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Abstract

Liver disease is a significant health problem worldwide with mortality reaching around 2 million 

deaths a year. Non-alcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD) are the 

major causes of chronic liver disease. Pathologically, NAFLD and ALD share similar patterns of 

hepatic disorders ranging from simple steatosis to steatohepatitis, fibrosis and cirrhosis. It is 

becoming increasingly important to identify new pharmacological targets, given that there is no 

FDA-approved therapy yet for either NAFLD or ALD. Since the evolution of liver diseases is a 

multifactorial process, several mechanisms involving parenchymal and non-parenchymal hepatic 

cells contribute to the initiation and progression of liver pathologies. Moreover, certain protective 

molecular pathways become repressed during liver injury including signaling pathways such as the 

cyclic adenosine monophosphate (cAMP) pathway. cAMP, a key second messenger molecule, 

regulates various cellular functions including lipid metabolism, inflammation, cell differentiation 

and injury by affecting gene/protein expression and function. This review addresses the current 

understanding of the role of cAMP metabolism and consequent cAMP signaling pathway(s) in the 

context of liver health and disease. The cAMP pathway is extremely sophisticated and complex 

with specific cellular functions dictated by numerous factors such abundance, localization and 

degradation by phosphodiesterases (PDEs). Furthermore, because of the distinct yet divergent 

roles of both of its effector molecules, the cAMP pathway is extensively targeted in liver injury to 

modify its role from physiological to therapeutic, depending on the hepatic condition. This review 

also examines the behavior of the cAMP-dependent pathway in NAFLD, ALD and in other liver 

diseases and focuses on PDE inhibition as an excellent therapeutic target in these conditions.
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1. Introduction

The liver is vital for regulating key metabolic processes that result in maintenance of overall 

energy homeostasis in the body. It has a myriad of functions ranging from xenobiotic 

detoxification and endobiotic metabolism to synthesis of crucial proteins such as blood 

clotting factors. Histologically, the liver is predominantly comprised of parenchymal cells 

(hepatocytes) that constitute approximately 80% of the liver volume. Cells of non-

parenchymal origin constitute the rest of the liver, including sinusoidal endothelial cells, 

resident hepatic macrophages (Kupffer cells) and hepatic stellate cells (HSCs) [1]. 

Hepatocytes perform basic metabolic functions such as metabolism of lipids and amino 

acids, biochemical oxidation reactions and detoxification. Kupffer cells play a protective role 

against gut-derived toxins in the liver and in the regulation of hepatic inflammation by 

secreting cytokines. HSCs are crucial for vitamin A storage and wound healing, while 

hepatic sinusoidal cells secrete adhesion molecules and play a role in endocytosis. Hepatic 

disorders that result in a compromised or dysfunctional liver are brought upon by a 

multitude of pathogenic mechanisms driven by factors such as hyper-caloric diets, drugs, 

viral infections, genetic predisposition, alcohol consumption and chemical exposure, to 

name a few. Since the evolution of liver diseases is a multifactorial process, several 

mechanisms involving parenchymal and non-parenchymal hepatic cells contribute to the 

initiation and progression of liver pathologies.

Cyclic nucleotides including cyclic adenosine monophosphate (cAMP) and cyclic guanosine 

monophosphate (cGMP) are key intracellular second messengers affecting multiple cellular 

processes [2]. This review article addresses the relevance of the cAMP-dependent pathways 

in regulating the physiologic and pathologic aspects that underlie the development of 

different types of liver disorders. Additionally, the review evaluates the potential of targeting 

cAMP metabolism for therapeutic purposes in the treatment and management of various 

stages of multiple liver diseases.

1.1. Liver disease

There are many types of liver diseases, and they are generally categorized based on the cause 

or etiology. This review focuses on the most common types of liver diseases, namely non-

alcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD). NAFLD is 

prevalent in approximately 20–30% and 5–18% of the populations in western countries and 

Asia, respectively, and it affects approximately 30% of the US adult population, most of 

whom are already predisposed to other metabolic disorders [3, 4]. ALD is prevalent in heavy 

alcoholic drinkers and it is the eighth most common cause of mortality in the US [5, 6].

Both NAFLD and ALD are complex diseases that are progressive in nature, and encompass 

a spectrum of disorders that are initially manifested as hepatic fat accumulation or simple 

steatosis [7, 8]. Steatosis is often accompanied by inflammation, also known as non-
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alcoholic steatohepatitis (NASH) or alcoholic steatohepatitis (ASH), which is characterized 

by infiltration and activation of immune cells in the liver. Persistent activation of immune 

cells could stimulate pro-fibrogenic signaling in hepatic stellate cells leading to fibrosis, and 

potentially cirrhosis and chronic liver disease leading to liver failure.

Pathologically, ALD is similar to NAFLD, with stages ranging from simple steatosis to 

alcoholic steatohepatitis (ASH), to fibrosis and cirrhosis. NAFLD and ALD exhibit almost 

identical clinical and histological features that are often indistinguishable from each other. 

Although NASH is considered to be milder than ASH [8], both can lead to cirrhosis and, 

potentially, even liver transplant. ALD is caused by chronic alcohol consumption as opposed 

to NAFLD that can be associated with other metabolic-related disorders such as obesity, 

diabetes and insulin resistance, and the metabolic syndrome [11, 12]. Heavy drinkers tend to 

develop simple steatosis, but only 10–35% of heavy drinkers develop alcoholic hepatitis, and 

between 15 and 20% of heavy drinkers develop more severe forms of ALD such as fibrosis 

and cirrhosis [9, 10]. Although NAFLD and ALD bear similar histological and clinical 

features, the pathophysiological mechanisms underlying disease progression can be quite 

distinct.

Although causes of steatosis are different in NAFLD and ALD (excess calories vs ethanol 

metabolism), the mechanisms are very similar. Specifically, dysregulation of lipid 

metabolism with increased de novo lipogenesis and impaired fatty acid oxidation are the 

main causes of lipid accumulation within hepatocytes in both diseases [8]. Additionally, 

changes in enzyme activities critical for lipid synthesis (Acetyl-CoA carboxylase) and 

degradation (carnitine palmitoyl-transferase) have been reported to play a critical role in the 

development of steatosis in NAFLD and ALD. Importantly, fatty acid accumulation can lead 

to lipotoxicity [8]. Specifically, we and others have reported that cytotoxic free fatty acids 

cause mitochondrial dysfunction in hepatocytes [11–13]. Moreover, damaged hepatocytes 

produce chemoattractant cytokines leading to neutrophil infiltration into the liver and 

inflammatory liver injury [11, 13]. Additionally, lipid accumulation triggers organelle 

dysfunction such as endoplasmic reticulum (ER) stress and oxidative stress, thereby 

triggering signaling cascades leading to apoptosis [14]. Likewise, free fatty acids can also 

interfere with insulin signaling, as well as activate death receptors leading to hepatocyte 

death [15].

On the other hand, in ALD, metabolites of ethanol metabolism can act directly on 

hepatocytes to induce ER and oxidative stress, eventually triggering pro-apoptotic signaling 

pathways as well as stimulating the innate immune response [16, 17]. Hepatocyte death also 

occurs through multiple mechanisms including apoptosis and necroptosis [8]. Ethanol 

consumption can also increase gut permeability resulting in lipopolysaccharide (LPS) 

leakage into the circulation, which then activates toll-like receptor 4 (TLR4) on hepatocytes 

and macrophages to incite inflammatory responses [18]. In addition, hepatic cells can also 

release extracellular vesicles in ALD, as well as damage-associated molecular patterns 

(DAMPs), that recruit macrophages thereby leading to HSC activation and migration [19]. 

HSC activation and phenotypic change into proliferative, contractile, and chemotactic 

myofibroblasts is the key cellular process of hepatic fibrosis [20–23]. Myofibroblasts 

migrate and accumulate at the site of injury and produce increasing amounts of extracellular 
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matrix (ECM) components such as collagens and fibronectin [24]. Excessive scar deposition 

in the liver results in a significant deterioration of liver function, altered blood flow and 

eventually liver failure [25].

1.2. General cAMP signaling: effectors and regulation

Cyclic AMP, a second messenger molecule discovered over half a century ago by Earl 

Sutherland and colleagues, is pivotal for many physiological processes [26, 27]. It is 

synthesized from adenosine triphosphate (ATP) by the enzymes, adenylyl cyclases (ACs). 

There are ten mammalian AC genes encoding ten isoforms (AC1 to AC10) [28]. AC1 to 

AC9 are transmembrane ACs (tmACs) which respond to G proteincoupled receptor (GPCR) 

activation to extracellular hormones and neurotransmitters. Soluble AC is encoded by AC10 

gene and responds to Ca2+ and bicarbonate [29–31]. cAMP is the initiating component of 

the intracellular signal transduction pathway known as cAMP-dependent pathway or 

adenylyl cyclase pathway. The cAMP-dependent pathway is a G-protein coupled receptor 

(GPCR)-triggered signaling cascade, wherein GPCRs are a family of integral membrane 

proteins that respond to a number of extracellular stimuli [32]. When GPCRs are activated 

by a specific ligand, they undergo a conformational change and activate the stimulatory 

alpha subunit of the G-protein complex (Gs), which exchanges a guanosine diphosphate for a 

guanosine triphosphate and is then released from the complex. The activated Gs alpha 

subunit then binds and activates the molecular signal integrator, adenylyl cyclase, which 

subsequently catalyzes the conversion of ATP into cAMP. The changes in cAMP levels 

inside the cell vary in terms of time frame, with transient increases occurring in milliseconds 

to more stable increases that last from hours to days, depending on the location and 

activators [33]. Increases in cAMP levels leads to activation of a variety of effector 

molecules, with the protein kinase A (PKA) family of proteins and the exchange proteins 

activated by cAMP (EPACs) being the classical and most recognized downstream targets 

[34]. Increase in cAMP levels can also lead to activation of cyclic nucleotide-gated (CNG) 

ion channels that regulate signal transduction in the retina (vision) and olfactory receptor 

neurons (olfaction) as well as the recently discovered popeye domain containing proteins 

(Popdc) that mediate epithelial cell function and physiology of cardiac and skeletal muscle 

[35, 36].

The PKA protein was first discovered in 1968 by Edmond H. Fischer and Edwin G. Krebs 

and further characterized by Susan S. Taylor and colleagues [37–40]. As its name suggests, 

PKA activation leads to phosphorylation of a number of downstream protein targets that 

regulate varying cell functions depending on their location. The classical PKA holoenzyme 

exists as a tetramer with two regulatory subunits that have cAMP binding domains and two 

catalytic subunits. A rise in cAMP levels leads to binding of two cAMP molecules to each 

regulatory subunit, which induces a conformational change resulting in detachment of the 

two regulatory subunits and release of the two catalytic subunits that are now activated. 

Once freed, the catalytic subunits catalyze the transfer of ATP terminal phosphates to protein 

substrates at serine or threonine residues (phosphorylation) which causes a change in the 

substrate’s activity. PKA has been designated as PKA(I) and PKA(II) by differences in the 

regulatory subunits that interact with an identical catalytic subunit [41]. Different regulatory 

subunit isoforms are differentially expressed in different tissues and have distinct roles. PKA 
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substrates perform numerous cell functions including regulation of lipid and glucose 

metabolism, kinases for smooth muscle contraction, dopamine signaling in the brain and 

renin secretion in the kidney. Apart from directly phosphorylating protein substrates, PKA 

also regulates gene transcription and protein synthesis by activating the cAMP response 

element-binding protein (CREB), a transcription factor that binds to DNA sequences called 

cAMP response elements (CRE) [42].

Historically, it was thought that major effects of cAMP were solely mediated by PKA; 

however, in 1998, EPAC (exchange protein directly activated by cAMP) was identified as a 

new family of cAMP sensor proteins [43, 44]. There are two EPAC isoforms, EPAC1 and 

EPAC2, and both proteins have a cAMP binding domain that is homologous to that of PKA. 

While EPAC1 is expressed ubiquitously, EPAC2 is mainly expressed in the liver, brain, 

pancreas and adrenal gland. Upon binding to cAMP, EPAC activates the Ras superfamily 

small GTPases, Rap1 and Rap2. Cellular functions of EPAC range from regulation of cell 

adhesion and formation of cell-cell junctions through the EPAC/Rap1 signaling pathway, to 

mediating adipocyte differentiation and cardiomyocyte hypertrophy, dictated largely by their 

distinct tissue distribution.

Degradation of cyclic nucleotides is carried out by a group of enzymes known as cyclic 

nucleotide phosphodiesterases (PDEs). PDEs regulate cAMP and cGMP levels and signaling 

by their hydrolysis thus affecting cAMP and cGMP-dependent processes [45]. Of the 

cAMPspecific PDES, the PDE4 family is widely expressed accounting for the majority of 

cAMP hydrolysis activity in cells, and therefore it has been used as a therapeutic target for 

various inflammatory diseases as well as for depression and cognitive deficits.

Considering the different effectors and their unique functions, the cAMP pathway is 

extremely sophisticated and complex with specific cellular functions being dictated by 

numerous factors such as cAMP levels and abundance, localization, distribution and 

behavior of the cAMP receptors when activated, as well as the presence of PDEs.

1.3. cAMP in liver: physiological role, expression, activation

The role of the cAMP/PKA signaling pathway in the liver is well documented with 

numerous studies demonstrating involvement of the pathway in various metabolic functions 

through regulation of gene transcription and kinase activity, and key effects include 

facilitation of carbohydrate and lipid metabolism [46]. Glucagon and catecholamines, such 

as adrenaline in the liver, activate adenylyl cyclase which synthesizes cAMP, thus giving rise 

to increasing cAMP levels in the liver [47]. Increased cAMP levels lead to increased glucose 

production through stimulation of glucose-producing pathways by increasing the 

transcription of gluconeogenic enzymes, glucose 6-phosphatase (G6Pase), 

phosphoenolpyruvate carboxykinase (PEPCK) and pyruvate carboxylase (PC) [48]. 

Additionally, PKA phosphorylates fructose 2,6bisphosphatase, which activates the enzyme, 

and this leads to stimulation of gluconeogenesis [49]. On the other hand, PKA 

phosphorylates key enzymes involved in glycolysis (phosphofructokinase-2 and pyruvate 

kinase) and inactivates them. Furthermore, PKA inhibits glycogen synthase and activates 

glycogen phosphorylase through phosphorylation, leading to suppressed glycogenesis and 

activated glycogenolysis, respectively.
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Rising hepatic cAMP levels also lead to inhibition of lipogenesis through PKA-mediated 

phosphorylation of key players in fatty acid synthesis, such as acetyl-CoA carboxylase and 

pyruvate dehydrogenase, thereby inhibiting their activity [50]. Insulin, the hormone with 

opposing effects to that of glucagon, can reverse the phosphorylation levels of these 

enzymes and stimulate lipogenesis while also decreasing glucose production. Interestingly, 

an important extra-hepatic cAMP effect is to promote the release of insulin from pancreatic 

beta cells [51]. Insulin then migrates to the liver and adipose tissue and suppresses the 

accumulation of cAMP, therefore exhibiting a tight co-ordination on both glucose and lipid 

metabolism in the liver. cAMP also regulates lipid metabolism through cAMP-responsive 

transcription factors such as CREB proteins that are activated by PKA [52]. Multiple studies 

have shown that CREB acts as a checkpoint in both glucose and lipid metabolism through its 

target gene battery. The cAMP/CREB pathway represses hepatic expression of genes 

involved in lipid synthesis such as the nuclear hormone receptor, peroxisome-proliferator 

activator receptor gamma (PPAR-γ), a key regulator of lipogenic genes [53]. Activated 

CREB also stimulates expression of the nuclear hormone receptor coactivator known as 

peroxisome proliferator-activated receptor gamma co-activator 1-alpha (PGC-1α), which 

upregulates gluconeogenic genes as well as genes involved in mitochondrial fatty acid 

oxidation [54]. Additionally, a recent study reported that CREB can also regulate the activity 

of sterol regulatory element-binding protein-1c (SREBP-1c), a transcription factor for 

lipogenic genes involved in de novo hepatic lipogenesis, such as fatty acid synthase, through 

the insulin induced gene-2 (Insig-2) [55]. The outcomes of PKA activation in the liver are 

summarized in Fig. 1.

Elucidating the hepatic role of the other cAMP sensor, EPAC, only began recently as 

compared to PKA. The cAMP/EPAC pathway is also heavily involved in the maintenance of 

metabolic homeostasis in the body, such as by inducing leptin resistance, as well as by 

increasing insulin secretion and sensitivity [56]. Recent papers also demonstrate the role of 

EPAC as a regulator of fibrosis through multiple pathways including the inhibition of 

epithelial cell transformation, ECM formation and hepatic stellate cell proliferation and 

migration [57, 58].

Overall, cAMP plays an important role in regulating hepatic energy metabolism. Moreover, 

because of the distinct and divergent roles of both PKA and EPAC, it appears that the cAMP 

pathway is extensively targeted in liver injury. The role of this pathway can also range from 

physiological to therapeutic, depending on the state of the liver. The next section examines 

the behavior of the cAMP-dependent pathway in NAFLD, ALD and in other liver diseases, 

and it will focus on the hepatic functions of the pathway during such diseased conditions.

2. The role of cAMP in NAFLD

Due to its unique hepatic effects that appear beneficial, the role of the cAMP signaling 

pathway has been investigated in NAFLD. As mentioned previously, NAFLD initially 

manifests itself as simple steatosis that may progress to steatohepatitis. Therefore, lowering 

lipid production and accumulation while simultaneously increasing lipid breakdown, should 

be helpful in attenuating NAFLD. For example, administration of glucagon-like peptide 

(GLP-1) in obese mice (ob/ob mutant mice) lowered serum alanine aminotransferase (ALT, 
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a marker of liver injury), hepatic oxidative stress and lipid accumulation in the liver. GLP-1 

increased hepatocyte cAMP levels and induced genes involved in fatty acid oxidation, while 

suppressing genes involved in de novo lipogenesis [59]. Additionally, in a mouse model of 

high fat diet-induced NASH, GLP-1 increased PKA and AMP-activated protein kinase 

(AMPK) activity, resulting in enhanced expression of PPARα-dependent genes involved in 

fatty acid β-oxidation [60].

Moreover, a study investigating the therapeutic effects of resveratrol, a naturally occurring 

polyphenol, in NAFLD demonstrated that its protective effects were mediated, in part, by the 

cAMP pathway [61]. Specifically, resveratrol improved hepatic steatosis in a high fat diet 

mouse model of NAFLD via improved fatty acid β-oxidation by inducing autophagy. The 

authors also showed that resveratrol increased SIRT-1dependent autophagy in hepatocytes 

via cAMP/PKA pathway. Several other studies have also shown the beneficial role of 

resveratrol in preventing hepatic steatosis and injury in various NAFLD models [62–66]. 

Importantly, resveratrol has been demonstrated to increase cAMP by inhibiting PDE4 [67]. 

A recent study also reported that dietary supplementation of a reduced form of coenzyme 

Q10 (CoQ10H2) suppressed hepatic PDE4 expression, increased cAMP levels and fatty acid 

β-oxidation via the SIRT-1/PGC-1α/PPARα pathway, and inhibited the development and 

progression of obesity and type 2 diabetes in a mouse model [68]. The authors also reported 

the inhibitory effect of CoQ10H2 on the genes involved in de novo lipogenesis in the liver 

such as SREBP1c. Thus, the body of evidence available to date supports a role for cAMP as 

a positive mediator in the attenuation of steatosis and obesity in NAFLD and NASH.

2.1. The role of cAMP in ALD

A plethora of studies have been conducted to elucidate the role of cAMP in ALD. The first 

report on lower cAMP levels in resting peripheral blood mononuclear cells of alcoholic 

hepatitis (AH) patients was published in 1983 and suggested that these patients had an 

immune dysfunction [69]. In 1987, another study confirmed that lymphocytes from 

alcoholic patients had much lower basal and adenosine receptor stimulated cAMP levels 

[70]. Later, effects of cAMP in the development of liver injury was examined in a rat model 

of ALD. Rats were fed alcohol via a permanent intra-gastric cannula for 2 months and a 

group of animals was given cAMP by intraperitoneal administration. The study showed that 

cAMP prevented the increase in liver fat accumulation caused by alcohol feeding [71]. The 

authors suggested that the cAMP effect on alcohol-induced hepatic steatosis was partially 

mediated by the cAMP effect on the alcohol-metabolizing enzyme, CYP2E1 [71]. In a 

chronic binge ethanol model, rats demonstrated dysregulated hepatic lipid and glucose 

metabolism, which were attributed to ethanol-induced defects in nuclear translocation and 

phosphorylation of CREB [72]. This defect in CREB activation was accompanied by 

increased lipid accumulation in the liver and suppression of carnitine palmitoyltransferase 

1A (CPT1A), the rate limiting enzyme for mitochondrial fatty acid oxidation [73]. 

Importantly, a recent study from our group using a mouse ALD model demonstrated that 

chronic alcohol feeding reduced hepatic cAMP levels leading to decreased phospho-CREB 

levels [74]. We further demonstrated that this decrease in cAMP levels was mediated by 

increased hepatic PDE4 expression/ activity in both the whole liver as well as isolated 

hepatocytes. Induction of PDE4 and resultant compromised cAMP signaling contributed to 
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dysregulated fatty acid β-oxidation by decreasing CPT1A expression. Moreover, a PKA 

specific agonist increased CPT1A levels in primary hepatocytes [74]. In addition to fatty 

acid oxidation, inhibition of lipid droplet lipolysis via cytosolic lipases in alcohol-exposed 

hepatocytes has been recently demonstrated [75]. This inhibition was mediated by the 

inability of alcohol-exposed hepatocytes to activate PKA in response to β-adrenergic 

stimulation and recruitment of lipases to lipid droplets.

ALD patients often display endotoxemia where gut bacteria and microbial products escape 

into the systemic circulation due to a leaky gut [76–79]. Endotoxemia leads to dysregulated 

cytokine metabolism with increased pro-inflammatory (e.g. TNFα, IL-1β) and decreased 

antiinflammatory cytokine (e.g. IL-10) production. Earlier work by our group demonstrated 

that chronic ethanol-mediated decreases in cAMP in monocytes and macrophages correlated 

with enhanced inflammation and LPS-induced TNFα production [80]. Additionally, 

numerous studies have documented suppression of LPS-induced TNFα production by 

cAMP in various cell types [81–84]. Importantly, increased inflammatory cytokine 

expression in Kupffer cells, particularly TNFα, plays a key role in the pathogenesis of 

alcoholic hepatitis and ALD [76, 85–88]. In fact, a study employing the administration of 

anti-TNFα antibody to alcohol-fed rats showed beneficial effects against liver injury, while 

another study demonstrated that mice lacking the TNFα-type I receptor failed to develop 

alcoholic liver injury [89, 90].

Our group further confirmed that cAMP elevating agents have beneficial effects on cytokine 

production by decreasing the pro-inflammatory cytokine, TNFα, and increasing the anti-

inflammatory cytokine, IL-10, in response to LPS [80, 91, 92]. Specifically, we examined 

the efficacy of Misoprostol (prostaglandin analog) to modulate LPS inducible cytokine 

responses employing whole blood (ex-vivo) analysis before and after Misoprostol 

administration to healthy control subjects [91]. Our results showed that Misoprostol reduced 

LPS inducible TNF while increasing the production of the anti-inflammatory cytokine, IL10, 

in human subjects. In vitro studies assessing the underlying mechanisms of Misoprostol 

effect identified increased cAMP/PKA signaling and consequent changes in CRE and NF-

κB activity [91]. Additionally, using chromatin immunoprecipitation studies we 

demonstrated that Misoprostol treatment altered transcription factor and RNA Polymerase II 

promoter binding, resulting in changes in TNFα and IL-10 mRNA levels. These studies 

suggested a potential rationale for Misoprostol use in ALD, NAFLD and other liver diseases 

where inflammation plays an etiologic role.

Furthermore, ALD is often associated with oxidative stress, which can lead to hepatocellular 

damage and hepatocyte death. A study evaluating ethanol-induced hepatotoxicity and 

apoptosis in Sprague Dawley rats reported that treatment with 14-deoxyandrographolide, an 

adenylate cyclase activator, offered protection through upregulation of constitutive nitric 

oxide synthase (cNOS), eventually improving the redox state [93]. The authors reported that 

the adenylate cyclase activation leading to upregulated cAMP levels modulated the 

expression of caveolin-1 and calmodulin leading to inhibition of cNOS-caveolin-1 

interaction and upregulation of cNOS, resulting in improved oxidative stress.
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Another beneficial mechanistic property that the cAMP/PKA pathway offers in ethanol-

induced liver injury is its ability to upregulate alcohol dehydrogenase (ADH) and decrease 

CYP2E1 activity, thereby interfering with ethanol metabolism [94, 95]. There are three 

enzymes involved in oxidative metabolism of alcohol: alcohol dehydrogenase (ADH), 

cytochrome P450 2E1 (CYP2E1) and catalase. The main enzyme involved in alcohol break 

down is ADH, which converts alcohol into acetaldehyde (which is short-lived), and 

acetaldehyde is further converted to acetate by aldehyde dehydrogenase. CYP2E1 is active 

only with large amounts of alcohol consumption, while catalase metabolizes only a small 

fraction of alcohol in the body. Alcohol metabolism by CYP2E1 often generates large 

amounts of highly reactive, oxygen-containing molecules or reactive oxygen species (ROS), 

leading to exacerbated oxidative stress [96]. A study employing a polyphenol treatment as a 

means to suppress ethanol-induced hepatocyte death also demonstrated that cAMP 

modulated CYP2E1 and ADH activities, consequently leading to reduced ROS production 

and cell death [97].

2.2. The role of cAMP in liver fibrosis

Ongoing hepatocyte injury and inflammation result in uncontrolled activation and 

proliferation of hepatic stellate cells (HSCs) and the development of fibrosis and cirrhosis 

[98–100]. Liver fibrosis occurs in multiple types of chronic liver injury, and unfortunately, 

there is no FDA-approved specific therapy for fibrosis. The key cellular process of hepatic 

fibrosis is activation and phenotypic change of hepatic stellate cells (HSCs) into 

proliferative, contractile, and chemotactic myofibroblasts [20–23]. Myofibroblasts migrate 

and accumulate at the site of injury and produce increasing amounts of extracellular matrix 

(ECM) components such as collagens and fibronectin [24]. Excessive scar deposition results 

in a significant loss of liver function, altered blood flow and eventually liver failure [25]. 

Because trans-differentiation of HSCs plays a key role in the development of liver fibrosis, 

targeting HSC activation has become a focal point in treating liver fibrosis [101, 102].

The cAMP signaling pathway plays a critical role in HSC activation by antagonizing pro-

fibrogenic pathways in HSCs [103]. Prior studies showed that quiescent HSCs have high 

levels of phospho-CREB, which decreases upon HSC activation; whereas activation of PKA 

or CAMK-II restores phospho-CREB levels and inhibits proliferation of activated HSCs 

[104, 105].

The protective effects of the cAMP pathway in liver disease presented thus far have been 

predominantly associated with PKA activation. However, the other arm of the cAMP 

pathway, via EPAC activation, also plays a major role in dictating the progression and 

severity of liver injury, especially in relation to HSCs. Because one of the properties of 

EPAC is to regulate epithelial cell function and ECM formation, it has become a potential 

therapeutic target for tissue fibrosis [57]. A study evaluating acetaldehyde-induced hepatic 

stellate cell activation showed that cAMP/PKA and cAMP/EPAC pathways were both 

involved. They found that acetaldehyde suppresses EPAC1, but increases EPAC2 expression. 

cAMP analog, Me-cAMP, which activates the EPAC/Rap1 pathway significantly decreased 

the proliferation of acetaldehyde-stimulated hepatic stellate cells and collagen synthesis, 

while PKA specific agonist had no significant effect. Moreover, PKA activation led to 
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increased expression HSC activation marker, αSMA and collagen. However, only EPAC2 

depletion by siRNA prevented HSC activation demonstrated by decreased alpha smooth 

muscle actin (αSMA) and collagen expression [106]. Another study using a mouse model of 

carbon tetrachloride-induced liver fibrosis reported that EPAC-1 expression was reduced in 

fibrotic livers compared to normal livers [58]. Importantly, they also found that EPAC-1 

levels are decreased in human fibrotic livers. Administering the cAMP activator, 

prostaglandin E2, restored EPAC-1 levels and enhanced its activity, resulting in attenuation 

of platelet-derived growth factor (PDGF)-induced proliferation and migration of stellate 

cells [58]. Notably, PDGF and transforming growth factor beta (TGFβ1) suppressed EPAC1 

mRNA expression levels in isolated HSCs, with no effect on PKA. However, both PKA and 

EPAC agonist could attenuate PDGF-induced migration of HSCs In vitro [58]. One study 

suggested that PKA did not reduce α-SMA levels; however, it still has the capacity to 

mediate phosphorylation of proteins that regulate the epithelial to mesenchymal 

transformation (EMT) [107]. The EMT is a mechanistic event leading to fibrosis, where 

cells of epithelial phenotype transition to a mesenchymal phenotype through increases in α-

SMA and decreases in E-cadherin expression. Additionally, both PKA and EPAC have been 

shown to attenuate TGF-β-mediated inhibition of E-cadherin expression (57). Overall, the 

cAMP pathway appears to play a promising therapeutic role in liver fibrosis as well.

2.3. The role of cAMP in other liver diseases

Apart from NAFLD and ALD, the role of cAMP in other liver diseases has also been 

investigated. For example, in drug-induced liver injury, one study showed that increased 

cAMP levels appeared to provide protection against an acetaminophen-induced liver injury 

model [108]. In addition, in a study on LPS-induced inflammatory liver injury, 

cAMPmediated induction of IL-10 (anti-inflammatory) in liver cells using the cAMP analog, 

dibutyryl cAMP, was also beneficial [109]. Another study of cAMP derivatives in a carbon 

tetrachloride-induced rat liver injury model showed that the cAMP derivatives not only 

attenuated inflammation and reduced serum liver enzymes (transaminases), but also 

inhibited liver transaminase activity and ameliorated cytoplasmic vacuolation induced by 

carbon tetrachloride [110].

The effect of cAMP signaling on bile acid induced toxicity in hepatocytes has been reported 

[111–115]. Specifically, it has been demonstrated that increased cAMP, and specifically 

EPAC signaling, protects hepatocytes from bile acid induced apoptosis via PI3/Akt pathway. 

Moreover, this protection involves glycogen synthase kinase 3 (GSK3)-mediated inhibition 

of pro-apoptotic kinase, c-Jun NH2-terminal kinase (JNK) and ER stress [114]. EPAC 

activation also protects hepatocytes from bile acid induced mitochondrial apoptosis [113, 

114]. Another pathway of cAMP-mediated protection involves PKA-mediated 

phosphorylation of CD95 (FasR) and preventing formation of deathinducing signal complex 

(DISC), activation of caspases and apoptosis [115, 116].

In a cholestatic liver injury rat model (common bile duct ligation), increased cAMP levels 

inactivated hepatic stellate cells and attenuated fibrosis [117]. Importantly, the beneficial role 

of cAMP extends to liver cancer as well, based on a study showing that the cAMP/PKA 

pathway was protective against hepatocellular carcinoma [118]. The study demonstrated that 
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activated PKA phosphorylated the epidermal growth factor receptor (EGFR) at serine 

residues to suppress its kinase activity. This, in turn, led to de-phosphorylation of the signal 

transducer and activator of transcription 3 (STAT3) resulting in repressed STAT3 target 

genes and inhibition of hepatocarcinogenesis. Additionally, another study utilizing PDE4 

inhibitors to increase intracellular cAMP levels reported that cAMP interfered with cell 

cycle progression (decreased availability of cyclin A and increased expression of p21) and 

inhibited cell proliferation in a hepatocarcinoma-derived cell line (HepG2 cells) [119].

It is important to note that the cAMP pathway, through its two effector molecules, plays a 

physiological role in maintaining hepatic function and homeostasis while also exhibiting a 

therapeutic role in the different stages of various liver diseases, irrespective of the etiology 

(Fig. 2 and Table 1). The reported evidence currently available strongly supports increased 

intracellular cAMP levels as a potential therapy in multiple forms of liver disease.

3. Therapeutic interventions via cAMP signaling

As clearly described, the cAMP signaling pathway appears to be an excellent 

pharmacological target for hepatic conditions, including NAFLD and ALD, through its anti-

inflammatory, anti-lipogenic, and anti-fibrogenic effects. A number of cAMP agonists and 

derivatives, as well as adenylate cyclase activators and analogs of PKA and EPAC, have 

been investigated in multiple disorders. For instance, the naturally occurring adenylate 

cyclase activator, forskolin, has been proposed as a dietary supplement for obesity as well as 

a potential drug candidate for cancer therapy [120, 121]. Forskolin has also undergone 

clinical trials for asthma, has been administered to patients for the treatment of glaucoma, 

and has been studied for its therapeutic potential role in cardiac and liver fibrosis [122–125]. 

A forskolin derivative selective for adenylate cyclase 5, colforsin daropate hydrochloride 

(NKH447), has been approved for the treatment of advanced congestive heart failure [126]. 

The cAMP analog, bucladesine (dibutyryl cAMP), a compound which mimics the action of 

endogenous cAMP and is a predominant PKA activator that can resist PDE cleavage, was 

introduced into clinical trials to treat congestive heart failure, wounds and inflammation 

[127–129]. Other drugs that target the cAMP system include β2-adrenoceptor agonists, such 

as salmeterol and formoterol, are used for treating asthma due to their bronchodilatory 

properties [130]. Longacting β2-adrenergic receptor agonists bind to β 2-adrenergic 

receptors and induce intracellular cAMP that can also antagonize airway smooth muscles 

[131]. Analogs of cAMP that selectively activate EPAC have also been developed, including 

8-(4-Chlorophenylthio)-2′-O-methyladenosine-3′,5′-cyclic monophosphate that is widely 

used as an EPAC1 and EPAC2 activator in various studies [132]. Intriguingly, sulfonylureas, 

drugs used in patients with type 2 diabetes to promote insulin release from pancreatic beta 

cells, have been reported to bind and activate EPAC2, although this hypothesis has been 

challenged [133, 134]. Nonetheless, EPAC2 activation contributes to amplification in insulin 

secretion, thus suggesting a role for the pharmaceutical development of cAMP activators in 

diabetes [135]. Although these are all promising possibilities in terms of therapeutic 

development, it appears that compounds targeting adenylate cyclases or other effectors of the 

pathway are not widely recognized and still understudied.
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3.1. Role of PDEs and PDE inhibitors

There is another class of cAMP targets, namely phosphodiesterase (PDE) inhibitors, that has 

been studied extensively and has shown remarkable potential in terms of drug development 

and proved efficient in liver diseases. PDEs are ubiquitously present in different tissues and 

cells. Their function is to hydrolyze cAMP and cGMP and to maintain their homeostasis for 

normal physiological processes. There are 11 different members of the mammalian class 

PDE superfamily (PDE1 through PDE11) with multiple genes and splicing variants [136, 

137]. Given their varying roles, there are at least a 100 different PDE proteins characterized 

in eukaryotes [45]. Moreover, they are localized in different cellular compartments to 

regulate the duration and amplitude of cyclic nucleotide signaling within subcellular 

domains such as the cytosol and plasma membrane. Notably, although PDEs of the same 

family show divergence in their amino acid sequences, they are functionally related and can 

share similar substrates. Furthermore, PDEs can be either cAMP-specific or cGMP-specific, 

or they can hydrolyze both cyclic nucleotides; for example, PDE2 allows for cross-

regulation of the cAMP and cGMP pathways. The different PDEs and their substrate 

specificity and tissue distribution are presented in Table 2. PDEs are thought to be excellent 

targets for manipulating levels of cyclic nucleotides because they are essentially viewed as 

end-stage regulators of signal transduction mediated by these important second messenger 

molecules. Additionally, due to their unique tissue distribution, structural properties, and 

functional properties, these enzymes have been hypothesized to be as potential targets for 

pharmacological inhibition since the 1970s [138, 139].

The very first known PDE inhibitor is coffee, due to the presence of the methyl xanthine, 

caffeine. Coffee is a weak non-selective PDE inhibitor, which was first mentioned by Henry 

Hyde Salter in his monograph published in 1860 entitled, “On asthma: Its pathology and 

treatment”. Coffee was recommended as a remedy that “in many cases is more efficacious 

than any other” [140]. Relevant to liver disease, coffee consumption has been shown to be 

associated with lower liver injury markers, especially in patients with pre-existing liver 

disease. Coffee intake was also associated with lower incidences of progressive liver 

conditions such as fibrosis, cirrhosis and hepatocellular carcinoma [141–144].

PDE inhibitors can prolong the action or effect of cAMP and cGMP signaling by inhibiting 

cAMP and cGMP degradation by PDEs. Selective PDE inhibitors have been utilized as a 

novel therapeutic approach in many disorders such as asthma, chronic obstructive pulmonary 

disease, coronary heart disease, hypertension, infective diseases (such as malaria), as well as 

in mental conditions such as depression and schizophrenia. Sildenafil, a cGMP-specific 

PDE5 inhibitor, may be considered a hallmark drug belonging to this class of therapeutic 

agents. Sildenafil enhances the vasodilatory effects of cGMP and has been available for 

about two decades for treating erectile dysfunction [145]. Other notable PDE inhibitors that 

are in clinical use include: cilostazol, a PDE3selective inhibitor used to alleviate intermittent 

claudication in patients with peripheral vascular disease; pentoxifylline, a competitive 

nonselective PDE inhibitor and an antagonist of the adenosine 2 receptors, used for 

managing muscle pain in patients with peripheral artery disease; and theophylline, another 

nonselective PDE inhibitor, commonly used as a vasodilator [146–148].
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Among the cAMP-selective PDE inhibitors, PDE4 inhibitors have been well-explored for 

therapeutic purposes, since PDE4 is present predominantly in immune cells and cells of the 

central nervous system. The outcomes of PDE4 inhibition are well-documented and 

correlated with procognition, wakefulness, neuroprotection and anti-inflammation. Thus, the 

PDE4 family is a popular therapeutic target for diverse conditions, such as asthma and 

central nervous system-related disorders [149–151]. Indeed, rolipram, the prototypical PDE4 

inhibitor, was initially modeled and designed as an antidepressant drug in the 1990s, but was 

later discontinued due to its narrow therapeutic window [152]. However, selective PDE4 and 

dual PDE3/4 inhibitors, including roflumilast, are still considered favorable therapeutic 

agents for treating various chronic inflammatory diseases pertaining to the respiratory 

system by virtue of their anti-inflammatory and bronchodilatory properties [153]. Because 

these agents can cross the blood brain barrier, the oral administration of selective PDE4 

inhibitors often produces side effects of the central nervous system and gastrointestinal tract 

such as nausea, vomiting, diarrhea and dyspepsia. Hence, there is a need for novel and 

targeted drug delivery systems [154]. In spite of being discontinued, rolipram is still widely 

used in research to characterize the beneficial effects of PDE4 inhibition, with multiple 

studies demonstrating its protective effects in auto-immune diseases, spinal cord injury, 

Alzheimer’s’ disease and acute lung injury, to name a few [155–158]. However, PDE 

inhibitors have not undergone rigorous clinical trials, nor have they been approved for liver 

diseases. The following section will discuss current, available studies of cAMP-specific PDE 

inhibitors in the liver and assess their potential in hepatic disorders.

3.2. PDE inhibition in NAFLD, ALD, fibrosis and other liver diseases

As discussed earlier, endotoxin (LPS)-driven inflammation plays a major role in the 

pathogenesis of ALD. Marco Conti’s group has demonstrated the essential role of PDE4, 

specifically PDE4B, in LPS-inducible TNFα production [159, 160]. By using Pde4a, b and 

d knockout mice, it was established that among the PDE4 sub-family, PDE4B is critical for 

LPS signaling through TLR4 in macrophages and Pde4b knockout mice are protected from 

LPS-induced shock [160]. Based on these observations, our group later identified the 

alcohol-mediated increase of PDE4B as a cause of diminished cAMP levels and an 

underlying mechanism of alcohol-mediated “priming”; PDE4 inhibition abrogates alcohol-

mediated “priming” of monocytes/macrophages and production of high levels of TNFα 
[92]. Protective effect of PDE4 inhibitors, Rolipram and roflumilast, has also been 

demonstrated in various murine models of inflammation-driven liver injury [161–165]. 

Importantly, our recent study demonstrated that chronic alcohol feeding reduced hepatic 

cAMP leading to decreased phospho-CREB levels in a mouse ALD model [74]. We further 

showed that this decrease in cAMP levels was mediated by increased hepatic PDE4 

expression/ activity in both the liver as well as isolated hepatocytes. Induction of PDE4 and 

a resultant compromised cAMP signaling contributed to dysregulated fatty acid β-oxidation 

by decreasing CPT1A expression. Moreover, a PKA specific agonist increased CPT1A 

levels in primary hepatocytes [74]. Using both pharmacological and gene knockout 

approaches, we showed that inhibition of PDE4, specifically PDE4B, significantly 

attenuated alcohol induced hepatic steatosis by preventing the alcohol-mediated decrease in 

hepatic Cpt1a expression via the Pparα/Sirt1/Pgc1α pathway in vivo [74]. Additionally, 

Mollmann et al. reported that PDE4 inhibition, using roflumilast, diminished steatohepatitis 
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and improved glucose tolerance in mice fed a high-fat Western-type diet. The authors 

attributed this action mechanistically to cAMP activation of PKA and CREB leading to 

increased mitochondrial biogenesis induced by PCG-1α [166]. Mice administered 

roflumilast also exhibited increased energy expenditure and lower weight gain. Several 

human studies have also reported the reduction of fat mass and improvement in insulin 

resistance after treatment with roflumilast [167–169]. Plant flavonoids that are reportedly 

competitive inhibitors of PDE3 and PDE4 have also been reported to suppress lipogenic 

pathways and are being considered as potential therapeutic agents for obesity and hepatic 

steatosis [170]. The well-characterized PDE inhibitor, pentoxifylline, was also found to be 

protective against NASH induced by the methionine-choline deficient diet through 

suppressed TNFα production and alleviation of ER stress [171, 172]. Likewise, a meta-

analysis of randomized, double-blinded, placebo-controlled trials for the clinical use of 

pentoxifylline in NAFLD reported that pentoxifylline improved NAFLD parameters such as 

elevated liver enzyme levels in patients [173].

Besides hepatic steatosis, PDE inhibition has been strongly implicated in the management of 

liver fibrosis, which occurs in multiple types of chronic liver injury. Unfortunately, there is 

no FDA-approved specific therapy for liver fibrosis, and thus, developing novel targets for 

anti-fibrotic therapy is an important undertaking. The effect of PDE inhibitor, pentoxifylline, 

on HSC activation and trans-differentiation and the development of fibrosis was also 

demonstrated in In vitro and in vivo studies, supporting the role of PDE inhibition as a 

protective mechanism in liver fibrosis [174–178]. More recently, a study demonstrated that 

pentoxifylline suppressed TGF-β1 expression in activated LX-2 hepatic stellate cells by 

inhibiting the pro-fibrogenic hedgehog signaling pathway [179]. In addition, pentoxifylline 

has also been reported to improve complications such as bacterial infection and renal 

dysfunction in patients with advanced cirrhosis [180]. Using bile-duct ligation as a 

cholestatic liver injury model, our group demonstrated that induction of hepatic PDE4A, B 

and D plays a causal role in the development of liver injury and fibrosis [161]. Specifically, 

we showed that targeting this induction of PDE4 activity by rolipram prevented hepatic 

inflammation, fibrosis and injury. More importantly, PDE4 induction in hepatic stellate cells 

preceded the expression of the HSC activation marker, α-SMA, suggesting that PDE4 

induction is required for HSC activation process. Indeed, treatment with rolipram markedly 

attenuated the trans-differentiation of quiescent HSCs into myofibroblasts. PDE4 inhibitors 

have also been shown to reduce the production and activity of matrix metalloproteinases 

(MMPs) in human lung fibroblasts, and this could be another potential mechanism of 

protection in liver fibrosis [181]. MMPs are involved in proteolytic degradation and 

remodeling of the ECM as well as in the inflammatory process [182]. These findings 

implicated PDE4 as a driver of fibrogenic gene expression, and hence as a pathogenic 

mediator of liver fibrosis.

Given the evidence that altered cAMP levels through PDE4 induction can modulate the 

degree of steatosis, inflammation and fibrosis, PDE4 inhibitors are now being considered for 

the treatment of metabolic disorders, with some PDE4 inhibitors currently undergoing 

clinical trials [183]. In 2014, a PDE4 inhibitor (ASP9831) was introduced into phase 1 and 

phase 2 clinical trials for the treatment of NASH; however, it was not effective in reducing 

NASH parameters such as elevated ALT/AST, despite a defined mechanism of action [184]. 
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Such failures emphasize the challenges of NASH and ALD treatment, given that the diseases 

are multi-factorial. There is a critical need for more efficient/reproducible preclinical tests, 

appropriate drug dosing, and potentially, combinatorial drug therapy.

4. Concluding remarks

Liver diseases such as ALD and NAFLD continue to plague both developed and developing 

countries. To date, there is no available Food and Drug Administration-approved therapy for 

either ALD or NAFLD. Therefore, there is an urgent need to identify pathogenic targets for 

drug therapy. Moreover, because ALD and NAFLD share pathophysiological features, such 

as steatosis, inflammation, and fibrosis, the identification, development and evaluation of a 

drug target for one can also be potentially utilized for the other. This review focused on the 

relevance of cAMP signaling in physiologic and pathologic aspects of liver function. 

Additionally, it addressed the current understanding of cAMP metabolism and signaling in 

parenchymal and non-parenchymal hepatic cells, that impact the development of liver 

pathologies (Fig. 2, Table 1). Because the fate of the cAMP pathway is controlled by PDEs, 

targeting these enzymes using PDE inhibitors is becoming relevant in the treatment and 

management of liver diseases. Particularly, based on current preclinical and clinical findings, 

PDE4specific inhibitors demonstrate therapeutic potential in the management of liver 

diseases such as NAFLD and ALD. However, more preclinical studies and larger, placebo-

controlled clinical trials are warranted to establish their efficacy during different stages of 

liver disease.
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Fig. 1. 
A schematic diagram showing the well-characterized outcomes concerning carbohydrate and 

lipid metabolism as a result of increased intracellular cAMP and PKA activation in the liver. 

PKA activation results in phosphorylation of different effector molecules that either leads to 

activation (+) or inactivation (−) with the net effect of increased glucose production and 

decreased lipid accumulation in the liver. ATP - adenosine triphosphate, cAMP cyclic 

adenosine monophosphate, PKA - protein kinase A, CREB - cAMP response element-

binding protein, PGC-1α - peroxisome proliferator-activated receptor gamma coactivator 1-

alpha, PPARγ - peroxisome-proliferator activator receptor gamma, SREBP-1c - sterol 

regulatory-element binding protein-1c
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Fig. 2. 
A schematic diagram cataloguing cAMP/PKA/EPAC-mediators and targets in NAFLD, 

ALD and liver fibrosis. The diagram also demonstrates pathways modulated by cAMP/PKA/

EPAC activation and the overall effects in the liver such as lipid metabolism, inflammation, 

oxidative and endoplasmic reticulum (ER) stress, apoptosis and fibogenesis. Some of the 

mediators that have been shown to be key for the beneficial effects of increasing/restoring 

cAMP in liver disease are mentioned in brackets. AC-adenylate cyclase, PDE-

phosphodiesterase, cAMP - cyclic adenosine monophosphate, PKA - protein kinase A, 

EPAC- exchange protein activated by cAMP, CREB - cAMP response element-binding 

protein, AMPK - AMP-activated protein kinase, ERK/PI3K extracellular signal-regulated 

kinases/PI 3-kinases, SREBP-1c - sterol regulatory element-binding protein −1c, FAS - fatty 

acid synthase, SCD-1 - stearoyl-CoA desaturase, PGC-1α - peroxisome proliferator-

activated receptor gamma coactivator 1-alpha, PPAR-α - peroxisome-proliferator activator 

receptor alpha, CPT1A - carnitine palmitoyl transferase 1A, NF-κB - nuclear factor-kappa 

B, TNFα - tumor necrosis factor alpha, IL-10 - interleukin 10, ROS - reactive oxygen 

species, ADH - alcohol dehydrogenase, DISC - death-inducing signaling complex, ER - 

endoplasmic reticulum, GSK3 - glycogen synthase kinase 3, JNK c-Jun N-terminal kinases, 

CHOP - C/EBP homologous protein, TGF-β - transforming growth factor beta, α-SMA - 

alpha smooth muscle actin, MMPs - matrix metalloproteinases.
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Table 2

A list of the different phosphodiesterases (PDEs) identified in mammals along with their substrate specificity 

and tissue distribution.

PDE Tissue distribution Specificity

PDE 1 Brain, heart, skeletal muscle and testis cGMP, cAMP

PDE 2 Adrenal medulla, heart, brown adipose tissue, liver and brain, endothelial cells, macrophages, pulmonary artery cGMP, cAMP

PDE 3 Heart, platelet, vascular smooth muscle, oocyte, adipocytes, hepatocytes, spermatocytes cGMP, cAMP

PDE 4 Brain, inflammatory cells, cardiovascular tissues, smooth muscles cAMP

PDE 5 Lung, heart, cerebellum, less in the rain and kidney cGMP

PDE 6 Retina cGMP

PDE 7 Pro-inflammatory and immune cells, endothelial cells, brain, heart, skeletal muscle, pancreas cAMP

PDE 8 Testis, eye, liver, skeletal muscle, heart, kidney, ovary, brain cAMP

PDE 9 Kidney, liver, lung, brain, spleen, small intestine cGMP

PDE 10 Brain, thyroid, testis cGMP, cAMP

PDE 11 Skeletal muscle, prostate, kidney, liver, pituitary and salivary glands, testis cGMP, cAMP
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