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Continuous but not intermittent 
noise has a negative impact on 
mating success in a marine fish with 
paternal care
Eva-Lotta Blom1, Charlotta Kvarnemo 1,2, Isabelle Dekhla3, Sofie Schöld1,4, 
Mathias H. Andersson5, Ola Svensson 1,2,6 & M. Clara. P. Amorim   7,8

Anthropogenic underwater noise is a global pollutant of increasing concern but its impact on 
reproduction in fish is largely unknown. Hence, a better understanding of its consequences for 
this important link to fitness is crucial. Working in aquaria, we experimentally tested the impact of 
broadband noise exposure (added either continuously or intermittently), compared to a control, on the 
behaviour and reproductive success of the common goby (Pomatoschistus microps), a vocal fish with 
exclusive paternal care. Compared to the intermittent noise and control treatments, the continuous 
noise treatment increased latency to female nest inspection and spawning and decreased spawning 
probability. In contrast, many other female and male pre-spawning behaviours, and female ventilation 
rate (proxies for stress levels) did not differ among treatments. Therefore, it is likely that female 
spawning decisions were delayed by a reduced ability to assess male acoustic signals, rather than due 
to stress per se and that the silent periods in the intermittent noise treatment provided a respite where 
the females could assess the males. Taken together, we show that noise (of similar frequency range 
as anthropogenic boat noise) negatively affects reproductive success, particularly under a continuous 
noise exposure.

Abiotic and biotic sounds originating from water surface motion, rain, wind and biological communities are 
natural parts of the marine acoustic environment1,2. Organisms living in these habitats use this auditory scene 
to navigate, find suitable habitats, food, and to avoid predators3,4. In addition, many marine animals use acoustic 
signals to mediate social interactions, such as mate finding, territory defence or predator warning5–7. Acoustic 
cues and signals in water are unique as a sensory modality as aquatic sound propagate with little attenuation over 
long distances, at all depths, and irrespective of the water current direction8.

An additional and growing component in the marine soundscape is continuous broadband noise derived 
from human activities such as shipping and recreational boats, as well as impulsive sound sources such as pile 
driving and seismic airguns9. Anthropogenic noise therefore creates both constant and temporarily unpredictable 
fluctuations in the acoustic environment, leaving almost no marine area unaffected10. Known impacts on marine 
organisms range from severe to milder effects11–13 depending on noise intensity and temporal patterns of expo-
sure, and on the organisms’ hearing abilities14,15. There is growing evidence that marine mammals are affected 
by noise; noise can mask echolocation and acoustic communication and possibly lead to stranding events14,16. In 
fish, noise can have effects on larval development17, foraging success18 and predator avoidance19. Data on marine 
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invertebrates are still scarce, but point to detrimental effects of noise exposure20 including impaired development 
and increased mortality21.

Detrimental effects of noise on reproductive success have been demonstrated in amphibians and birds22,23 
and recently also in teleost fish24–26. Despite an increasing number of studies in fish there is a lack of information 
regarding the direct impact of noise on fitness, such as mating success or the number of surviving offspring24. In 
the long run, such an impact would affect both individual fitness and population21.

Here, we examine how exposure to continuous and intermittent broadband noise affects fitness related traits 
in the common goby, Pomatoschistus microps, a small and very abundant marine fish that plays a relevant role in 
the coastal ecosystems of the north-eastern Atlantic region, including the Baltic and the Mediterranean Seas27,28. 
Species of the genus Pomatoschistus are well-established model systems for bioacoustics and behavioural ecology 
studies26,29. Male common gobies produce a sound as part of their courtship29. Thus, acoustic communication 
between the sexes is likely to be impaired under noisy conditions. Other stereotypical aspects of their reproduc-
tive behaviour include male nest-building and nest defence, and paternal care29,30. In this study, we quantified key 
behaviours related to reproduction in the common goby in aquaria under three experimental noise treatments, 
continuous noise, random intermittent noise and control (no noise added). The measured behaviours were male 
nest-building, latency to male and female activity (swimming), proportion of time males spent on pre-spawning 
behaviour (including courtship), latency to female courtship and nest-inspection, female ventilation rate, latency 
to pairs spawning and probability of spawning. Many of these behaviours can be used as proxies for stress, in 
particular ventilation rate, but also male nest building and latency to activity by both sexes31,32; whereas e.g. delays 
in female nest inspection, courtship and pair spawning may also result from impeded acoustic communication 
between the sexes. We predicted that exposure to continuous and intermittent noise would negatively affect both 
pre-spawning behaviour and mating success, but that continuous noise would be more detrimental than inter-
mittent noise as continuous noise presents a higher cumulative sound exposure level as well as no periods that 
allow acoustic communication.

Results
Male behaviour: nest building and pre-spawning behaviours were not affected by noise treat-
ment in 2015.  We tested the effect of noise treatment on male nest building effort, based on sand cover after 
12 h exposure for single males. No effect of treatment on nest building scores was found (mean ± SD (median); 
control 1.7 ± 0.9 (1), n = 28; intermittent noise 1.5 ± 0.7 (1), n = 32; continuous noise 1.5 ± 0.7 (1), n = 28; 
Kruskal-Wallis, χ2 = 0.35, p = 0.83). Treatment did not affect latency to male activity (survival analysis, χ2 = 1.17, 
df = 2, p = 0.55; Fig. 1a) or proportion of time spent on active pre-spawning behaviour, including visual courtship 
(estimated marginal mean (proportion), 95% Wald confidence interval; control 0.07, 0.04–0.13, n = 28; inter-
mittent noise 0.08, 0.04–0.14, n = 32; continuous noise 0.14, 0.07–0.27, n = 28; generalized linear model (GLM), 
Wald χ2 = 1.72, df = 2, p = 0.42).

Female behaviour: latency to nest inspection increased in continuous noise in 2015.  Treatment 
had no effect on latency to female activity (swimming) after having been released (survival analysis, χ2 = 4.47, 
df = 2, p = 0.11; Fig. 1b) or latency to female courtship (survival analysis, χ2 = 2.48, df = 2, p = 0.29; Fig. 1c). 
However, there was a significant effect of treatment on latency to nest inspection (survival analysis, χ2 = 8.74, 
df = 2, p = 0.013; Fig. 1d). Females in the control and the intermittent noise treatments inspected the male’s nest 
sooner than females in the continuous noise treatment (survival analysis, control vs continuous noise χ2 = 8.57, 
df = 1, p = 0.003; intermittent vs continuous noise χ2 = 4.18, df = 1, p = 0.04; control vs intermittent noise 
χ2 = 0.15, df = 1, p = 0.28). In addition, treatment had no effect on female ventilation rate (ANOVA mean ± SD 
gill movements per minute; control 64.0 ± 9.2, n = 27; intermittent noise 61.0 ± 11.1, n = 32; continuous noise 
60.2 ± 8.9, n = 27; F2,83 = 1.00, p = 0.37),

Latency to spawning increased in continuous noise in 2015.   When analysing if spawning occurred 
and was documented on video (i.e. the spawning occurred within the first 60 min), treatment had an effect on 
latency to spawning (survival analysis, χ2 = 6.42, df = 1, p = 0.04; Fig. 1e), such that pairs in the control treatment 
spawned significantly sooner and more often than pairs exposed to continuous noise (survival analysis, χ2 = 6.99, 
df = 1, p < 0.01). However, there was no significant difference in time to spawning between intermittent and con-
tinuous noise (χ2 = 3.43, df = 1, p = 0.06) or between the control and intermittent noise treatments (χ2 = 0.64, 
df = 1, p = 0.42).

Mating success decreased in continuous noise in 2015 and 2018.  When analysing mating success, 
measured in both 2015 and 2018, we found a significant effect of treatment on the proportion of males receiving 
eggs (estimated marginal mean, 95% Wald confidence interval; control 0.51, 0.41–0.60, n = 101; intermittent 
noise 0.54, 0.42–0.66, n = 61; continuous noise 0.20, 0.13–0.29, n = 96; GLM, Wald χ2 = 31.9 df = 2, p < 0.001), 
and no difference between years (estimated marginal mean, 95% Wald confidence interval; 2015: 0.38, 0.28–0.48, 
n = 98; 2018: 0.43, 0.35–0.52, n = 160; GLM, Wald χ2 = 0,62 df = 1, p = 0.43). Post hoc tests (LSD) showed a sig-
nificantly higher number of males receiving eggs in both the control treatment (p < 0.001) and the intermittent 
noise treatment (p < 0.001) compared to the continuous noise treatment. However, there was no significant dif-
ference between the control and the intermittent noise treatments (p = 0.64) (Fig. 2).

Discussion
In this study, we found detrimental effects of broadband noise on mating success in male and female common 
gobies. Specifically, testing different noise regimes, we found that continuous noise increased latency to female 
nest inspection, latency to pair spawning, and decreased spawning probability, compared to the other treatments. 
Other aspects of male behaviour (nest-building, latency to male activity and proportion of time spent on male 
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Figure 1.  Effect of noise on latency to behaviours in the common goby (Pomatoschistus microps). Treatment 
effects (control, intermittent noise and continuous noise) on (a) latency to male activity, (b) latency to female 
activity, (c) latency to female courtship, (d) latency to female nest inspection and (e) latency to spawning. The 
Kaplan-Meier survival curves show the cumulative percentage of individuals that show a behaviour over time, 
with 100 indicating that no individual has shown the behaviour. Females in the control and the intermittent 
noise treatments inspected the male’s nest sooner than females in the noisy treatment (p = 0.003 and p = 0.04). 
Latency to spawning was significantly shorter in the control treatment compared to the continuous noise 
treatment (p < 0.01). All other tests were non-significant. control n = 28, intermittent noise n = 32, continuous 
noise n = 28.
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pre-spawning behaviour) and female behaviour (latency to female activity, latency to female courtship and ven-
tilation rate) remained apparently unaffected. Detrimental effects of noise on parental behaviour24, egg cortisol 
levels25, male courtship and spawning success26 have recently been demonstrated in teleost fish. By studying both 
females and males, our study adds further evidence of a direct impact of aquatic noise on mating success in teleost 
fish and highlights a difference in severity between intermittent and continuous noise. Furthermore, our results 
suggest that female spawning decisions were delayed due to a reduced ability to assess male acoustic signals. That 
said, courtship and spawning are pair activities and it is therefore difficult to ascertain which sex (if any) was more 
affected by the noise. However, at least based on our chosen endpoints, it appears that the choosing part (females) 
in the communication dyad, was more affected by noise treatment than the chosen part (males).

Latency to spawn increased with noise exposure and fewer pairs spawned in the continuous noise treatment 
compared to the control and the intermittent noise treatment. Since males built nests and courted similarly across 
treatments, this suggests that females were more affected by noise than males were. In fact, females in the noisy 
treatment had a longer latency to nest inspection, which is an important precursor to spawning. However, all 
other potential proxies of stress in females (e.g. ventilation rate and latency to activity) did not differ between the 
treatments. Therefore, we suggest that the noise hampered the pairs’ acoustic communication, which is an impor-
tant part of courtship in this species29. If females are unable to assess male condition or other qualities revealed 
by courtship sounds33, due to continuous noise, they would likely either not spawn, or delay spawning while 
gathering more information on male quality through other cues. Congruently, in another species of the same 
genus, the sand goby (Pomatoschistus minutus), females appear to only start egg laying after the male produces 
courtship sounds34. In addition, continuous noise decreases acoustic signalling in breeding males in the painted 
goby (Pomatoschistus pictus)26. Therefore, we interpreted results as female spawning decisions being delayed by a 
reduced ability to assess male acoustic signals26,35, rather than due to stress per se.

An increased time to spawning carries costs to both sexes. Because both males and females spawn repeatedly 
during their short single season36 an increased interspawning interval decreases both their reproductive rate 
and lifetime reproductive success. Gobies are also food for other fish, and arguably, a prolonged period of mate 
search and courtship is likely to expose the gobies to predators for a longer time, and hence increase the risk 
of predation37. Curbed communication may also carry costs if females spawn with males they would not have 
chosen otherwise. This has been suggested to be the case in the sand goby during turbid conditions when visual 
communication is hampered38. In Pomatoschistus, courtship sound has been shown to correlate with male condi-
tion33, which in turn correlates negatively with filial cannibalism i.e. positively with hatching success30. Therefore, 
sub-optimal female choice could decrease not only indirect (genetic) benefits but also direct benefits in the form 
of paternal care and reproductive success.

In this study, we investigated the effects of noise pattern, by comparing continuous and intermittent noise. 
We found that continuous noise was detrimental for latency to female nest inspection, latency to spawning and 
for mating success, whereas this was not the case for the irregular intermittent noise. Masking of the acoustic 
communication may at least partially explain why continuous noise had a higher impact on the common goby 
than intermittent noise. As fish in the intermittent treatment had silence 50% of the time, it is likely that females 
had a chance to assess the male through acoustic cues during this time. In contrast to our results, Nichols and 
colleagues39 found that intermittent noise (speaker playback of boat noise of similar frequency range as in the 
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Figure 2.  Effect of noise on mating success in the common goby (Pomatoschistus microps). Treatment effects 
(control, intermittent noise and continuous noise) on mating success in year 2015 and 2018 measured as the 
percent of males receiving eggs. A significantly higher number of males received eggs in both the control 
treatment (2015: 19 out of 34 males; 2018: 33 out of 67 males, p < 0.001) and the intermittent noise treatment 
(2015: 16 out of 33 males; 2018: 17 out of 28 males, p < 0.001) compared to the continuous noise treatment 
(2015: 4 out of 31 males; 2018: 16 out of 65 males). However, there was no significant difference between the 
control and the intermittent noise treatments (p = 0.64) or between years (p = 0.43).
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present study) caused a greater stress response (cortisol concentration) than continuous noise on juveniles of the 
giant kelpfish (Heterostichus rostratus), and suggested that variability in the acoustic environment was a likely 
for the effect. In contrast, we did not find evidence that common gobies were stressed or otherwise sensitive 
to the noise exposure treatment, except for potential masking of courtship sounds. Besides studying different 
species, age and context32 the difference in results between our studies might be due to methodological differ-
ences. For example, the acclimation (20 h) in Nichols et al.39 differed from the present study (36 h for males, 
1 h for females), and they had considerably less noise exposure (noise 5–12 s and off-time 1-120 s ) than in our 
study (noise 20–600 s, with a total off-time of 50%). Hence, the long total exposure in our study may have caused 
habituation32,40, and the relatively long periods of up to 10 minutes of noise may also have lessened the effects of 
unpredictability of the intermittent noise exposure41.

Despite the fact that the noise used in our study was broadband and of similar frequency range as boat noise 
(with most energy below 1 kHz)19,42, it is important to note that noise experiments carried out in aquaria cannot 
reliably mimic exposure to real boat noise in nature. The acoustic field is more complex and particle motion, a 
component in sound waves that fish and invertebrates are sensitive to40, occurs in a more complex pattern in 
aquaria than in the open sea43. Nonetheless, as studies carried out in nature present challenges regarding both 
control and manipulation of experimental conditions, complementary approaches including laboratory based 
studies have the potential to increase scientific progress44. In addition, a recent comparison between indoor and 
outdoor noise experiments on the European sea bass (Dicentrarchus labrax)45 suggests that similarities can be 
found between nature and laboratory studies. Although our findings should not be directly extrapolated to fitness 
consequences in nature, they represent evidence of the impact of noise exposure on fish mating success and high-
light the need to examine the effects of man-made noise on fish behaviour and reproduction.

In conclusion, our study shows that continuous noise can have an even broader impact on teleost fishes than 
previously appreciated17,19,45,46, affecting the reproductive success of adult fish, and that silent periods in the inter-
mittent noise treatment may provide a respite. Still, more work is needed in the future to examine how different 
sources of anthropogenic noise may affect reproductive success in different species of fish in nature.

Materials and Methods
Study species.  The common goby, Pomatoschistus microps (Krøyer), is a small (3–6 cm)47 marine fish dis-
tributed in lagoons, coastal areas and estuaries. Over the course of their single breeding season these short-lived 
fish (1–2 years) can reproduce repeatedly with different mates36. The species is characterized by male-male com-
petition, female choice and a resource-based mating system where males use mussel shells or similar substrates 
as nest material48. Males attract females by visual courtship and lead the female to the nest29. If the female enters 
the nest, the male produces sound, suggesting it functions as vocal courtship29. The female leaves the nest after 
spawning and the male provides exclusive paternal care until hatching36. The courtship sound contains a series 
of low frequency pulses at ~180 Hz49 which potentially can be overlapped and masked by many anthropogenic 
sound sources4. It is not fully understood why male gobies produce sound during courtship, but it is likely it car-
ries information that allows the female to assess male condition or other qualities29,33,50.

Experimental design.  The experiment was conducted at Sven Lovén Centre for Marine Infrastructure 
Kristineberg on the west coast of Sweden (58°15′N, 11°27′E) between May and July 2015 (all aspects of the study) 
and May to August 2018 (mating success only). All fish were caught by hand trawling at a depth between 0.2 and 
0.5 m in bays nearby the station. The fish were housed in 50 L storage tanks and separated by sex, for ≥7 days 
before the experiment started. We conducted the whole experiment in an outdoor greenhouse which guaran-
teed natural light conditions. All aquaria had a continuous flow of oxygen saturated (fully or slightly over satu-
rated) natural seawater (salinity 22–31 ppt), and water temperature was measured daily (2015: 11–12 °C, 2018: 
11–16 °C). The fish were fed every second day with commercial fish food granules (Nutra HP, Skretting) and 
frozen Artemia sp.

We used 30 experimental aquaria (20 L). To insulate the aquaria from ground borne vibrations, each aquarium 
was placed on top of a 20 cm high rubber cylinder (2015) or wooden planks (2018) on a drainage bench. In both 
years, the treatments were run simultaneously, but on different benches to avoid interference. Aquaria were sepa-
rated by opaque screens, to avoid visual interaction between fish in adjoining replicates.

Each aquarium contained sifted sand and was equipped with half a clay flower pot (Ø 65 mm) as an artificial 
nest site. The pots were fitted with a plastic sheet lining the ceiling for females to lay eggs on. We measured total 
body length of the fish to the nearest mm (2015: males: n = 88, L T (mean ± SD): 41 ± 4.0 mm; females n = 176, L T: 
40 ± 3.8 mm, 2018: males: n = 159, L T: 40 ± 3.8 mm; females n = 318, L T: 41 ± 4.0 mm) before trials.

To create artificial noise, we placed an enclosed polypropylene tube (Ø 56 mm) filled with 0.1 l of soft airgun 
balls, vertically in the right rear corner of each aquarium (Fig. 3) and tumbled the soft airgun balls by bubbling 
compressed air through an airstone at the bottom of the tube. Apart from being inexpensive, advantages were 
avoiding electromagnetic fields from speakers which would have required an additional control21 and that the 
noise did not transmit to control tanks. Because of the continued flow of oxygen saturated water into the exper-
imental tanks and that the airstone was inside the tube and not in direct contact with the water in the aquarium, 
the treatments were not expected to affect oxygen levels. This was confirmed in 2018 when we measured oxygen 
saturation it in a subset of the replicates in the control and continuous noise treatments. The oxygen levels were 
typical of the set-up (mean ± SD, control 103 ± 6%, continuous 106 ± 4%) and did not differ between the treat-
ments (t-test, t = 1.30, df = 29, p = 0.20).

In the continuous noise and the control treatment the artificial noise was always on or off, respectively. In the 
intermittent noise treatment, the air pump was controlled by a timer that was programmed to create random on 
and off periods ranging between 20–600 s with a total on-time of 50%. All treatments were exposed to low levels 
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of airborne ambient noise, mainly caused by seagulls, wind, and human activities outside the greenhouse. When 
the fish were in the experimental aquaria they were exposed to the assigned treatment the entire time, but undis-
turbed by humans between measurements.

Males were randomly assigned to the three experimental treatments (control, intermittent and continuous 
noise), in the evening. The following morning, we took a picture of each nest for later estimates of nest building. 
After a total exposure time of 36 h, each male was presented a transparent plastic cup with two ripe females. 
The females were left in the cup for 1 h to acclimatise before they were released in the aquarium and allowed to 
interact freely with the male for 12 h. Behavioural interactions were recorded the first 60 min after release with a 
camcorder (Canon Legria HF M56, Ōta, Tokyo, Japan) placed in front of the aquarium at a 90 cm distance. After 
12 h the females were removed, and the nest was examined for eggs. New replicates were started in aquaria as they 
became available.

All fish used in the experiment were released into their natural environment after the trials. This study com-
plies with the Swedish law and Animal Behaviour guidelines for the treatment of animals in behavioural research 
and teaching. All experimental protocols were approved by the Gothenburg Ethical Committee on Animal 
Research (Permit Numbers Dnr 2013-86, Dnr 5.8.18-03920/2018).

Acoustic measurement.  Within the species hearing range (<1 kHz)51 the artificial noise generated by 
this system had elevated energy on average 34 dB higher than the control (root-mean-square sound pressure 
levels, SPLs) (Fig. 4). The noise was of similar broadband character as many anthropogenic noise sources (e.g. 
boat noise42,52). Figure 4 depicts the power spectrum measured under noise and control conditions at four loca-
tions inside the experimental aquaria. Sound was registered using a calibrated hydrophone (HTI-96-MIN with 
pre-amplifier, High Tech Inc., Gulfport MS; sensitivity −165 dB re 1 V/μPa, frequency range 0.02–30 kHz) con-
nected to a digital audio recorder (Song Meter SM2+, Wildlife Acoustics Inc., Maynard, US, sampling frequency 
24 kHz). Note that the frequencies of interest in the noise treatment should be unaffected by tank properties as 
they fall well below its resonant frequency (4.9 kHz)53. For comparison, we recorded the natural soundscape close 
to the bottom (at 0.5 m depth) in the bay where fish were collected using the above equipment with the same 
recording setting (gain level). Noise in the control treatment had similar or less energy than the natural sound-
scape (Fig. 4).

Data analysis.  Nest building effort by the male can be scored based on how well the nest site (flower pot, 
mussel shell, or similar) is covered with sand30,54,55. In this study, nest building was judged visually from photos 
taken after the first night when the male was alone, and it was scored as follows: 1 = the male had piled no sand 
on the pot, 2 = the male had piled sand on the pot but not covered it and 3 = the pot was completely covered with 
sand.

We measured the time of active pre-spawning behaviour by the males and time to male and female activity 
from the videos for the first 20 min using an event recorder (JWatcher + video 1.0; http://www.jwatcher.ucla.
edu) and scored the duration of male and female behaviour. The observers were blind to the treatment. A pilot 
analysis showed that the proportion of time males and females were active during this subset of time did not 
differ from the whole hour. We defined ‘male active pre-spawning behaviour’ as either male courting the females 

Figure 3.  Experimental setup used to test noise effects on common goby (Pomatoschistus microps) behaviour 
and reproductive success. The nest is in the middle of the aquaria with a male inside. A polypropylene tube, 
whit a lid in the bottom held in place by a net, in the right rear corner of the aquarium was filled with soft airgun 
balls. The airgun balls were bubbled with air in the noise treatments, either with a random intermittent or with a 
continuous temporal pattern. In the control treatment, the aeration of the airgun balls was always turned off.
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(with fin displays inside or outside the nest, or with lead swim towards the nest) and as nest building. We defined 
‘female active pre-spawning behaviour’ as females actively swimming to males and, presenting her belly (see Blom  
et al.)29 for a description of male and female behaviours). In addition, we measured latency to female courtship 
and nest inspection (i.e. the time it took for females to start courting the male and time to nest inspection) and 
female ventilation rate (number of gill movements per unit time). The number of female gill movements was 
counted for 30 seconds. We also measured the time to spawning for the fish that spawned within the 60-min 
video recording, which in this context is the moment when one of the females started to lay her eggs in the male’s 
nest. The pairs that spawned after 60 min, and therefore were not caught on video, were included in the analysis as 
non-spawners. Ventilation rate was used as a proxy for stress, because stress typically results in an increased 
demand of oxygen in response to increased metabolism, and to meet this increased demand, the heart has to sup-
ply more blood per unit time, which then has to be matched by an increased ventilation volume31,32. A drawback 
with ventilation rate is that it might underestimate total oxygen supply, since the latter is also affected by volume 
per gill movement, but an important benefit is that it can be measured from video recordings. Other behaviours, 
such as latency to activity by both sexes and nest building behaviour by males, may also reflect stress32 whereas 
delayed nest inspection, courtship or spawning may result either from stress or from impeded acoustic commu-
nication between the sexes.

Sample sizes and statistical analysis.  In this study, we had 98 replicates collected in 2015, and 159 repli-
cates collected in 2018, to measure mating success (based on presence or absence of eggs in the nests).

Number of replicates per treatment and year was: control treatment - 2015: 34 males; 2018: 67 males, inter-
mittent noise treatment - 2015: 33 males; 2018: 28 males and continuous noise treatment - 2015: 31 males; 2018: 
65 males. We used a subset of 88 replicates from 2015 for the behavioural analyses extracted from the 60-minute 
video recordings (control; males n = 28 females n = 55, intermittent noise; males n = 32 females n = 64, continu-
ous noise; males n = 29 females n = 54), although in a few cases for females from 2015, the n-values were slightly 
lower than that, as explained below.

In the statistical analyses of female behaviour, for each replicate we used the average for the two females. 
However, when analysing female ventilation rate (gill movements per unit time), we were not able to analyse all 
females e.g. because some were hiding in the sand. In these cases, the value of one female was used. However, 
in two replicates no females were possible to analyse. Female gill movements were normally distributed and 
analysed with an ANOVA. Male nest building effort (based on scored values of sand cover) was analysed with 
Kruskal-Wallis ANOVA. The duration of male active pre-spawning behaviour (including courtship) was analysed 
using generalized linear model (GLM) with a binomial distribution (robust estimator, link function logit). Male 
latency to activity as well as female latency to activity, courtship and nest inspection and latency to spawning were 
analysed using survival analyses with log-rank (Mantel-Cox) tests. We compared time to event (e.g. spawning) 
between treatments, considering the replicates without the measured behaviour as ‘no event’. Mating success 
(number of males that received eggs or not) was analysed with a GLM with binomial distribution (model-based 

Figure 4.  Assessment of noise output in the aquaria. (a) Power spectra for noise and control treatments shown 
for 0–1 kHz. Sound pressure level was on average 34 dB higher for noise than for control in this frequency range 
(36 dB for 0–12 kHz). For comparison, we have also included the sound spectrum recorded in the bay where 
fish were collected (natural soundscape). (b) Map of sound measurements 2015 within the aquaria. Noise levels 
were measured with a hydrophone, placed at four different locations in the experimental aquaria: (1) in the 
nest, (2) 10 cm in front of the nest, (3) 20 cm in front of the nest and (4) is 10 cm behind the nest, near the sound 
source (marked as a round grey circle). The four lines shown in (a) represent each of these four positions. All 
measurments were done without fish in the aquarium.
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estimator, link function logit) and treatment and year as factors. A non-significant interaction between treatment 
and year (p = 0.29) was removed from the model. GLMs are reported with estimated marginal means and 95% 
confidence intervals. Significant GLM tests were followed by pair-wise LSD post hoc tests and significant survival 
analyses by pairwise comparisons.

All statistical analyses were conducted in SPSS (IBM SPSS Statistics for Windows, Version 22.0. Armonk, NY: 
IBM Corp.), except for the survival analyses, which were performed using GraphPad Prism (version 6.0 h for 
Mac OS X, GraphPad Software, La Jolla California USA, www.graphpad.com). All model assumptions were met.
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