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Abstract

Pitch estimation in diverse naturalistic audio streams remains a challenge for speech processing 

and spoken language technology. In this study, we investigate the use of robust harmonic features 

for classification-based pitch estimation. The proposed pitch estimation algorithm is composed of 

two stages: pitch candidate generation and target pitch selection. Based on energy intensity and 

spectral envelope shape, five types of robust harmonic features are proposed to reflect pitch 

associated harmonic structure. A neural network is adopted for modeling the relationship between 

input harmonic features and output pitch salience for each specific pitch candidate. In the test 

stage, each pitch candidate is assessed with an output salience that indicates the potential as a true 

pitch value, based on its input feature vector processed through the neural network. Finally, 

according to the temporal continuity of pitch values, pitch contour tracking is performed using a 

hidden Markov model (HMM), and the Viterbi algorithm is used for HMM decoding. 

Experimental results show that the proposed algorithm outperforms several state-of-the-art pitch 

estimation methods in terms of accuracy in both high and low levels of additive noise.
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I. Introduction

PITCH is the perceived interpretation of the fundamental frequency (F0) within an acoustic 

audio stream. In this study, we treat pitch and F0 as having the same meaning. Since pitch 

carries important characteristics of the audio signal, such as speech prosody and music 

melody, accurate pitch estimation becomes essential for many audio signal processing and 

spoken language technology systems, (e.g., sound source separation, language/speaker 

identification, emotion recognition, music transcription, dialog system, etc.). Pitch detection 

has also been applied to the diagnosis of mental diseases [1], [2].

Earlier studies on pitch estimation either capitalize on the periodic pattern in the time 

domain, or leverage the harmonic structure in the frequency domain. Based on this principle, 

a number of pitch estimation algorithms have been proposed by [3]–[5]. In the time domain, 

an autocorrelation function (ACF), or an average magnitude difference function (AMDF), is 

applied directly to the waveform to measure the similarity between the original signal and its 
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delayed version [6]–[8]. In the frequency domain, subharmonic summation or subharmonic 

production [9], [10] are used to estimate pitch by compressing the spectrum along the 

frequency axis with a series of integer factors, followed by adding (or multiplying) original 

and manipulated spectra. Consequently, all harmonic partials are therefore moved to the 

same location and constructively added together to generate a superimposed global peak 

associated with the expected true pitch. Alternatively, a comb filter has also been used for 

pitch estimation in the frequency domain [11]. The output of the comb filter reaches a 

maximum value when passband of the comb filter lines up with the harmonics.

Most of these pitch estimation algorithms can achieve high accuracy in clean or moderately 

noisy environments. However, the performance drops significantly at low signal-to-noise 

ratio (SNR) due to severe distortion of the pitch related harmonic structure. Therefore, pitch 

estimation in noisy naturalistic environments remains a challenging research problem.

To improve the robustness of pitch estimation in noisy environments, numerous approaches 

have been proposed using advanced signal processing methods. For example, adaptive 

speech representations such as wavelet transforms [12], [13] as well as the Gaussian basis 

function decomposition [14] have been employed to improve harmonic resolution. The 

temporal accumulated spectrum was proposed by [15] to enhance target speech harmonics 

from noise. In the study by [16], long-term average speech spectrum (LTASS) normalization 

was used to attenuate noise prior to pitch estimation. It has been shown that alternatively 

speech separation and pitch estimation processing can benefit from each other [17], [18]. 

Sparsity characteristics of speech have also inspired a number of methods to improve pitch 

estimation accuracy [19]–[24].

Besides signal processing strategies which are able to provide noise robust speech 

representation, statistical model based methods have also been proposed to deal with noise 

robust pitch estimation [25]–[28], [29]. Usually, a statistical model is created for the 

observed noisy speech in terms of a probability density function (PDF) parameterized by the 

pitch. The parameters are estimated with either a maximum likelihood or maximum a 

posteriori (MAP) method. For example, in [30], [31], the observed spectrum is modeled as a 

Gaussian mixture model (GMM) representing a sequence of spectral clusters, each governed 

by a common F0 contour. Next, the expectation maximization (EM) algorithm was applied 

for simultaneous estimation of pitch and harmonic structures. In [32], F0 estimation 

accuracy was improved by modeling the effects of noise on voiced speech spectra in a 

probabilistic framework. In their study, prominent SNR spectral peaks serve as the robust 

information source for estimating F0.

Machine learning algorithms have also been attempted for pitch estimation due to their 

explicit modeling capability to learn complex patterns of harmonic structure. For example, 

an artificial neural network (ANN) was applied for pitch candidate modeling and 

classification in a number of studies [33]–[35]. Principle component analysis (PCA) was 

proposed by [35] to reduce the dimensionality of sub-band autocorrelation based features for 

ANN model. A clustering-based method was proposed by [36] to perform multi-pitch 

analysis. In [37], a deep neural network (DNN)-based approach was proposed for noise 

robust pitch estimation. In their study, a preprocessed spectrum was used as the direct input 
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to a large sized neural network without any feature extraction stage. The large size DNN-

based methods is able to decrease estimation bias with its complex modeling ability. 

Meanwhile, the estimation variance tends to increase and requires more training data to fit 

the model, inevitably resulting in a heavy computational cost [38].

We infer that, given effective features, pitch estimation accuracy can be improved without 

increasing the complexity of the classification model. In past research, pitch related feature 

extraction is seldom studied under the statistical or machine learning framework. For 

instance, time domain periodic feature extraction followed by neural network modeling was 

proposed for pitch estimation by [33], though the time waveform based features are 

relatively sensitive to noise. Alternatively, the spectral energies over a series of semitone 

bins were directly submitted into a neural network for pitch detection in [34]. However, the 

formant information involved in the bin-dependent energy vector affects the accurate pitch 

detection. In both given algorithms [33], [34], a shallow neural network is used for 

classification-based pitch estimation. If the pitch related features are designed particularly as 

the input, a shallow or small size neural network might be able to achieve high accuracy 

performance for pitch estimation in noise.

In this study, we propose to use robust harmonic features and neural network (NN) 

classification for pitch estimation. A block diagram of the overall formulated algorithm is 

presented in Fig. 1. The proposed algorithm is composed of two steps: i) pitch candidate 

generation; and ii) target pitch selection. The long-short-term Fourier transform [39]–[41] is 

performed on the input noisy speech waveform to obtain the long-term and short-term 

frequency spectra respectively. The long-term spectrum serves as a noise robust speech 

representation in frequency domain. F0 candidates are extracted from both the original noisy 

speech spectrum and the subharmonic summation spectrum. Next, the pitch selection 

process is formulated as a neural network classification problem, which categorizes pitch 

candidates as true or false. We aim to contribute towards the development of robust 

harmonic features to project the pitch candidates into a more separable space to facilitate 

effective pitch candidate classification. We propose five harmonic features which are 

associated with properties of the speech harmonic structure in order to describe the salience 

of each pitch candidate. These harmonic features are derived from the harmonic energy 

intensity as well as shape of the harmonic spectrum envelope. All features are 

complementary to each other and represent the characteristics of pitch related speech 

harmonic structure. The output of the neural network indicates the likelihood of a pitch 

candidate to be a true pitch. Finally, an HMM model is used for pitch contour tracking 

according to the temporal continuity of speech. An initial version of the proposed algorithm 

is presented in our earlier work in [40]. We extend this previous work by applying a 

temporal continuity tracking algorithm using HMM to ensure more accurate pitch 

estimation.

The remainder of the paper is organized as follows. Sections II and III illustrate the 

processes of pitch candidate generation and target pitch selection respectively. Experiments 

and results are shown in Section IV. Finally, in Section V, conclusions and future directions 

are presented.
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II. Pitch Candidate Generation

A Long-Short-Term Spectrum Representation

In this section, pitch candidate extraction is performed in the frequency domain. First, we 

present the long-short-term spectrum analysis in this section. According to the sinusoidal 

model [42], voiced speech can be represented by a series of sinusoids with time-varying 

parameters (amplitude, frequency and phase). In a short-time analysis frame, we assume that 

the speech signal is quasi-stationary, and hence the sinusoidal parameters are constant. 

Therefore, the sinusoidal model is formulated as,

sn0
(n) = ∑

r = 1

R
arcos 2π f rn + θ0r

· w n − n0 , (1)

where n is the sample index, n =1,2, …, N, N is the signal length, n0 is the index of the delay 

of the analysis sample, R is the number of the total harmonic order, ar, fr, and θ0r
 are the 

instantaneous amplitude, frequency and initial phase of the rth order of harmonic component 

respectively, and w(n) is a short-time analysis window (typically 15 ~ 30 ms in duration, 

Hamming window). In addition, it is assumed that the rth order of harmonic frequency fr can 

be approximated as rF0.

When processing with a discrete time Fourier transform (DTFT), the time waveform signal 

is transformed into the frequency domain Sn0
, represented as,

Sn0
( f ) = 1

2 ∑
r = 1

R
ar · W f − f r · e

jθ0r · e
− j2π f − f r n0 + W f + f r ⋅ e

− jθ0r ⋅ e
− j2π f + f r n0],

(2)

where W(f) is the spectrum of the analysis window, and f is the frequency variant in Hz. If 

we only consider the spectrum amplitude in the positive frequency range, and discard the 

index of the sample delay, (2) can be re-written as,

S( f ) = 1
2 ∑

r = 1

R
ar · W( f ) * δ f − f r , (3)

where δ(·) is the Dirac Delta function. Thus, in the frequency domain, the speech spectrum 

can be considered as a summation of a series of harmonic partials located at multiple integer 

times of the fundamental frequency. The spectrum of each harmonic partial is equivalent to 

the analysis window spectrum.
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The duration of the short-time analysis window is usually set to a value in the range of 20–

30 ms. However, when speech is contaminated by noise, the frequency resolution of the 

short-time window is insufficient for harmonics discrimination. As some harmonic partials 

are obscured by overlapped noise content, the corresponding harmonic peaks could be lost 

or deviate from the original frequency by an unexpected offset. In order to obtain a high 

frequency resolution for robust pitch estimation, we propose to use a longer analysis window 

with a duration in the range of 80 – 90 ms for noisy speech spectrum analysis. Selecting this 

window length results in the main lobe more concentrated around the harmonic frequency. 

Consequently, the long-term spectrum representation decreases excessive overlap between 

speech harmonics and noise interference in the frequency domain. In this way, pitch can be 

estimated with higher accuracy.

Fig. 2 demonstrates an example of the spectral representations for both long-term (80 ms) 

and short-term (30 ms) frame of signals. This frame of speech is derived from the TIMIT 

speech database [43]. The noisy signal is simulated by adding babble noise at an SNR level 

of 0 dB. From Fig. 2(a), we see that in the short-term spectrum, the 1st, 2nd, 3rd, and 6th 

order of harmonic partials are completely missing or significantly deviated from the original 

harmonic frequency locations. On the contrary, Fig. 2(b) shows that in the long-term 

spectrum, all harmonics are well preserved (note: here frequency content up to 800 Hz is 

shown, but consistent observations are also noted up to 4 kHz). We also notice some 

spurious peaks in the long-term spectrum; however, these peaks are relatively low and are 

removed before pitch candidate extraction as explained in the next section.

B. Pitch Candidate Extraction

Next, we perform a pitch candidate extraction step. This step aims to obtain more reliable 

pitch candidates that include true pitch and decrease the computational complexity for 

subsequent stages. We propose two types of spectrum for extracting pitch candidates, one is 

the original noisy long-term speech spectrum, and the other is long-term subharmonic 

summation (SBH) spectrum [9]. In most cases, the spectral peak at F0 is preserved in the 

long-term noisy spectrum. However, if the SNR of the frequency bin where F0 is located is 

low, then the F0 spectral peak could disappear, which will result in absence of true pitch in 

the extracted pitch candidates. Nevertheless, SBH spectrum serves as a complementary 

source for pitch candidate extraction.

SBH spectrum has been shown to be an effective representation for pitch detection in clean 

and white noise condition [9], [10]. It is obtained by compressing the speech spectrum by a 

series of integer factors along the frequency axis, followed by summation of all the 

compressed and original spectra. As a result, multiple harmonics will coincide and therefore 

reinforce at the fundamental frequency location, boosting the maximum peak in the SBH 

spectrum. In this way, the F0 spectral peak can still be detected in the SBH spectrum, 

although it might be lost in the original noisy spectrum. The SBH spectrum, Ssbh, is given as 

follows,
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Ssbh( f ) = ∑
k = 1

K
S(k f )

2
, (4)

where S(kf) is the compressed spectrum derived from the noisy speech with the integer 

compression factor of k, where k is also known as down-sampling rate. In addition, K is the 

maximum compression factor which is set to 10 in the current experiment. To illustrate this 

process, Fig. 3 shows an example of how to obtain the SBH spectrum. In this example, the 

original speech spectrum, which is in the frequency range of 0 to 800 Hz, is compressed by 

factors of 2, 3, 4, and 5 respectively along the frequency axis. And then all the 4 compressed 

spectrum vectors are added together with the original speech spectrum to form the SBH 

spectrum as shown on the bottom in Fig. 3. From Fig. 3, we observe that the maximum 

amplitude peak appears at the F0 frequency of the SBH spectrum. Moreover, SBH-based F0 

estimation approach has been shown asymptotically identical to the maximum likelihood-

based method [25].

With the two types of spectrum obtained, we proceed to extract pitch candidates as follows: 

i) We set the pitch range to be between 50 Hz and 400 Hz. All the spectrum peaks outside of 

this frequency range are discarded in both original noisy spectrum and the SBH spectrum. ii) 

For the original noisy speech spectrum, a floor is set as 1/10 of its maximum amplitude. The 

spectrum peaks located in the pitch frequency above this floor are selected as potential pitch 

candidate peaks. iii) For the SBH spectrum, another floor is set as 1/2 of the maximum 

amplitude. All SBH spectrum peaks which exceed this floor while in the pitch frequency 

range are also selected as additional pitch candidates. It is noted that these thresholds are set 

empirically to ensure that not only the true pitch value is included in the pitch candidates 

list, but also the reduced amount of mis-detected pitch candidates.

III. Target Pitch Selection

After extracting pitch candidates as discussed in the previous section, we begin to perform 

target pitch selection. A neural network is adopted for pitch candidate classification, where 

the inputs are the harmonic feature sets, and the output is considered as the salience of the 

pitch candidate. In our method, the neural network is used to model the relationship between 

the harmonic features and the corresponding pitch candidate salience. Five types of 

harmonic features are developed for each pitch candidate to indicate its likelihood to be a 

true pitch. Specifically, the robust harmonic features are designed heuristically which are 

related to the energy intensity as well as the envelope shape of the identified harmonic 

structure associated with a certain pitch candidate. On one hand, the correct pitch 

corresponds to a stronger harmonic energy, since speech signal usually has a dominant 

energy in the voiced section. On the other hand, the envelope shape of the identified 

harmonic structures which are associated with the true pitch are often continuously and 

smoothly distributed along the frequency axis. Furthermore, the individual harmonic peak is 

assumed to be located at or as near as possible to an integer multiple times of the 

fundamental frequency. These five harmonic features are incorporated collectively to decide 

the salience of each pitch candidate. Compared to the linear method for combining the pitch 
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related features in previous studies [14], [16], we propose a non-linear way with a neural 

network model which is more efficient and robust to noise. Finally, the temporal continuity 

constraints are utilized for pitch tracking based on hidden Markov model (HMM) and 

therefore further eliminate the errors of pitch estimation.

A. Harmonic Structure Extraction

The proposed harmonic features are related to the harmonic structure which is associated 

with a particular pitch candidate. Therefore, in this section, we explain how to extract the 

harmonic structure from the noisy speech spectrum for a given pitch candidate. Assuming 

there is a pitch candidate with the frequency value of F0′, the mth order of harmonic peak is 

estimated as below,

am
l = max Al( f ) , (5)

f m
l = argmax

f
Al( f ) , (6)

where am
l  and f m

l  are the amplitude and frequency of the estimated mth order of harmonics 

respectively, and Al is the long-term noisy spectrum amplitude vector, the frequency range of 

the mth order of harmonics is set as f ∈ mF0′ − Δ f HmF0′ + Δ f H . In addition, ΔfH is the 

preset frequency deviation from the ideal harmonic frequency. In reality, the speech 

harmonics usually deviate from the exact harmonic frequency due to the instability of the 

glottal pulse sequence/shape during speech production, which is similar as the inharmonicity 

of music [44]. The harmonic deviation is typically larger as one moves towards higher 

frequency when compared to the low frequency. Therefore, we set the deviation threshold 

ΔfH differently depending on the frequency band. This is achieved by setting ΔfH to a 

smaller value in the low frequency, and a larger value in the high frequency, which is shown 

as below:

Δ f H =
20, f < 500Hz
30, 500Hz ≤ f < 2000 Hz
45, f ⩾ 2000Hz

(7)

Moreover, if there is no harmonic peak detected at some order because of noise interference, 

we set f m
l = mF0′ and am

l = Al mF0′ .

B. Feature Extraction

After the harmonic structure is identified for a pitch candidate, the harmonic features for this 

pitch candidate can be extracted accordingly. The details of the feature extraction are 

described in terms of following five features: er, sr, hd, o2e, rh.
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Harmonic energy ratio (er): The harmonic energy ratio is the ratio between detected 

harmonic energy and the overall noisy spectrum energy. Mathematically, er is defined as:

er =
∑m = 1

M c · am
l 2 · ∫ − f w/2

f w/2
Ws( f ) 2d f

∫ 0
f max As( f ) 2d f

, (8)

Where c is a scaling factor to derive the short-term harmonic amplitude, given the estimated 

long-term harmonic amplitude am
l . Here c is approximated as the length ratio between the 

long-term and short-term analysis windows. Ws( f )  is the amplitude spectrum of the short-

term analysis window, and fw is the band width of the corresponding main lobe. In addition, 

As(f) is the short-term spectrum vector of the original noisy speech, while fmax is the upper-

bound frequency of the spectrum used for pitch estimation. Note that we use the short-term 

rather than long-term spectrum for computing the er value on account of non-stationary 

noise which could vary significantly over the long-term frame. It is also important to note 

that a larger er value usually indicates a higher SNR of the identified harmonic structure 

given the particular pitch candidate.

SBH amplitude ratio (sr): SBH amplitude ratio is the ratio between the pitch candidate 

peak amplitude and the maximum peak amplitude of the SBH vector, which is calculated as 

follows,

sr =
Ssbh F0′

max Ssbh( f ) , (9)

where Ssbh is the SBH spectrum vector that is obtained with (4), and F0′ is a pitch 

candidate. For clean speech, if F0′ is a true pitch value, the maximum peak of SBH is 

expected to be located at the frequency of F0′ where multiple harmonics coincide after 

spectrum compression. For noisy speech, the peak at that F0′ frequency might not be the 

maximum one due to interference; however, its amplitude usually tends to be close to the 

maximum value. Therefore, a higher sr value usually indicates a higher likelihood the 

corresponding pitch candidate is a true pitch.

Harmonic frequency deviation (hd): The harmonic frequency deviation stands for the 

average frequency deviation of the estimated harmonic partials from the ideal harmonic 

frequencies for a particular pitch candidate. It is obtained as below,

hd = 1
M ∑

m = l1

lM
f m

l − mF0′ , (10)
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Where f m
l  is the estimated frequency of the mth order of long-term harmonic partial, and M 

is the number of overall harmonic peaks which are detected, l1 and lM are the lower and 

upper bounds of the harmonic order. If f m
l  is a true harmonic frequency for F0′, it should be 

as close as to mF0′, thus the difference f m
l − mF0′  tends to be close to 0. In other words, the 

smaller the value of hd, the more probable that the candidate F0′  is a true pitch candidate. 

Otherwise, if the value of hd is too large, which shows a high inharmonic feature, then the 

corresponding pitch candidate is not a true pitch.

Odd to Even harmonic energy ratio (o2e): The odd to even harmonic energy ratio 

represents the energy ratio between the odd order and even order of harmonics. It is 

calculated as follows,

o2e =
∑r = 1

R/2 a2r − 1
l 2

∑r = 1
R/2 a2r

l 2 , (11)

where a2r − 1
l  and a2r

l  are the detected odd and even order of the long-term harmonic 

amplitudes respectively, R is the total number of harmonic partials in the analysis frequency 

range, (0 – 4000 Hz). Since the speech spectrum envelope is smoothly distributed along the 

frequency range, the overall energy of the odd order and even order of harmonics ought to be 

equivalent to each other. In theory, if o2e is significantly less than 1, then there is a high 

possibility that a half-pitch error has occurred. If o2e is significantly greater than 1, the 

corresponding pitch harmonics could belong to the noise interferences. Therefore, the use of 

o2e is able to control the half-pitch error rate as well as suppress the influence of noise 

interference.

Ratio of identified harmonic partials (rh): The ratio of identified harmonic partials 

denotes the ratio between the number of detected harmonic partials and the ideal overall 

number of harmonic partials distributed in the analysis frequency range. The calculation of 

rh is presented in (12),

rh =
NH

f max/F0′
, (12)

Where f max/F0′  is the overall ideal number of harmonics distributed below fmax, and ·

denotes the floor approximation to the closest integer number. Nh is the number of 

harmonics eventually estimated according to the harmonic structure extraction procedure 

proposed in Section IV-A. If there is a high ratio of harmonic partials identified for a 

particular pitch candidate, it indicates less noise interference within the speech harmonic 

structure. Thus, the corresponding pitch candidate is more likely to be the true pitch for the 

current frame.
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C. Feature Analysis

The five harmonic features obtained from Section IV-B are complementary to each other in 

representing the characteristics of the pitch candidates. Fig. 4 and Table I present an example 

to illustrate the harmonic structure as well as the feature values for different pitch 

candidates. The signal frame used here is extracted from an utterance by a female speaker in 

the TIMIT database. Fig. 4(a) shows three different pitch candidates which are obtained 

from the SBH spectrum. The true pitch of this frame is equal to 241 Hz, shown as the third 

spectrum peak, which was estimated beforehand from the corresponding clean speech 

signal. The other two candidates (121 Hz and 81 Hz) are 1
2  and 1

3  of the true value 

respectively. These two incorrect candidates are very likely to be included in the potential 

pitch candidate list. In fact, some high SBH spectrum peaks occur at the frequencies equal to 
1
n  of the true pitch (n is a positive integer number). Fig. 4(b)–(d) present the identified 

harmonic structures for each pitch candidate. Fig. 4(b) demonstrates the harmonic structure 

for the correct pitch candidate, while Fig. 4(c) and (d) are for the two incorrect pitch 

candidates. It can be seen from Fig. 4(b) that the harmonic partials estimated for the true 

pitch candidate precisely fit with the original clean speech spectrum. However, in Fig. 4(c) 

and (d), the noise spectrum peaks are incorrectly detected as the target speech harmonic 

peaks. Especially in Fig. 4(c), all odd order of harmonic peaks are valleys indicating half-

pitch errors.

Table I lists the harmonic feature values for the above three F0 candidates. It can be seen 

from Table I that the true pitch candidate has a minimum hd value, a maximum sr value, and 

a minimum er value. The rh value is 1, which is the same as the other two candidates. The 

o2e value is 1.54, and its absolute difference from “1” lies as the second among the three. 

Alternatively, the incorrect pitch candidate with a frequency of 81 Hz (1
3  of the true value) 

has the maximum er value among the three scenarios. An equivalence of calculating the er 
feature is the mean square error (MSE) estimation which is also used to derive the pitch 

value from the spectrum amplitude difference measure [45]–[47]. It indicates that larger the 

value of er for the candidate, the more energy is related to the pitch harmonics, and thus 

more likely the pitch candidate is considered to be the true pitch. However, this procedure 

neglects the distribution characteristics of the speech harmonics. For example, a large er 
value could be a result of a number of noise spectral peaks, which have been mis-labeled as 

harmonic partials. In such case, the detected harmonic structure identified with the 

corresponding pitch candidate will not follow the speech spectrum distribution. Therefore, 

target pitch selection cannot be determined by merely the er feature or based on the only 

MSE metric. Instead, we propose a combination of more features regarding both the energy 

intensity and the harmonic structure envelope shape to avoid such sustained errors.

In addition, we compute the mutual information (MI) between each feature set and the 

corresponding pitch candidate salience. If the pitch candidate differs from the true pitch 

within 20%, the pitch candidate salience is set to 1, otherwise to 0. The MI results are shown 

in Fig. 5. From Fig. 5 we see that among the five harmonic features, sr has the maximum 

mutual information, er and hd have equivalent but lower MI value. In addition, rh has the 

lowest MI value.
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D. Pitch Classification based on Neural Network

Neural networks are often used to estimate or approximate an unknown function. With 

hidden layers containing both linear and sigmoid nodes, neural networks are able to model 

complex nonlinear relationships. In this section, we propose to address the pitch selection 

problem through pitch candidate classification based on feed-forward neural network. For 

each frame, we attempt to classify pitch candidates into pitch and non-pitch categories. The 

harmonic features extracted in Section IV-B are combined to form a collective input vector 

([er sr hd o2e rh]) for neural network processing/classification. This is referred to as 

HarFeature vector in the rest of the paper. There is a single output from the neural network 

which indicates pitch candidate salience.

In the training phase, the neural network is established to model the relationship between 

input HarFeature sets and output pitch saliences. The output value is set to either 0 or 1, 

denoting either a false pitch or a true pitch value respectively. Specifically, the output is 

assigned according to the comparison between the pitch candidate and ground truth pitch 

value. If the pitch candidate differs from the ground truth pitch within 20%, it will be 

considered as true pitch, and the output will be set as 1 accordingly, vice versa. The 

objective function is set as minimum mean square error. The connecting weights between 

each layer in the neural network are obtained based on back-propagation [48]. In the testing 

phase, the input feature vector for a pitch candidate generates an output value between 0 and 

1. The greater the output value, more probable the pitch candidate is a true pitch. For each 

testing frame, the pitch candidate with the maximum output is considered to be most 

probable as the true pitch value.

E. Temporal Continuity Constraint

In the testing phase of neural network classification, multiple pitch candidates might have 

similar output values which are close to the maximum. In this case, it is difficult to 

determine which pitch candidate to select in a single frame. In order to solve this problem, 

we perform pitch contour tracking based on temporal continuity constraint. Since speech is 

continuously produced by the human vocal system, a continuity constraint will ensure 

natural F0 contour. We model the pitch tracking with a Hidden Markov Model (HMM), 

which is a practical statistical tool for modeling time sequences [38] and has been used by 

previously pitch contour tracking very successfully [20], [21]. The problem of pitch contour 

tracking is then interpreted as, given the observation sequence, we attempt to estimate the 

hidden state (F0) sequence. HMM details are shown as follows.

i) The observation sequences are defined as the values of pitch candidates paired 

with their corresponding harmonic feature vectors, denoted as O = o1, o2, ..., oT. 

Each observation component ot is composed of {Vt, F0t}. Specifically, F0t 

denotes the pitch candidate vector in the tth frame, and the ith element of F0t 

corresponds to the ith pitch candidate F0t
i . In addition, Vt denotes the 

HarFeature matrix in the tth frame, where the ith row elements vt
i  are 

comprised of the HarFeature vector [er sr hd o2e rh] for the corresponding pitch 

candidate F0t
i .
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ii) The hidden state sequences, denoted as q = q1, q2, ..., qT, are the F0 contour 

vector, which are in the range from 50 Hz to 400 Hz. The frequency resolution 

in the state space is set as 1 Hz/state, therefore the hidden states are {50 Hz, 51 

Hz, 52 Hz, ..., 400 Hz}. The total number of the hidden states is 351. 

Nevertheless, in each frame, there are limited amount of pitch candidates 

generated (Section III-B), hence the computational complexity stays reasonable.

iii) The state transition probability array A reflects the conditional probability of the 

current pitch state dependent on the previous state, ai, j = p qt
i /qt − 1

j . Here, ai,j is 

obtained as the probability of pitch difference from the previous frame to the 

current frame in the logarithmic scale, given by:

ai, j = p(∇logF0) = p logd F0t
i − logd F0t − 1

j , (13)

where the basis d is set empirically to 1.5 to ensure the quasi-linearity of pitch change along 

a logarithmic scale across the pitch frequency range. Accordingly, the state transition 

probability distribution is learned as a priori based on a Gaussian mixture model (GMM, 2 

mixtures) from the speech database: Keele [49] and CSTR [50]. Both Keele and CSTR 

datasets have ground truth pitch values. The GMM probability distribution of the spread of 

∇logF0 is presented in Fig. 6. It can be seen from Fig. 6 that the maximum peak of the log-

frequency difference distribution is below 0, which indicates that the overall pitch trend is 

decreasing during neutral speech production (the spoken language in the database is British 

English). The parameters of the GMM are: w1 = 0.9268, μ1 = −0.0131, σ1 = 0.0023; w2 = 

0.0732, μ2 = −0.0882, σ2 = 0.1562.

iv) The observation probability B reflects the likelihood of the current observation 

ot being produced by a specific state q. In our case, the state qi is equal to one of 

the pitch candidate value F0t
i in the corresponding observation sequence. In 

addition, the observation probability is equal to the output of the neural network 

given the pitch candidate and the corresponding HarFeature vector obtained in 

Section IV-D, shown below,

b
qi ot = ONN V t

i, qi , qi = F0t
i (14)

where ONN denotes output from the neural network when the input feature vector is V t
i and 

the corresponding pitch candidate is F0t
i. In addition, i denotes the index of pitch candidate 

in the tth frame.

v) Initial state distribution π is defined as the observation probabilities of all the 

pitch candidates in the first frame of a speech segment.
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Once the above HMM parameters Λ = (A, B, π) are obtained, the Viterbi algorithm is used 

as a dynamic programming solution [51] to estimate the optimal pitch contour. The Viterbi 

algorithm is given as follows,

q = argmax
q1, q2, …, qT

p q1, q2, …, qT Λ , o1, o2, …, oT

= argmax
q1, q2, …, qT

p o1, o2, …, oT Λ , q1, q2, …, qT

· p q1, q2, …, qT Λ ],

(15)

Where p o1, o2, …, OT | Λ , q1, q2, …, qT  and p q1, q2, …, qT | Λ  are derived from the 

observation probability B and the state transition probability A respectively.

Finally, with the temporal continuity constraint in place, a smooth pitch contour can be 

obtained with greater noise resistance performance. At this point, we have completed the 

formulation of the overall pitch estimation algorithm.

IV. Experiment and Results

A. Evaluation Database

In order to evaluate performance of the proposed pitch estimation method, we use the Keele 

database [49] and CSTR database [50]. Both databases provide ground-truth pitch labels, 

which can be used as a reference for performance assessment. The Keele database contains 

10 long English sentences spoken by five female and five male British English speakers, 

with a total duration of about 9 minutes. The CSTR database contains 100 English 

utterances, spoken by both a female and a male speaking British English. The total duration 

of the CSTR database is about 7 minutes.

We use six types of noise to simulate naturalistic noisy environments, including babble 

noise, exhibition noise, HF (high frequency)-channel noise, restaurant noise, street noise, 

and white noise [52], [53]. For each noise type, the SNR levels are set from – 10 dB to 20 

dB in steps of 5 dB.

B. Evaluation Metrics

Pitch estimation performance is evaluated using gross pitch error (GPE) defined as:

GPE =
Nerr
Nv

× 100%, (16)

where Nerr denotes the number of frames where the incorrect pitch estimation occurs, and 

Nv denotes the total number of voice frames. The incorrect estimation refers to the cases that 

the estimated pitch deviates from the true value by more than 5%.
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C. Algorithm Parameter Settings

All speech and noise signals are first re-sampled at 16 kHz. Each sentence is partitioned into 

overlapping frames with a long-frame length of 80 ms, and a short-frame length of 30 ms 

respectively. The sequential frame shift is set to 10 ms. A 16000 point FFT is applied to 

calculate the frequency spectrum which generates a frequency resolution of 1 Hz per FFT 

point. This frequency resolution can ensure a lower variance of pitch estimation. For higher 

computational efficiency, we could resort to down-sampling the noisy speech, or use less 

FFT points combined with an interpolation stage to obtain a similar frequency resolution.

Fig. 7 shows the corresponding neural network architecture setting. From Fig. 7 we see that 

the neural network is comprised of five inputs which are the five harmonic features, three 

hidden layers, and one output which is the pitch salience of a specific pitch candidate. The 

first hidden layer is comprised of 10 linear units. The second and the third hidden layers 

contain 6 and 5 sigmoid units respectively. All the layers in the neural network are fully 

connected.

In the training stage, we use the Keele database mixed with babble noise at SNR of 5 dB as 

the training data. In the testing stage, both Keele and CSTR databases are mixed with 

different types of noise, and are used to assess how well our algorithm generalizes to unseen 

data. In the case of Keele database, we have five groups of evaluation sets. In each 

evaluation set, the features extracted from eight sentences (4 female + 4 male) were used to 

train the neural network model, and the remaining two sentences (1 female + 1 male) were 

used for test. In this way, all training and testing data were non-overlapping. Five groups of 

calculations were carried out, and the average result was calculated across all groups for 

each noisy condition. For CSTR database evaluation, the same neural network model trained 

with one of the above five groups of Keele data was used for test. In order to obtain an 

optimal iteration time for neural network training, we used the cross validation paradigm. In 

our experiments, 30 iterations yielded the best results.

The proposed algorithm was compared with five state-of-the-art pitch estimation methods 

including SAcC [35], JinWang [21], PEFAC [16], RAPT [7], and YIN [8]. Our proposed 

algorithm is denoted as HarFeature in this section. Among the comparing methods, SAcC is 

a supervised method, and the rest are unsupervised methods. The training data is set the 

same between SAcC method and the proposed HarFeature method. We set the analysis 

window size differently for each comparing method in order to maximize each method’s 

performance. Specifically, the window size is set as: JinWang −20 ms, SAcC −25 ms, 

PEFAC −90 ms, RAPT −30 ms, YIN −33 ms. From the above window size setting we can 

observe that frequency domain based pitch estimation methods (PEFAC and HarFeature) 

need a longer analysis window than time domain based methods to reach the maximum 

performance. The reason is that frequency domain methods require longer frame to achieve 

higher frequency resolution for discriminating the target harmonics from noise. Furthermore, 

except YIN, the rest of the methods perform post-processing for pitch contours based on 

temporal continuity.
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D. Experimental Results

We present the gross pitch error (GPE) results for the Keele database and the CSTR database 

in Figs. 8 and 9 respectively. From Figs. 8 and 9, we see that the proposed HarFeature 

method consistently outperforms the other comparing pitch estimation algorithms in most of 

the noisy conditions. The results also show that the proposed pitch estimation method 

generalizes well to unseen noise in the training set in terms of both speech and noise 

database. At the SNR level of −10 dB in babble and street noise conditions, PEFAC has 

slightly lower GPE score than HarFeature. PEFAC has the advantage of normalizing the 

noisy speech spectrum with the long-term average speech spectrum, which is effective in 

controlling high level narrow-band noise. Moreover, YIN algorithm performs as well as the 

proposed HarFeature method at higher SNR levels (≥ 10 dB) in most of the conditions. 

However, at the lower SNR levels (≤ 5 dB), the performance of YIN method decreases 

rapidly. This indicates the effectiveness of the modified autocorrelation function features of 

YIN method in clean and moderately noisy environments. At lower SNR, the temporal 

continuity tracking might be able to improve the pitch estimation accuracy of YIN 

algorithm.

We also compute the average GPE gain of the proposed method over the second best 

performance across all six noise types at each different SNR level. For each SNR level, the 

GPE gain is obtained by reducing the GPE value of HarFeature from the GPE value of the 

second best performance approach. The average value is computed for all SNR levels. The 

results are shown in Table II from which we observe that the gain is high at low SNR levels, 

but decreases as the SNR level increases. The average gain across all noise types and all 

SNR levels are 6.43% and 5.23% for Keele and CSTR database respectively. Regarding the 

comparison methods, at lower SNR levels (≤0dB), PEFAC results are most comparable to 

the proposed method. However, at higher SNR levels (>0dB), YIN dominates the second 

best performance.

We also computed the logarithmic probability density function (log-PDF) for the ratio 

between the estimated pitch value and ground-truth values in white noise condition. Three 

SNRs are chosen here for evaluation, −10 dB, 0dB, and 10 dB. The log-PDF is shown in Fig 

10. Fig 10(a) shows the log-PDF results for the mixture of female and male pitch. From Fig. 

10(a) we see that there is a maximum peak near 0 dB, which indicates that most of the 

estimated pitch is equal to ground truth pitch values. We notice that there are some notable 

double-pitch errors. Particularly at the lower SNR levels, there are higher double-pitch 

errors. The log-PDF results are shown separately for female and male pitch in Fig. 10(b) and 

(c) respectively. Specifically, the results indicate that female pitch errors are mostly caused 

by underestimation. There is a seldom overestimation of female pitch due to the pitch 

frequency range restricted under 400 Hz. The double-pitch error for female speech is 

avoided because of this. On the other hand, both overestimation and underestimation is 

found in male pitch error. A peak of double-pitch errors is shown in the log-PDF 

distribution, however, half-pitch error is not shown. From this, we infer that the low half-

pitch error for both female and male speech might be the result of the design of the o2e 
feature.
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Figs. 11 and 12 show examples of pitch contour estimation for two utterances, spoken by a 

female and male talker respectively. We plot the pitch contour results estimated by the 

proposed HarFeature method and PEFAC method. The ground-truth pitch values and the 

original noisy speech spectrum are presented as well. Both speech utterances are selected 

from the Keele database and are contaminated with babble noise at SNR of − 5 dB, 0 dB and 

5 dB. The duration of both utterances is 2.5 secs. From Figs. 11 and 12, we observe that the 

pitch contours obtained from HarFeature method fit better to the reference pitch contour 

than the PEFAC method.

V. Conclusion and Discussion

In this study, we used robust harmonic features along with an advanced classification 

framework based on a neural network for pitch estimation. Our proposed method entitled 

HarFeature consisted of two processing steps. In the first step, pitch candidates were 

generated from the original noisy speech spectrum as well as SBH spectrum. In the second 

step, pitch candidate classification was performed based on a neural network solution using 

multi-dimensional pitch related robust harmonic features. Specifically, we proposed five 

robust features based on the energy intensity and spectrum envelope characteristics of the 

speech harmonic structure. By using these robust harmonic features, we were able to provide 

complementary information for neural network-based pitch classification. Furthermore, we 

utilized long-term spectrum analysis to enhance the frequency resolution, making the 

resulting speech harmonics more discriminative against the background noise. Finally, by 

applying pitch temporal continuity constraints, the resulting pitch tracking was based on an 

HMM to select the optimal and smoothed pitch contours. Experimental results demonstrated 

that the proposed HarFeature algorithm yielded substantially better performance (lower 

GPE) than the compared state-of-the-art algorithms across various types and levels of noise.

For future research, it would be possible to explore additional alternative features for 

harmonic characteristics of the speech signal, which could contribute to greater overall pitch 

estimation performance for noisy, or reverberant conditions.
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Fig. 1. 
Block diagram of the proposed two-stage pitch estimation algorithm.
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Fig. 2. 
An example of harmonic resolution comparison between short-term and long-term spectrum 

analysis of clean and noisy signal. Noise type is babble, and SNR level is 0 dB. (a) Short-

term spectrum. (b) Long-term spectrum.
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Fig. 3. 
Estimation process of the SBH spectrum. The original speech is compressed by factors 2, 3, 

4 and 5 times to obtain a summed up version SBH.
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Fig. 4. 
Illustration of pitch candidates and harmonic structure scenarios. (a) F0 candidate extraction. 

(b) Harmonic structure of the correct F0 candidates (241 Hz). (c) Harmonic structure of the 

wrong F0 candidates (121 Hz). (d) Harmonic structure of the wrong F0 candidates (81 Hz).
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Fig. 5. 
Mutual information (MI) between harmonic feature sets and pitch salience.
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Fig. 6. 
Probability density function (PDF) of pitch difference between adjacent frames in 

logarithmic scale
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Fig. 7. 
Neural network architecture setting. There are five inputs, one output and three hidden 

layers. The first layer has 10 linear units. The second and third layer have 6 and 5 sigmoid 

units respectively.
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Fig. 8. 
Gross pitch error results for Keele database in different noise types at multiple SNR levels. 

(a) Babble. (b) Exhibition. (c) Hf-channel. (d) Restaurant. (e) Street.
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Fig. 9. 
Gross pitch error results for CSTR database in different noise types at multiple SNR levels. 

(a) Babble. (b) Exhibition. (c) Hf-channel. (d) Restaurant. (e) Street. (f) white.
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Fig. 10. 
PDF of the ratio between estimated F0 and true F0 value (white noise). (a) Female + male. 

(b) Female. (c) Male.
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Fig. 11. 
F0 contours examples (female speech + babble noise). (a) Female + male. (a) snr = 5 dB. (b) 

snr = 0 dB. (c) snr = − 5 dB.
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Fig. 12. 
F0 contours examples (male speech + babble noise). (a) snr = 5 dB. (b) snr = 0 dB. (c) snr = 

− 5 dB.
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TABLE I.

Example Of Feature Values For Pitch Candidates

Five Harmonic Features

Pitch Candidate er sr hd o2e rh

241 Hz–Fig. 4(b) 0.46 1 5.67 1.54 1

121 Hz–Fig. 4(c) 0.55 0.92 8.55 0.33 1

81 Hz–Fig. 4(d) 0.70 0.83 10.76 1.30 1
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