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Abstract

The pattern of molecular evolution varies among gene sites and genes in a genome. By taking into account the complex
heterogeneity of evolutionary processes among sites in a genome, Bayesian infinite mixture models of genomic evolution
enable robust phylogenetic inference. With large modern data sets, however, the computational burden of Markov chain
Monte Carlo sampling techniques becomes prohibitive. Here, we have developed a variational Bayesian procedure to
speed up the widely used PhyloBayes MPI program, which deals with the heterogeneity of amino acid profiles. Rather
than sampling from the posterior distribution, the procedure approximates the (unknown) posterior distribution using a
manageable distribution called the variational distribution. The parameters in the variational distribution are estimated
by minimizing Kullback-Leibler divergence. To examine performance, we analyzed three empirical data sets consisting of
mitochondrial, plastid-encoded, and nuclear proteins. Our variational method accurately approximated the Bayesian
inference of phylogenetic tree, mixture proportions, and the amino acid propensity of each component of the mixture
while using orders of magnitude less computational time.

Key words: variational inference, optimization, Bayesian mixture model, phylogenetics.

Introduction

Understanding the evolutionary variation of phenotypic char-
acters and testing hypotheses about the underlying mecha-
nism are some of the main concerns of evolutionary biology.
Because this variation needs to be interpreted as an evolu-
tionary history, accurately inferring the phylogenetic tree is
important. Otherwise, the uncertainty of phylogenetic infer-
ence must be taken into account to obtain an unbiased pic-
ture of evolutionary variation.

The increasing amount of available genomic data enables
reliable inference of phylogenetic trees. Because molecular
evolution is largely driven by nearly neutral or slightly delete-
rious mutations (Ohta 1973), this process is less prone to
convergent evolution than the evolution of phenotypic traits.
The pattern of molecular evolution is statistically formulated
by Markov processes. The pattern and rate of molecular evo-
lution are complex, however, depending on various factors
affecting mutation rates and functional constraints. To model
protein evolution, Thorne et al. (1996) introduced the con-
cept of hidden states of secondary structure to describe sites
of heterogeneity (Goldman et al. 1996; Jones et al. 1996;
Thorne et al. 1996). Koshi and Goldstein (1998) developed
a model of the physico-chemical properties of amino acids,
while Halpern and Bruno (1998) introduced a more advanced
model with position-specific amino acid frequencies.

Equilibrium amino acid frequencies, which reflect struc-
tural and functional constraints, vary among sites within
and among proteins. Interspecies comparative genomics
approaches can analyze a huge number of alignment

columns, but the number of taxa is often insufficient to esti-
mate individual position-specific amino acid frequencies. To
achieve a balance between variance and bias, Lartillot and
Philippe (2004) proposed a Bayesian nonparametric approach
based on a countable infinite mixture model, referred to as
the CAT model. This model specifies K distinct processes (or
classes), each characterized by a particular set of equilibrium
frequencies, and sites are distributed according to a mixture
of these K distinct processes. By proposing a truncated stick-
breaking representation of the Dirichlet process prior on the
space of equilibrium frequencies (Ferguson 1973; Green and
Richardson 2001; Ishwaran and James 2001), the total number
of classes can be treated as free variables of the model. A
hybrid framework combining Gibbs-sampling and the
Metropolis—Hastings algorithm has been developed to esti-
mate all parameters of the model (Papaspiliopoulos and
Roberts 2008).

Existing approaches cannot take full advantage of the CAT
model (Lartillot and Philippe 2004; Lartillot 2006), because the
computational burden is prohibitive for inference based on
large data sets. Even well-designed sampling schemes need to
generate a large number of posterior samples through the
entire data set to resolve convergence, and their convergence
can be difficult to diagnose. To provide faster estimation,
Lartillot et al. (2013) developed a message passing interface
(MPI) for parallelization of the PhyloBayes MPI program. By
implementing Markov chain Monte Carlo (MCMC) samplers
in a parallel environment, PhyloBayes MPI allows for faster
phylogenetic reconstruction under complex mixture models.
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New Approaches

Here, we propose an alternative approach, a variational
inference method (Jordan et al. 1999; Bishop 2006; Blei
et al. 2006; Hoffman et al. 2013). Variational methods,
originally used in statistical physics to approximate in-
tractable integrals, have been successfully used in a wide
variety of applications related to complex networks
(Gopalan and Blei 2013) and population genetics (Raj
et al. 2014; Gopalan et al. 2016). The basic idea of varia-
tional inference in the Bayesian framework is to approx-
imate the posterior distribution by a computationally
tractable function, called the variational distribution.
The variational parameter, which specifies the variational
distribution, is estimated by minimizing the Kullback-
Leibler (KL) divergence of the posterior distribution to
the variational distribution. As a result, the posterior dis-
tribution is estimated by numerical optimization without
invoking Monte Carlo simulation. To deal with the un-
certainty of tree topologies, we preserved the Gibbs sam-
pling algorithm of tree topologies (Lartillot et al. 2013). In
this article, we demonstrate that our algorithms are con-
siderably faster than PhyloBayes MPI while achieving
comparable accuracy.

Variational Inference of CAT-Poisson Model

In the CAT model, each site category has its own amino acid
replacement rate matrix. Instead of dealing with the general
time reversible Markov process, in this article, we focus on the
most popular CAT-Poisson model. This model takes account
of rate heterogeneity among sites, and also allows the pre-
ferred amino acids to vary among sites. It assigns the align-
ment columns to the categories of amino acid profiles, taking
account of uncertainty. Given the assignment to the category,
the process of molecular evolution follows the amino acid
version of the F81 model (Felsenstein 1981).

We denote the sequence data set by D. The CAT model
has parameters (@, Z). @ consists of branch lengths (1), site-
specific relative rates (r), the amino acid profile (equilibrium
frequency, ), the unit length of the stick (V), and the allo-
cation variable (z) of the Dirichlet process prior on these
profiles. The parameter = is the substitution mapping param-
eter. Variational inference approximates the true intractable
posterior distribution p(®, Z|D) by an element of a tractable
family of probability distributions g(®, Z|®), called the var-
iational distribution. As a variational distribution for the CAT-
Poisson model, we adopt Gamma distributions for the branch
lengths and the site-specific evolutionary rates, and a Dirichlet
distribution for the amino acid profiles (see Materials and
Methods for details).

The distribution is parameterized by free parameters,
called variational parameters ®. Variational inference fits
these parameters to find a distribution close to the true in-
tractable posterior distribution of interest. The distance be-
tween the distributions q(®,E|®) and p(®,E|D) is
measured by KL divergence:
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KLg(®, E|©)[p(®, E|D)]

= Eqllog {a(®, E[®)}] — Eq[log {p(®,E|D)}]
= Eqlog {q(®,E[O®)}] — Eqlog {p(D, P, 5)}]
+logp(D).

The term logp(D) in equation (1), which is the cause of
computational difficulty in Bayesian analysis, can be treated as
a constant term in numerical optimization to estimate the
variational parameter:

®" = argminKL[q(®, E|®)|p(®, E|D)].

(M

The variational inference maximizes the computational fea-
sible target function:

L[q(®,E[O)]

= Eqllog {p(D, @, E)}] — Eq[log {q(®, E[@)}].
Because logp(D) < 0 and
logp(D) = L[q(®, E|O)] + KL[q(D, E|O)|p(D, E[D)],

)

The equation (2) is called Evidence Lower BOund (ELBO;
Jordan et al. 1999).

It should be noted that, in the likelihood framework, a
maximum likelihood approach minimizes the KL divergence
from the true distribution to the model distribution (Kullback
and Leibler 1951; Akaike 1974). In contrast, a variational in-
ference minimizes the KL divergence from the model varia-
tional distribution to the true posterior distribution. Because
of asymmetry of KL divergence, the maximum value of ELBO
cannot be used for comparing candidate models of varia-
tional distributions. Currently, the standard model checking
process is to compare the important aspects of g*(®, E|®)
with those of MCMC runs by example data at the develop-
mental stage of the program.

An lllustrative Example in Phylogenetics

As an illustrative example, we estimate the posterior distri-
bution of the distance d between a pair of aligned sequences
D with the JC69 model (Jukes and Cantor 1969). Out of n
sites, the sequences differ at x sites. We assign a gamma prior
with « =1 and § = 1 for the distance d:

p(d) = Gamma(d|a, B) = %d“1eﬁd.

The likelihood of the JC69 model is given as:

T 1 G\ (1 3 g\
Dld) = (~— e #) (Z42e%) .
poit) = (G- 3¢%) (G+3¢%)

Given the prior and the likelihood, the posterior distribu-
tion is obtained as:

_ p(D|d)p(d)
PID) = 1 Dld)p(d)dd
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Fic. 1. The variational inference of the posterior distribution of distance d with JC69 model. The red curve is the estimated posterior distribution by

variation inference, and the blue curve is the true posterior distribution.

Because this illustrative model includes only a single free
parameter, the denominator can be accurately calculated by
numerical integration.

As the variational distribution for the posterior distribution
of d, we adopt a gamma distribution:

q(d) = Gamma(d]y, y").
The ELBO is written as follows:
Lla(d]7,7)]
= Eqllog {p(d, D)}] — Eqllog {q(d]y, ") }]
= Eqllogp(Dld)] + Eq[log p(d|o, )]
—Eqllogq(d|y, 7).

Therefore, variational parameters, y and }’, are estimated
by optimizing the value of the following:

Lla(d]y,7)]
= xkq [Iog <% - %egdﬂ
+(n —x)Eg {Iog <l + ieg")] ?3)

+ (o0 = 7)Eq[log (d)] + (' — B)Eq[d]
—7log (7") + log (F(y)) + const.

Here,

Y
,y/
E[log ()] = ¥() — log (7).

W(.) is the digamma function, the first derivative of the log
gamma function. The first term and the second term of
equation (3) are calculated by numerical integration. The
variational parameters y and y’ are estimated by maximizing
equation (3) numerically. For complex models with a large
number of parameters, mathematical expansions such as the

Taylor expansion (Ma and Leijon 2011; Ma et al. 2014) and
the Delta method (Braun and McAuliffe 2010; Wang and Blei

Eq[d] =

2013) are often applied to integrands so that explicit forms of
expectations are available.

Figure 1 shows the estimated posterior distribution of d for
the case of n= 1,000, x=100, « = 1, f = 1. The distribution
with the estimated parameters 7 and ' approximates the
true posterior distribution accurately.

Results

Runtime Performance

Table 1 compares the computational time of variational in-
ference of the CAT-Poisson model with that of MCMC. Three
empirical data sets were analyzed (see Materials and
Methods). Here, the number of iterations was set to 30,000
for MCMC sampling from the posterior distribution (default
value of phyloBayes). As for variational inference, we could
not implement a stopping rule based on convergence criteria
because we partially preserved MCMC for tree topology.
The trace of ELBO value implied sufficient convergence
with far less than 1,000 iterations for data set A (fig. 2a).
However, we note that the value of ELBO expresses the
goodness of fit of the variational parameters, but does not
measure the consistency of the topology. Figure 2b—d
shows that the posterior consensus tree by variational
inference  mostly reached convergence at 1,000.
Tentatively, we set the same number of iterations as an
MCMC case for comparing CPU times. We confirmed that
the result of variational inference with 5,000 iterations
was unchanged for data set A (data not shown).

The time complexity of each of the above algorithms was
found to increase regularly with the numbers of genes, spe-
cies, and total aligned amino acid positions. Even with the
same number of iterations, run times were significantly re-
duced in the variational inference framework compared with
those in the MCMC approach. This may be partly because
variational inference does not include the step of gener-
ating random numbers (except for the one for sampling
topologies) and the calculation of acceptance probabili-
ties. Since our stopping rule was not thoughtfully
designed but rather ad hoc, we need to perform any
interpretations with caution. Once we can replace the
step of Gibbs sampling of topology with some
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Table 1. Run Times and Estimated Trees of Variational Inference and
MCMC Algorithms on Real Data.

Data Set Taxa Sites States MCMC (days) VI (days)
Data Set A 13 6,622 20 4.72 0.81
Data Set B 28 10,137 20 10.61 2.36
Data Set C 66 38,330 20 28.35 5.67

Note.—Both variational inference and MCMC algorithms were run in a parallel
environment. The properties of the parallel version were evaluated on a personal
computer (Intel Core i7-6700 CPU 3.40 GHz, 8 cores, 2 threads per core, 4 cores per
socket, 16-Gb RAM), under Linux Mint 17.3 Rosa. In this comparative study, both
variational inference and MCMC had 30,000 iterations (see text).

deterministic procedure of variational inference, the com-
putational burden will be markedly reduced.

Posterior Independence between the Phylogenetic
Parameters

Our variational distribution for the CAT model assumed in-
dependence among the branch lengths, the site-specific rel-
ative rates, and the amino acid profiles. To examine its
validity, we checked the MCMC sample of the total
branch length and the entropy of the amino acid profile
of the largest cluster as an example. The scatter plot sup-
ports independence between these two characters
(r = —0.024, fig. 3). As a result, the variational inference
approximated the distribution of the MCMC sample ac-
curately (fig. 4a and b). (The good fitting for each branch
length can be seen in supplementary fig. S1,
Supplementary Material online.)

Accuracy of Estimated Profiles

By introducing a Dirichlet process prior, the CAT model pro-
vides a posterior distribution of K, the number of separate
categories, and the size of each category. The PhyloBayes
MPI program, which is based on a hybrid strategy combining
Gibbs sampling and Metropolis—Hastings algorithm, first pro-
poses allocation variables and amino-acid profiles. The site to
category allocation are sampled with the posterior weights of
the mixture and profiles associated with each component of
the mixture. Metropolis—Hastings algorithms are then used to
sample the classes for sites. In contrast, our variational inference
estimates the posterior distributions of the allocation variable
for each site, weight, and amino acid profile of the categories.

Table 2 compares some major categories estimated by
MCMC and variational inference. The size of each category
was approximated by the number of sites assigned to that
class. The number of distinct categories was estimated for
data set A representing 6,622 amino acid positions. As can
be seen in the table, variational inference accurately approx-
imated the posterior means of these category sizes. The pos-
terior distributions of the number of site categories and the
amino acid profiles are also well approximated by the varia-
tional inference (fig. 5).

Taken together, these results demonstrate that the esti-
mation time required by the variational inference framework
compares favorably with that used by sampling algorithms
such as MCMC, while a sufficient level of accuracy under the
CAT model is still guaranteed.
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Discussion

The variational distribution for the CAT model approximated
the posterior distribution accurately. This is largely because
the branch lengths, site-specific evolutionary rates, and amino
acid profiles were mostly independent in the posterior distri-
bution. When the parameters of a model are mutually de-
pendent in the joint posterior distribution, the variational
inference may underestimate the posterior variance, even
though the estimated posterior means may be unbiased. It
is recommended to check the posterior correlations carefully
at the stage of developing new programs, and to transform
the parameters when the correlation is observed.

One of the most important steps in the variational frame-
work is the calculations of expectations for the latent varia-
bles in the general ELBO. Specifically, the variational inference
can achieve the best performances for the conjugate models.
Because the likelihood of a CAT model is composed of the
distributions of exponential family, most of the expectations
could be obtained in the closed form.

The approximations of the posterior distributions of the
transition probabilities in the Markov models of nucleotide
substitution can still be a challenge for the Bayesian compu-
tation. There are some proposals that can deal with intracta-
ble integrations and provide a convenient way to obtain an
analytically tractable solution, such as the first-order Taylor
expansion (Ma and Leijon 2011; Ma et al. 2014) and the Delta
method (Braun and McAuliffe 2010; Wang and Blei 2013),
however, the mathematical expansions are still a challenge for
the Bayesian phylogenetic inference. In many cases, phyloge-
netic inference includes many parameters, some of which are
not of major concern. It may thus be worthwhile considering
a practical approach to estimate these nuisance parameters
by maximum likelihood and performing a Bayesian inference
for the parameters of major interest.

Materials and Methods

CAT-Poisson Model

We briefly review the CAT-Poisson model that describes site
heterogeneity of the substitution process (Lartillot and
Philippe 2004). This model allows rate variation among sites
and also allows variation of the rate matrix among sites. Here,
we explain the basic default model, called the CAT-Poisson
model. Given an amino acid sequence data set consisting of N
alignment columns and P taxa, we denote the observed
amino acid at site i for taxon p by D,
(i=1,...,N;1 < p <P). The CAT-Poisson model
regards the branch lengths /(1 < j < 2P — 3); the site-
specific relative rates r;(1 < i < N) as random variables.
Each site has its specific amino acid profile, or equilibrium
frequencies, m,,1 < a < 20, such that ZZ‘; n, = 1. The
substitution process at each site follows the F81-type model
(Felsenstein 1981). In other words, the probability of amino
acid replacement by amino-acid a is proportional to 7. Sites
are clustered into the categories of amino acid profiles. The
CAT model describes the probabilistic allocation of a site to
the categories by a mixture model. Given the allocation, the
amino acid profile of a site has a prior of uniform Dirichlet
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Fic. 2. Convergence of variational inference for the mitochondrial data set (13 taxa and 6,622 amino acid positions; Rodriguez-Ezpeleta et al. 2006).
The figures show the trace of ELBO value (a), and the estimated posterior consensus trees with 1,000 iterations (b), and with 5,000 iterations (c), in

contrast to the result of 30,000 iterations of MCMC (d).
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Fic. 3. MCMC joint distributions of the total branch length and the
entropy of the amino acid profile of the largest cluster based on the
mitochondrial data set (13 taxa and 6,622 amino acid positions;
Rodriguez-Ezpeleta et al. 2006).

distribution. A Dirichlet process treats the number of catego-
ries as an unknown variable. The stick-breaking representa-
tion considers two infinite collections of independent
random variables; the unit length of sticks that correspond
to the categories, V,, and the amino acid profiles of the cat-
egories, 18 (1 < k < o). They follow:

p(Vi) = Beta(1,v)
p(nk) = Dirichlet(1,1,...,1)

where ¢, is the mixing proportions of an infinite number of
successively broken sticks and v stands for the total mass
parameter of the Dirichlet process (Ferguson 1973; Green
and Richardson 2001; Ishwaran and James 2001). Lartillot
et al. (2013) introduced the allocation variable of a site i to
acategory,z; € [1,...,00] (1 < i < N).Theallocation var-
iables are drawn i.i.d from a multinomial of the infinite vector
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Fic. 4. MCMC-based and variational inference-based posterior distributions of the total branch length and the entropy of the amino acid profile of
the largest cluster based on the mitochondrial data set (13 taxa and 6,622 amino acid positions; Rodriguez-Ezpeleta et al. 2006). (a) The total
branch length and (b) the entropy of the amino-acid profile of the largest category. Blue and red histograms are the distributions of the samples by

MCMC and by variational inference, respectively.

Table 2. The Size (Number of Sites) of Large Categories Estimated by
Variational Inference and MCMC in Data Set A.

Category MCMC Vi Category MCMC Vi

1 524 527 9 256 246
2 481 480 10 235 240
3 457 454 11 226 220
4 403 400 12 197 188
5 328 326 13 161 157
6 284 290 14 148 145
7 273 276 15 140 137
8 265 275 16 138 126

Note.—Top-ranked estimated categories are listed along with the number of sites
distributed in each class. The results are for real data set A, with the number of sites
calculated by counting sites allocated to each category.

of mixing proportions. Given that the site i belongs to the
category k, the likelihood of the data at this site, p(D;|7), is
described by the transition probabilities along branches
(Felsenstein 1981). 7% is the amino acid profile of the kth
category. Lartillot et al. (2013) applied a data augmentation
algorithm of substitution mapping (Nielsen 2002). Along
branch j and at site i, the substitution mapping, =, is the
combination of the number of substitutions, nj, and the suc-
cessive states of the process (0'5?) =101 The random var-

iable wX is the total number of substitutions to state a at sites
that are assigned in category k, plus one if a is the state at the
root of the tree. The prior distributions of the branch lengths
and site-specific relative rates follow independent gamma
distributions with shape 1 and scale § > 0 and independent
gamma distributions with shape o and scale o, respectively. n;;
follows the Poisson distribution with the rate parameter r;l;
and (ag)h lony—1 19 drawn from (n¥),a € [1,...,20],
k € [1,...,00].

Variational Inference of CAT Model

With mean-field variational approximations (Blei et al. 2006;
Hoffman et al. 2013), each variable of the variational distribu-
tion is assumed to be independent. For practical implemen-
tation, we consider truncated stick-breaking representations
(Blei et al. 2006) by setting the limit on the possible largest

830

number of categories K,,,,,. The family of variational distribu-
tions in the CAT-Poisson model can be written as follows:

q(B,z,V,n,1,r|®)

= [Lally, ) x [TalG, &)

Kmax 20 Kinax

* L1 a1 = 1Tatvidoe o3

=1a=1 =1 (4)
Kmax
<[ 11 Ta@145) x [T atnloy)
i k=1 ij
Kmax 20
<[ T Ta(wil )
k=1a=1

where

a(llv,v)) = Gamma(lly;, 7))

a(rlG, &) = Gamma(r;|(;, ()

q(nk| k) = Dirichlet(rk| 2X)
a(Vil O, 0) = Beta(Vi|U, V) (5)

a(#|df) = Multnomial(z|¢f)

q(njley) = Poisson (n;j|w;)

q(wkiX) = Multinominal (wk|:¥).

© = {17, 2K 0,9, oF, wj, 15} is the set of the
free variational parameters. Note that equation (4) assumes
independence among the sets of parameters describing phy-
logeny. This model may underestimate the posterior variance,
if the true posterior joint distribution includes large correla-
tions. We will see in the Result section that branch lengths,
evolutionary rates, and amino acid profiles are almost inde-
pendent in the joint distribution from MCMC. To guarantee
the tractability of computing the expectations of variational
distributions, we choose variational distributions from expo-
nential families (Wainwright et al. 2007).

To estimate each variational parameter in the
CAT-Poisson model (4, 5), we consider dividing the set of
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Fic. 5. The MCMC and variational inference-based posterior distributions of the number of site categories and the amino acid profiles based on a
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site categories, (b) mean amino acid profiles of the first 16 site categories in table 2 by variational inference versus MCMC (c—f) posterior mean
amino acid profiles of the four main site categories. Blue and red colors are the posterior means by MCMC and by variational inference,

respectively.

variational variables into two subgroups—global variables [®,
= (&, m,I,r)] and local variables [®, = (V,z)]. The local
variational variables (V, z) are per-data-point latent variables.
The kth local variable V| is the unit length of kth stick in the
stick-breaking representation which is used to make the infi-
nite vector of mixing proportions. The ith local variable z!‘ of
the mixture component represents the allocation situation of
site i of alignment of amino acid sequences. Each local variable
(Vi zf() is governed by “local variational parameters”
[0 = (%, I; ¥)]. Bishop (2006) has proposed a coordi-
nate ascent algorithm for solving the optimization problem of
these variables. The coordinate ascent algorithm attempts to
find the local optimum of the ELBO by optimizing each factor
of the mean field variational distribution, while fixing the
others. The optimal g(z) and g(V) are then proportional
to the exponentiated expected log of the joint
distribution,

q*(z) < exp (E‘Z[Iogp(E, V,z,m, |, r)]) + const
q* (V) x exp (E‘V[Iogp(E, V,z, 7, r)]) + const.

Here, E, and E, denote expectations with respect to the
variational distributions of all the variables except for z or
V. The global variables @, potentially control any of the
data. These variables are governed by the “global variational
parameters” (@ = (7,7,{, ', 4, ,1)]. The coordinate as-
cent algorithm iterates t times to update local variational
parameters based on mapping data,

0 = E®g [’7((1)7 E)]

where 7)(.) are the natural parameters.
To estimate each global variational parameter in the CAT-
Poisson model, we use the stochastic variational inference
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(SVI) algorithm to optimize the lower bound in equation (2)
(Hoffman et al. 2013). The stochastic variational algorithm is
based on stochastic gradient ascent, the noisy realization of
the gradient. In our study, we adopted natural gradients
(Amari 1982) to account for the geometric structure of prob-
ability parameters (Robbins and Monro 1951). Importantly,
natural gradients are easy to compute and give faster conver-
gence than standard gradients. The SVI repeatedly subsam-
ples the data, updates the values of the local parameters
based on the subsampled data, and adjusts the global param-
eters in an appropriate way. Such estimates can guarantee
algorithms to avoid shallow local optima of complex objective
functions.

In our setting, we sample a mapping data point Z,, at each
iteration, and compute the conditional natural parameters
for the global variational parameters given N replicates of =Z,,.
Then, the noisy natural gradients are obtained. By using these
gradients, we update ®, at each of t iterations (with step

size py):
Ve, £ = prior + N{Eo,[t(®n, E,), 1]} — ©,0
=0V +pVe,L

where t(.) denote the sufficient statistics.

Based on the subsampling techniques, this procedure
reduces the computational burden by avoiding the expensive
sums in the above lower bound. The SVI algorithm thus sig-
nificantly accelerates the variational objective analysis of the
large database. Applying the previously proposed SVI frame-
work (Hoffman et al. 2013), we can separate the computa-
tional cycle into the following steps:

(1) Sample amino acid data from the whole set of input
data.

(2) Estimate how each site is assigned to a category, based
on observational data and the current approximation
of variational parameters.

(3) Update variational parameters
- Local parameters are assignment variables, and break-

ing proportions.
- Global parameters are equilibrium frequency profile,
branch length, and rate across sites.

The lower bound of the data in terms of the variational
parameters is specifically described in the Supplementary
Material online. Mathematical details of the variational ob-
jective function and computational methods of noisy deriv-
atives and updating of variational parameters are also
explained in that section.

Parallelization and Tree Topology

To parallelize the algorithm at the single machine level and
thus reduce runtimes, we adopted the MPI parallelization of
the PhyloBayes MPI program (Lartillot et al. 2013).
Specifically, we used one master process for dispatching com-
putational tasks and collecting and summing results, and
with multiple slave processes executing the orders and
returning all essential information to the master. This parallel
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strategy helps to equally divide the computational burden
among slaves.

In addition, a partial Gibbs sampling algorithm for pruning
and regrafting (SPR) is adopted to update the tree topology
(Lartillot et al. 2013). In a parallel environment, the task of the
master process is to randomly select a subtree for pruning
and send this information to all slaves. The task of each slave
process is to update the conditional likelihood vectors of each
resulting topology and the complete scan of all possible
regrafting points. One single log likelihood for each regrafting
point is arranged into an array and sent back to the master
process. All arrays are collected and summed and lastly the
Gibbs sampling decision rule is finally applied to select the
regrafting position.

Data Sets
Three real data sets were used for our computational experi-
ments. Data set A was a mitochondrial data set consisting of
33 proteins and 6,622 amino acid positions from 13 species.
Data set B was a plastid data set composed of 50 plastiden-
coded proteins and 10,137 amino acid positions from 28
species. In total, 13% and 5% amino acid positions were miss-
ing from the mitochondrial and plastid data sets, respectively
(Rodriguez-Ezpeleta et al. 2006; Lartillot et al. 2013). Finally,
data set C was a more challenging and larger complete set of
mitochondrial protein sequences derived from a large align-
ment of EST and genome data, which consists of 197 genes
and a total of 38,330 amino acid positions from 66 species and
with 30% missing data, constructed by (Philippe et al. 2011).
C++ code for the variational inference version of the CAT
model to perform computational experiments with these
data sets is available at https://github.com/tungtokyo1108/;
last accessed January 21, 2019.

Supplementary Material

Supplementary data are available at Molecular Biology and
Evolution online.
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