-

oximeter measurements. The maximum and average errors in estimating ΔSO2 is reduced 

from 8.1% and 6.4%, respectively, without LFC to 4.7% and 2.0%, respectively, with LFC. 

Fig. 8C shows that relative model error (defined in II.C.4) within the SNR “Mask” region is 

on average lower than that in the “1-Mask” region. Fig. 8D shows the difference between the 
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relative model error before and after LFC; note that relative model error tended to decrease 

rather uniformly within the “Mask” region following LFC.

In the in vivo study, PA-based SO2 estimates significantly increased from 92.9±2.9% 

without LFC to 95.5±1.2% with LFC. The results from all 10 in vivo Rats are summarized 

in Table III.

IV. Discussion

In this work, we show that SNR regularization combined with LFC improves PA-based SO2 

estimation accuracy in ex vivo and in vivo tissue environments. The developed LFC model 

reduces the average SO2 estimation error from 10.1% to 2.8% in ex vivo tissue, while it 

increases mean SO2 estimation from 92.9% to 95.5% in in vivo arteries during an oxygen 

challenge, when arterial SO2 is expected to be near 100%. Additionally, the mean error in 

estimating changes in SO2 (i.e., ΔSO2) reduced from 6.4% to 2.0% after application of LFC.

LFC of sPA data improves the accuracy of SO2 estimates by accounting for the effect of 

wavelength-dependent optical attenuation, known as spectral coloring [38]. As is shown in 

Fig. 8A, SO2 is overestimated when LFC is not applied because scattering – which tends to 

decrease with increasing wavelength – causes local fluence at longer wavelengths (e.g., 850 

nm) to be relatively higher than that at shorter wavelengths (e.g., 710 nm). This results in a 

redshift of the sPA spectrum, causing it to more closely resemble the monotonically 

increasing absorption spectrum of HbO2 and thus yield an artificially high SO2 estimate 

[16]. However, given that cHHb, final
i, j  in Eq. (10) cannot be negative, such overestimation is 

bound by a maximum SO2 estimate of 100%. Such a phenomenon resulted in the 

abnormally small estimation errors obtained without LFC for samples near 100% SO2 (i.e., 

CO-ox SO2 of 98.4% & 99.6% in Table I). In these specific cases, the SO2 estimation bound 

of 100% just happened to nearly coincide with the samples’ CO-oximeter-measured SO2. 

Addressing the issue of spectral coloring not only improves accuracy of estimating absolute 

SO2, but it also improves the accuracy in assessing relative oxygenation changes (i.e., 

ΔSO2). It is often assumed that comparison of similar ROIs (e.g., the same depth in the same 

tissue type) without LFC permits accurate assessment of relative SO2 changes, which could 

be diagnostically useful to track longitudinal variation in disease progression and/or therapy 

response [15], [47]. In our study, however, an average error of 6.4% was observed in 

assessing changes in SO2 for the same or similar ROI without LFC. Unfortunately, this error 

level is greater than the SO2 difference reported between control and treatment cohorts in 

some preclinical studies [48]. Thus, the reduction to 2.0% error achieved through application 

of our method demonstrates that LFC could be necessary in facilitating successful clinical 

translation of a robust and diagnostic PA-based assay to measure relative SO2 changes due to 

pathology.

Our study also investigated the effect of wavelength number on SO2 estimation accuracy. To 

this end, Fig. 6C shows that increasing the number of wavelengths where sPA data are 

acquired does not significantly change average SO2 estimation error when LFC is not 

applied. This is because spectral coloring, which is likely the primary source of this 

estimation error, persists even with the inclusion of additional wavelengths. On the other 
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hand, a significant error reduction is obtained by increasing the number of wavelengths used 

for unmixing with LFC. This is likely because the inverse problem is not always well-posed, 

and therefore increasing the amount of data acquired (for the same unknowns) improves the 

well-posedness of the solution, which helps with convergence to a stable answer. In future 

work, the impact of the precise wavelengths selected for analysis on model accuracy will be 

investigated [49].

In addition to assisting with model convergence, voxel-wise SNR assessment also provides 

improvement in the accuracy of post-processing analysis. As is shown in Fig. 4A, the 

average SO2 estimate outside of the SNR mask (“1-Mask”; 63.5%) is similar to the average 

estimate in the noise ROI (68.8%), both of which being drastically higher than the average 

SO2 obtained in the SNR mask (“Mask”), which presents with a low-SO2 estimate (35.9% 

without LFC) that is consistent with ex vivo tissue. Worse yet, the estimated SO2 in the 

noise ROI is not significantly different from that estimated by the inverse of the laser-pulse-

energy spectrum alone, as is shown in Fig. 4D. Since all sPA data are normalized by the 

output pulse energy, regions of only noise – such as these most distal noise ROIs – provide a 

spectrum statistically identical to that of the inverse of pulse energy. In this experiment, 

“pure” noise presented with an (artifactual) SO2 estimate of approximately 70%; this is 

likely near the expected value for noise regions acquired with similar OPO-based PA 

imaging systems, which tend to have higher pulse energy in the low-NIR range. In the ex 
vivo example presented herein, the distinction between high/low-SNR and poor-SNR voxels 

happens to be apparent in the SO2 image because of the inherent contrast between low-SO2 

estimates for (deoxygenated) ex vivo tissue and the ~70% artifactual estimates for regions 

that are predominately noise. In an in vivo situation (Fig. 4C), however, high-SNR SO2 

estimates in in vivo tissue can be indistinguishable from poor-SNR regions based on SO2 

alone. Thus, without independent assessment of SNR, one is prone to assigning an analysis 

ROI that contains a number of voxels with poor SNR, which would introduce a significant 

bias in the ROI-averaged SO2 estimate toward the expected value for pure noise (i.e., ~70% 

SO2).

Despite achieving significant improvements in the estimation of absolute and relative SO2, 

there are limitations in our study that should be addressed in future work. Firstly, although 

we feel an assumption of spatially invariant scattering is reasonable given the relative 

homogeneity of the liver, for highly heterogeneous FOVs this assumption might decrease 

SO2 estimation accuracy. To address this issue, tissue segmentation based on US contrast 

could be used to allow for multiple scattering coefficients that would be individually 

constrained based on a priori knowledge of the assumed tissue types [33]. Secondly, LFC 

was independently applied to each 2D imaging frame, and out-of-plane variation of optical 

properties were not considered. Given that a 3D imaging data set was available, it would be 

possible in the future to simultaneously apply LFC to the entire 3D volume such that out-of-

plane absorber distributions impact local fluence estimates, which could improve estimation 

accuracy of more heterogeneous regions of tissue [22]. Lastly, in an effort to allow for near-

realtime (~1 fps) implementation in the future, parallel processing could be implemented 

[50].
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V. Conclusions

This work illustrates the potential of PAUS imaging combined with SNR-regularized LFC in 

improving the accuracy of estimating absolute SO2 and relative changes in SO2 for both ex 
vivo and in vivo tissue environments. Based on study results presented herein, assessment of 

voxel-wise SNR for regularization/thresholding purposes appears to be critical, particularly 

for the purpose of accurate post-processing analysis and display. Additionally, given average 

reductions in percent error to 2.8% (from 10.1%) and 2.0% (from 6.4%) for absolute and 

relative SO2 estimates, respectively, the need for LFC in future clinical endeavors must be 

carefully considered for achieving robust and accurate quantitative PA imaging.
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Fig. 1. 
Stacks (i.e., λ1..λN) of co-registered (A) B-mode US images and (B) sPA images for all 5 

acquisition wavelengths with corresponding (C) PA noise image. (D) B-mode image 

showing tissue-surface segmentation (yellow). (E) 2D FEM mesh of ROI and (F) stack of 

local fluence estimates presented on a log scale. (G) Stack of SNR-thresholded PAUS 

images, (H) Stack of SNR-US overlays, and (K) LFC procedure. SO2 overlays (I) with and 

(J) without LFC.
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Fig. 2. 
Flowchart of the procedure used to estimate voxel-wise concentrations of HbO2 and HHb 

with and without LFC.
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Fig. 3. 
(A) Surface plot of normalized tissue-surface fluence as a function of axial and lateral 

position. (B) Plot of normalized tissue-surface fluence as function of lateral position at a 

fixed axial position (18.5 mm) with an inset showing acquired PA image of ball bearing with 

analysis ROI at 710 nm.
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Fig. 4. 
SO2 image overlays of (A) ex vivo Rat 2 without LFC or SNR masking (but mask outline in 

purple) with inset offering example of SNR “Mask” (purple) and “1-Mask” (green) regions; 

(B) ex vivo Rat 2 with LFC and SNR masking; and (C) in vivo Rat 2 without LFC or SNR 

masking. (D) PA signal for noise ROI and reciprocal of pulse-energy spectrum for ex vivo 
(squares) and in vivo (asterisks) rats; inset shows extinction spectra of HbO2 and HHb.
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Fig. 5. 
SO2 image overlays with (green border) and without (red border) LFC in representative 

frames from: (A – with, B – without) ex vivo Rat 1 (Tubes 1, 3, & 4); (C – with, D – 

without) ex vivo Rat 2 (Tube 2); and (E – with, F – without) artery (outlined in lime green) 

in in vivo Rat 10.
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Fig. 6. 
SNR-B-mode overlays showing regions of SNR ≥5 dB, ≥9 dB, and ≥13 dB for (A) ≥2 or (B) 

=5 wavelengths in a representative imaging frame from ex vivo Rat 2. (C) Comparison of the 

average SO2-estimation error with (green) and without (yellow) LFC when SO2 is calculated 

with 2, 3, 4, or all 5 wavelengths; an asterisk denotes a significant difference in error 

compared to the 2-wavelength result.
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Fig. 7. 
Surface plots of (A) SO2 estimation error, (B) inverse of total voxel number included in 

mask, and (C) SNR mask optimization cost function; local minimum denoted with a green 

arrow and red circle.
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Fig. 8. 
(A) Error-bar plot of PA-based SO2 estimation vs. CO-oximeter measurements in each tube 

(denoted by marker type) with (green) and without (red) LFC. (B) Comparison of estimated 

ΔSO2 using blood samples of different SO2 with (green) and without (yellow) LFC 

compared to CO-oximeter measurements (purple) in different tubes, as depicted in the 

schematic below the plot. An asterisk denotes a significant difference in ΔSO2 estimate 

compared to the matched CO-ox result. Representative example of (C) relative model error 

and (D) reduction of model error following LFC for ex vivo Rat 2.
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TABLE I

Percent Error of SO2 Estimation in ex vivo Rats w/ and w/o LFC.

CO-ox
SO2
[%]

Tube 1A
(2.4 mm)

Tube 1B
(2.7 mm)

Tube 3
(5.7 mm)

With Without With Without With Without

98.4 3.5±1.1 0.3±0.9 2.9±2.2 0.9±1.0 9.0±1.6 0.6±0.6

85.5 1.3±1.9 7.3±1.7 2.3±1.5 8.4±1.1 1.4±2.0 10.6±1.2

71.1 0.5±2.2 9.8±1.7 2.6±1.3 11.1±1.1 1.2±2.7 13.0±2.3

59.2 0.6±1.8 10.8±1.1 1.8±1.9 11.7±1.4 1.5±1.7 14.8±2.1

47.0 0.8±2.7 13.9±1.6 2.9±2.5 14.6±1.2 4.2±0.6 19.3±1.2

37.6 2.5±1.8 15.8±0.6 3.2±1.8 15.8±1.1 10.4±2.6 24.5±2.7

Avg. 1.5 9.7 2.6 10.4 4.6 13.8

CO-ox
SO2 [%]

Tube 2A (3.0 mm) Tube 2B (3.1 mm)

With Without With Without

99.6 0.2±0.8 0.4±0.0 2.3±1.2 0.1±0.2

86.1 0.8±3.1 5.1±2.6 1.3±1.1 8.1±1.1

75.2 2.1±1.2 6.4±1.1 3.6±2.3 10.1±2.5

66.0 3.9±1.1 9.0±1.0 4.3±2.1 11.6±1.6

58.0 0.5±0.7 5.4±1.1 0.7±1.4 9.9±1.1

53.1 2.5±1.0 8.6±1.3 4.3±1.1 13.5±1.1

41.5 4.4±1.8 10.9±1.8 5.4±2.1 15.9±1.6

Avg. 2.1 6.5 3.1 9.9
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TABLE II

Wavelength Combinations for Investigation of Wavelength-Number Impact on Spectral Unmixing

Number of
Wavelengths 2 3 4 5

Group 1 760, 850 760, 800, 850 710, 760, 800, 850 710, 734, 760, 800, 850

Group 2 734, 850 734, 800, 850 734, 760, 800, 850

Group 3 734, 800 710, 734, 800 710, 734, 760, 800

Group 4 710, 800 710, 800, 850 710, 734, 800, 850

Group 5 710, 850 710, 760, 850 710, 734, 760, 850
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TABLE III

Mean SO2 Estimates in Arteries w/ and w/o LFC.

ROI Rat
SO2 [%]

With
SO2 [%]
Without

Arterial Depth
[mm]

1 1 97.5 97.0 1.4

2 2 95.0 88.6 1.9

3 3 96.8 94.3 1.9

4 4 95.9 96.0 2.0

5 5 96.1 93.4 2.0

6 6 94.0 90.2 2.3

7 7 96.4 93.0 3.5

8 1 94.0 95.2 4.4

9 7 94.8 91.9 4.9

10 3 94.4 89.3 5.5

Avg. 95.5±1.2 92.9±2.9
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