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Abstract

Innate immunity, the first line of defense against invading pathogens, is an ancient form of host 

defense found in all animals, from sponges to humans. During infection, innate immune receptors 

recognize conserved molecular patterns, such as microbial surface molecules, metabolites 

produces during infection, or nucleic acids of the microbe’s genome. When initiated, the innate 

immune response activates a host defense program that leads to the synthesis proteins capable of 

pathogen killing. In mammals, the induction of cytokines during the innate immune response leads 

to the recruitment of professional immune cells to the site of infection, leading to an adaptive 

immune response. While a fully functional innate immune response is crucial for a proper host 

response and curbing microbial infection, if the innate immune response is dysfunctional and is 

activated in the absence of infection, autoinflammation and autoimmune disorders can develop. 

Therefore, it follows that the innate immune response must be tightly controlled to avoid an 

autoimmune response from host-derived molecules, yet still unencumbered to respond to infection. 

In this review, we will focus on the innate immune response activated from cytosolic nucleic acids, 

derived from the microbe or host itself. We will depict how viruses and bacteria activate these 

nucleic acid sensing pathways and their mechanisms to inhibit the pathways. We will also describe 

the autoinflammatory and autoimmune disorders that develop when these pathways are 

hyperactive. Finally, we will discuss gaps in knowledge with regard to innate immune response 

failure and identify where further research is needed.

1. INTRODUCTION

Several nucleic sensing pathways have been identified over the last few decades that have 

increased our understanding of diseases that occur when these pathways are dysfunctional. 

The last decade has experienced an upsurge of new discoveries regarding nucleic acid 

sensing, many due to advances in technology. Nevertheless, intricacies of how the failure of 

nucleic acid-sensing mechanisms leads to autoinflammation and autoimmunity remain 

unsolved. In this review, we explore what is known about how the failure of nucleic acid-
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sensing mechanisms leads to autoimmunity and autoinflammation as well as highlight 

questions that remain to be solved.

Autoinflammation and autoimmunity are often mistakenly used interchangeably but refer to 

the origin of disease. Namely, while autoinflammatory diseases are driven primarily by 

dysregulation of the innate immune system and do not rely on T cells or B cells for disease 

to progress, autoimmune diseases are driven primarily by T-cell and B–cell mediation 

(Arakelyan et al., 2017). Several autoimmune diseases originate from the innate immune 

system but then require lymphocytes for progression, indicating that disease is often a result 

of more than one component of immunity. Details that differentiate autoimmunity and 

autoinflammation remain controversial, but our current understanding of these pathologies is 

based on our ample understanding of innate immune recognition.

Central to the autoinflammatory and autoimmune disorders discussed in this review are the 

sensors that detect cytosolic nucleic acids to stimulate an innate immune response. The 

primary role of the innate immune system is to be the first line of defense against foreign 

microbes. The recognition of microbes and nucleic acid depends on pattern recognition 

receptors (PRRs) that recognize a variety of pathogen-derived molecules called pathogen-

associated molecular patterns (PAMPs). While many types of PAMPs are encountered only 

during microbial infection, nucleic acid-mediated PRR activation can be microbe-or host-

derived. That is, the innate immune response can be activated by the presence of self-nucleic 

acids that escape the nucleus, a major etiological cause of the autoinflammatory and 

autoimmune disorders discussed here. As such, in this review, we will describe the receptors 

of RNA and DNA nucleic acids and the signaling pathways that each stimulate. Then, for 

both the RNA and DNA sensing pathways, we will identify the specific types of microbial 

infections that activate innate immune responses and how each microbe has evolved 

mechanisms to inhibit these pathways. Finally, we will discuss the autoinflammatory and 

autoimmune disorders that develop when these nucleic acid signaling pathways are 

dysfunctional.

2. RNA NUCLEIC ACID SENSING IN VIRAL IMMUNOLOGY AND 

AUTOIMMUNITY

2.1 Detection of Intracellular RNA

2.1.1 Protein Kinase R—Protein kinase R (PKR) is encoded by the EIF2AK2 gene, and 

it is an interferon (IFN)-induced, double-stranded RNA (dsRNA)-dependent protein kinase 

that phosphorylates the alpha subunit of eukaryotic initiation factor 2 (eIF2α), resulting in 

the inhibition of mRNA translation initiation (Kitajewski et al., 1986). PKR has also been 

shown to be a component of IFN activation to facilitate a robust innate immune response 

(Balachandran et al., 2000). PKR itself is induced by IFN, resulting in a positive feed-

forward loop that further amplifies the innate immune response (Li et al., 2011). Double-

stranded RNA activation of PKR results in its dimerization and autophosphorylation (Dever, 

2002). Downstream IFN gene induction is induced primarily by the NF-κB transcription 

factor following PKR-mediated phosphorylation of IκB (Kumar et al., 1994), but not IRF3 

activation (Smith et al., 2001). A number of viruses have encoded mechanisms to block PKR 
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activation to allow for enhanced virus replication, such as adenovirus, reovirus, influenza 

virus, and hepatitis C virus (Gale et al., 1997; Katze et al., 1987; Lloyd and Shatkin, 1992; 

Lu et al., 1995).

The activation of PKR is also inhibited by other cellular factors, such as the gene encoded by 

DNAJC3, namely P58IPK (Lee et al., 1992). Specifically, P58IPK interacts with PKR at the 

site that promotes its dimerization and autophosphorylation (Gale et al., 1996). Importantly, 

P58IPK is activated during influenza virus infection and P58IPK dysfunction results in late 

onset type 1 diabetes, which will be discussed in a following section (Ladiges et al., 2005; 

Melville et al., 1999).

2.1.2 Toll-Like Receptors—Toll-like receptors (TLRs) are integral membrane 

glycoproteins, have a tri-modular structure, and contain 16–28 leucine-rich repeats (LRRs), 

which are necessary for interaction and recruitment of several adaptor proteins (Kawasaki et 

al., 2011; Matsushima et al., 2007). TLRs are a subset of PRRs expressed on the cell 

membrane of professional immune cells like monocytes, macrophages, dendritic cells, B 

cells, and non-immune cells like keratinocytes and epithelial cells (Kawasaki et al., 2011; 

Novak et al., 2010). TLRs are classified by their ectodomain for ligand binding (Kawai and 

Akira, 2009; Kumar et al., 2009). Thirteen TLRs have been identified in mammals but only 

TLR3, TLR7/8, and TLR9 recognize microbial nucleic acids in endolysosomal 

compartments while the others bind to bacterial or parasitic PAMPs such as triacyl 

lipopeptides, peptidoglycan, or lipopolysaccharide on the cell surface (Kawai and Akira, 

2009; Kawasaki et al., 2011).

TLR3 recognizes dsRNA, a product of RNA virus replication lifecycles, in endolysosomal 

compartments. Recognition of dsRNA by TLR3 leads to signaling through NF−κB and 

subsequent activation of IFNs (Alexopoulou et al., 2001). This IFN–β promoter activation is 

uniquely mediated by the adaptor protein, Toll-interleukin 1 receptor domain (TIR)-

containing adaptor inducing IFN-β (TRIF or TICAM-1) (Oshiumi et al., 2003). This 

recognition process by TLR3 must be tightly regulated to ensure IFN activation only in the 

presence of non-self nucleic acid. The structural composition of the dsRNA is important in 

efficient recognition by TLR3. For example, the 2′-OH group in cytidylic acid is necessary 

for the dsRNA to be recognized by TLR3 (Okahira et al., 2005). More recently, work has 

been done to examine the functional structure of TLR3 that has the ability to recognize 

dsRNA. Glycosylation and cathepsin cleavage of TLR3 occur as it is transported from the 

endoplasmic reticulum through the Golgi apparatus and into an endolysosome (Toscano et 

al., 2013). The TLR3 C terminal and N terminal cleavage product complex that results is 

necessary for the recognition of dsRNA (Garcia-Cattaneo et al., 2012; Murakami et al., 

2014). This mature TLR3 is fully functional in the endolysosome and ready to accurately 

recognize non-self dsRNA (Toscano et al., 2013). An interesting exception has also been 

discovered whereby poliovirus-derived single-stranded RNA segments that have loop 

structures resembling dsRNA can also activate TLR3 when they come from damaged or 

inflamed cells (Tatematsu et al., 2013). As we will discuss below, TLR3 plays a key role in 

controlling viral infections that involve dsRNA structures and it is also involved in the 

manifestation of autoimmune disorders such as type 1 diabetes.
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TLR7/8 resides in endolysosomal compartments and recognizes ssRNA as the ligand of 

activation. Signaling occurs through the adaptor molecule MyD88 and IRF7 (Diebold et al., 

2004; Heil et al., 2004; Kawai et al., 2004). For example, TLR7 and TLR8 have been shown 

to aid in host defense against the paramyxovirus, Sendai virus (Melchjorsen et al., 2005). 

HIV is also an antagonist for TLR7/8 mediated antiviral responses robust sensing by these 

TLRs leads to recruitment of effector cells to the site of viral infection (Schlaepfer and 

Speck, 2008). Mechanistically, TLR7/8 sensing of ssRNA occurs in a sequence-independent 

manner. The uridine and ribose molecules of RNA are known antagonists of TLR7 (Diebold 

et al., 2006). TLR7/8 activation induces a robust IFN response alongside the production of 

other cytokines such as: interleukin (IL)-1β, IL-6 and IL-12. IL-1β in particular is produced 

when non-self ssRNA and TLR7/8 activation results in activation caspase-1 (Nicholas et al., 

2011). More recently, researchers also determined that the RNA editing phenomenon of 

adenosine-to-inosine conversion enhances TLR7/8 activation. In this experiment, TLR7 

sensing of ssRNA was enhanced in inosine-modified viral RNA (Sarvestani et al., 2014). 

The cooperative role between TLR7 and TLR8 is also an important part of the mechanism 

that results in an IFN response to ssRNA. Influenza virus infection was effectively 

controlled in a rat study where the dual administration of TLR7/8 was administered and 

effectively suppressed viral load (Hammerbeck et al., 2007). Additionally, during Japanese 

encephalitis virus infection, TLR8 can compensate for a lack of TLR7 by activating an 

effective response alone (Awais et al., 2017). TLR7/8 is a necessary component of the 

antiviral response that responds to foreign ssRNA in endolysosomal compartments and 

activates an IFN response.

2.1.3. RIG-I-Like Receptors—RIG-I-like receptors (RLRs) recognize viral RNA and 

initiate innate immune response signaling (Loo and Gale, 2011). RLRs are characterized by 

their central DExD/H box RNA helicase domain that senses cytosolic dsRNA (Gack, 2014). 

There are three known RLRs with unique functions: retinoic acid-inducible gene I (RIG-I) 

(Yoneyama et al., 2004), melanoma differentiation-associated gene 5 (MDA5) (Kang et al., 

2004), and laboratory of genetics and physiology 2 (LGP2) (Cui et al., 2001). RLRs are 

expressed in most human tissues to allow for widespread type I IFN induction upon viral 

infection. RLRs are expressed at low levels in resting cells, and then the expression is 

increased in response to viral infection. RIG-I and MDA5 have similar functions such that 

they initiate antiviral signals to induce IFN gene activation (Kang et al., 2004; Yoneyama et 

al., 2004). LGP2 functions as a regulator of RIG-I and MDA5 (Yoneyama et al., 2005). 

Therefore, the antiviral response is a balanced system where the outcome of a viral infection 

is determined by the level of viral replication as compared to the level of antiviral response 

activation.

RIG-I and MDA5 are structurally similar with two caspase-recruitment domains (CARDs) at 

the N-terminus region, a central DExD/H domain, and C-terminal domain (CTD) (Kang et 

al., 2004, Yoneyama et al., 2004). Once the RIG-I and MDA5 central DExD/H domain and 

CTD bind viral RNA, the CARD domains interact with the mitochondrial antiviral signaling 

(MAVS) adaptor protein. MAVS is composed of an N-terminal CARD-like domain and C-

terminal transmembrane domain, both of which are necessary for protein function and 

signaling (Seth et al., 2005). The activation signal is then transmitted through Fas-associated 
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protein with the death domain (FADD)/receptor-interacting protein 1 (RIP1) that leads to the 

translocation of the NF-κB transcription factor into the nucleus (Honda et al., 2006). 

Signaling through MAVS can also activate IKKε and TANK-binding kinase 1 (TBK1) that 

phosphorylate IRF3 and allows for translocation to the nucleus (Sharma et al., 2003). NF-κB 

and IRF3 are transcription factors that lead to the production of proinflammatory cytokines, 

namely IFN-β for type I IFN response to viral infection (Yoneyama et al., 2005).

Mitochondrial antiviral-signaling protein (MAVS, also known as IPS-1, VISA, and Cardif ) 

is an adaptor molecule that also induces IFN from RIG-I and MDA5 signaling (Kawai et al., 

2005). The MAVS molecule has a CARD domain that interacts with the CARD domains of 

RIG-I and MDA5. MAVS signaling requires TBK1 and IKKε protein kinases and activates 

transcription factors NF-κB and IRF3, leading to IFN induction (Kawai et al., 2005). 

Autoamplification of IFN signaling ensues because RIG-I and MDA5 are IFN-inducible 

(Honda et al., 2006). The abundance of IFNs induces up-regulation of IFN-stimulated genes 

(ISGs) (Pine et al., 1990). This can occur through the Jak/STAT (signal transducer and 

activator of transcription) upon binding by IFN-β (Darnell et al., 1994). The antiviral signals 

are then spread to surrounding infected and uninfected cells. Cells enter into antiviral states 

that control the infection by resisting viral replication. ISGs are responsible for amplifying 

the antiviral response and encoding proteins that have direct antiviral activity (Yoneyama et 

al., 1996). The production of innate immune cytokines and chemokines recruits professional 

immune cells to the site of infection and initiate the adaptive immune response (Kadowaki et 

al., 2000). Activation of RIG-I and MDA5 by dsRNA leads to activation of a signaling 

cascade and subsequent IFN induction during antiviral innate immune responses (Fig. 1).

Since an effective IFN response requires equilibrium within the system, regulators such as 

LGP2 are key in modulating activation signals. LGP2 has a different structure as compared 

to RIG-I and MDA5 because it lacks the two CARD domains (Murali et al., 2008). The 

ATPase domain of LGP2 functions upstream of RIG-I and MDA5 to facilitate recognition of 

cytosolic viral RNA (Satoh et al., 2010). Studies have shown that LGP2 binds dsRNA and 

negatively regulates RIG-I and MDA5 activation. These studies observed negative feedback 

regulation during Sendai virus and Newcastle disease virus infection (Rothenfusser et al., 

2005; Yoneyama et al., 2005). However, a recent study has suggested that LGP2 might also 

have a positive enhancement regulation mechanism for MDA5 and RIG-I. Structural 

analysis of LGP2 revealed that RNA-dependent binding of dsRNA by LGP2 enhanced 

MDA5 antiviral signaling (Uchikawa et al., 2016). LGP2 has also been described as a 

necessary component of an effective IFN response during positive-sense picornavirus 

infection (Satoh et al., 2010). However, other studies have shown that LGP2 negatively 

regulates RIG-I function by sequestering viral RNA or competing with IKKε for interaction 

with MAVS (Komuro and Horvath, 2006; Rothenfusser et al., 2005; Saito et al., 2007). To 

clarify these seemingly disparate roles for LGP2, it was shown that in mice lacking LGP2, 

there was increased resistance during negative-sense vesicular stomatitis virus (VSV) 

infection while IFN signaling was defective during Cardiovirus A, a member of the 

Picornaviridae family, infection, causing the mice to be more susceptible to infection 

(Venkataraman et al., 2007). Taken together, LGP2 has an important regulatory role in IFN 

signaling, but the response is variable among different RNA viruses.

Matz et al. Page 5

Int Rev Cell Mol Biol. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



RIG-I and MDA5 have variable recognition abilities for foreign cytosolic RNA (Kato et al., 

2006). The varying abilities for RIG-I and MDA5 to discriminate between self and non-self 

allows for specification in the antiviral innate immune response. RIG-I and MDA5 both have 

the ability to recognize dsRNA. However, RIG-I is known to recognize Orthomyxoviridae, 

Flaviviridae, and Paramyxoviridae family viruses while MDA5 specifically recognizes 

picornavirus infections (Kato et al., 2006; Loo et al., 2008). RIG-I and MDA5 activation 

together can also be essential to induce strong IFN responses during viral infections, such as 

West Nile virus (Errett et al., 2013). The length of the dsRNA plays a key role in activation 

of RIG-I or MDA5. RIG-I recognizes short dsRNA (up to 1 kb) while MDA5 recognizes 

long dsRNA molecules (more than 2 kb) (Kato et al., 2008). For example, the replicative 

form of the picornavirus genome is a 7.5 kb dsRNA intermediate that has been shown to 

robustly activate MDA5 in infected cells (Feng et al., 2012). RIG-I has additional abilities to 

discriminate between self and non-self by recognition of single-stranded RNA with a 5′-

triphosphate (5′-PPP) or with a 5′-diphosphate (5′-PP) (Goubau et al., 2014; Hornung et al., 

2006; Pichlmair et al., 2006). This was determined because influenza virus infection 

activates RIG-I in the absence of a dsRNA intermediate during the replication life-cycle 

(Pichlmair et al., 2006). Host ssRNA exists in the cytosol with a 5′-guanosine cap because it 

has undergone post-transcriptional modifications. Therefore, the 5′-PPP is an important 

feature in discrimination because self and non-self because it is unique to viral cytosolic 

ssRNA. The 5′-PPP is a component of the RNA molecule after viral polymerase replication 

has taken place (Hornung et al., 2006). It was also described that RIG-I can recognize 

ssRNA with 5′-PP, a special feature of mammalian reoviruses (Goubau et al., 2014). 

Recently, it was shown that a conserved residue (H830) of RIG-I is essential to prevent 

sensing of self RNA that bears a N1-2′-O-methyl group. Additionally, yellow fever virus 

encodes a methyl transferase to allow escape of viral RNA recognition (Schuberth-Wagner 

et al., 2015). Together, RIG-I and MDA5 recognize different features of foreign RNA 

molecules that lead to unique activation of these RLRs during different viral infections. The 

length of the viral dsRNA along with 5′-PPP, 5′-PP, or cap methylation features on ssRNA 

dictates the activation of either RIG-I or MDA5 in antiviral innate immune responses.

RNA binding to RIG-I and MDA5 requires specific molecular mechanisms to facilitate 

controlled and effective activation of the RLRs. Positive and negative regulatory 

mechanisms of RIG-I and MDA5 are necessary to tightly control IFN signaling. It has been 

shown that RIG-I retains an inactive configuration until RNA binding occurs and the ATPase 

activity increases to induce signal transduction of the antiviral response (Gee et al., 2008). 

Exposure of the RIG-I and MDA5 CARD domains leads to structural changes, such as 

ubiquitination and phosphorylation, that vary levels of activation. The RNF125 ubiquitin E3 

ligase suppresses RIG-I and MDA5 activity by causing ubiquitination of their CARD 

domains and subsequent proteasomal degradation (Arimoto et al., 2007). Further, RNF125 

enhancement by IFN creates a negative feedback loop that controls RIG-I and MDA5 

activation during infection (Arimoto et al., 2007). In contrast, strong activation of RIG-I is 

facilitated by K63-polyubiquitin chains binding to RIG-I at the CARD domains (Zeng et al., 

2010). RIG-I and MDA5 are also regulated by phosphorylation and dephosphorylation of its 

CARD domains through PP1α and PP1γ phosphatases. The function of PP1α and PP1γ to 

dephosphorylate the CARD domains of RIG-I and MDA5 is needed to facilitate strong 
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induction of an IFN response (Wies et al., 2013). This positive and negative regulation of 

RIG-I and MDA5 is important in maintaining appropriate control of IFN induction and 

serving as a first line of defense against viral infections. There are many regulatory 

mechanisms for RIG-I-and MDA5-mediated IFN induction that help in effective viral 

control. However, dysfunctions in recognition and signaling can lead to increased viral 

susceptibility and even autoimmunity.

2.2. RNA Sensing During Viral Infections

Mutations within the genes coding for RNA sensors have been shown to increase 

susceptibility to a variety of viral infections. Additionally, viruses have mechanisms to 

antagonize specific aspects of the antiviral innate immune response. Decreasing IFN 

induction during viral infection is advantageous for the virus because it increases its 

infectivity potential. Several RNA viruses that exhibit these characteristics include: hepatitis 

C virus, Dengue virus, West Nile virus, Zika virus, respiratory syncytial virus, Nipah virus, 

Ebola virus, and Rotavirus (Table 1).

2.2.1. Hepatitis C Virus—Hepatitis C virus (HCV) is a positive-sense ssRNA virus 

within the Flaviviridae family that activates RIG-I during infection (Sumpter et al., 2005). 

HCV uses viral proteases and viral proteins to target specific components of IFN signaling 

and decrease antiviral responses. The HCV-NS3/4A viral protease is involved in many 

mechanisms of antiviral suppression. HCV-NS3/4A is known to cleave MAVS and decrease 

IFN signaling. A point mutation in MAVS at Cys-508 renders it resistant to NS3/4A 

cleavage (Li et al., 2005). HCV-NS3/4A are also known to induce expression of the 

translocase of outer mitochondrial membrane 70 (TOM70) and induce IFN signaling in 

hepatocytes (Kasama et al., 2012). However, the HCV nonstructural (NS) protein 3 (HCV-

NS3) then suppresses TOM70 induction of IRF3 mediated immunity by cleaving MAVS 

upstream of TOM70. Also, HCV-NS3/4A viral protease has also been shown to inhibit 

IL-28 induction. IL-28 contains NF-κB and IRF3 binding sites, meaning it can be induced 

by these transcription factors (Ding et al., 2012). Thus, the actions of HCV-NS3/4A aid in 

viral persistence within the host. The HCV-NS4B viral protein is also involved in antiviral 

suppression. HCV-NS4B interferes with TBK1 interactions, inhibiting these proteins from 

properly relaying IFN signaling (Ding et al., 2013). Finally, the HCV core protein was 

shown to inhibit TLR7-mediated IFN induction as well as IRF7 and STAT1 expression in 

plasmacytoid dendritic cells (Stone et al., 2014), and polymorphisms in genes encoding 

TLR3/7/8 result in increased susceptibility to HCV infection (El-Bendary et al., 2018). 

Together, HCV-NS3/4A, HCV-NS4B, and HCV-Core are viral components that suppress 

IFN induction and evade innate immune responses.

2.2.2. Dengue Virus and West Nile Virus—Dengue virus (DENV) and West Nile 

virus (WNV) are both mosquitoborne viruses within the Flaviviridae family (Ahlers and 

Goodman, 2018; Fredericksen et al., 2008; Loo et al., 2008; Nasirudeen et al., 2011). DENV 

and WNV both activate the IFN-mediated innate immune response through RIG-I and 

MDA5. Knockdown of RIG-I and MDA5 resulted in increased susceptibility to DENV 

infection (Nasirudeen et al., 2011). This highlights the importance of RIG-I and MDA5 in 

controlling DENV infection. Innate immune responses to WNV infection occur in two major 
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phases, with RIG-I and MDA5 being important sensors at both phases. The initial response 

to WNV leads to IRF3 activation and ISG induction. Later stages in WNV infection are 

dominated by IFN-dependent antiviral gene expression. In response to WNV infection, RIG-

I and MDA5 act through MAVS as they work together to stimulate a strong IFN response 

and subsequent signal amplification (Fredericksen et al., 2008). DENV and WNV both have 

antiviral evasion mechanisms that antagonize IFN induction after RIG-I and MDA5 sensing.

DENV has many mechanisms of innate immune suppression at different stages of infection. 

During early antiviral responses, before IFN induction, DENV induces the production of 

autophagic proteins, and autophagy activation suppresses the antiviral response (Huang et 

al., 2016). As the infection progresses, DENV also suppresses IFN induction by keeping 

viral dsRNA within intracellular membranes to hide the dsRNA from recognition by RLR 

receptors (Uchida et al., 2014). Virus induced double-membrane vesicles form early in 

infection and contain the dsRNA along with viral nonstructural proteins and replication 

machinery (Junjhon et al., 2014; Mackenzie et al., 1996). Therefore, viral replication can be 

occur within these vesicles in the first 48 h of infection with little dsRNA exposure in the 

cytosol (Uchida et al., 2014). However, other studies have shown that DENV NS4A is part 

of the membrane-bound replication complex that is also associated with viral RNA (Miller et 

al., 2007), also similar to the flavivirus Kunjin virus (Roosendaal et al., 2006). Additionally, 

DENV viral RNA was shown to associate with the rough ER (Grief et al., 1997). Therefore, 

it remains to be fully clarified if DENV viral RNA is fully incorporated within virus-induced 

membrane structures to avoid RLR recognition or if they are on the surface of cytosolic 

membrane structures. To evade host immune responses, DENV also uses nonstructural viral 

proteins direct suppression IFN signaling. Three nonstructural proteins of DENV are known 

to down-regulate IFN-β expression. The presence of DENV-NS4B caused the most 

significant decrease in IFN activity while DENV-NS2A and DENV-NS4A also antagonized 

IFN, but to a lesser extent than DENV-NS4B (Muñoz-Jordán et al., 2003). Additional 

research following this study described the mechanism by which the nonstructural proteins 

decreased innate immune responses during DENV infection. A viral nonstructural protein 

complex (DENV-NS2B/NS3) interacts with IKKε to inhibit kinase activity and ultimately 

decrease IFN induction (Angleró-Rodríguez et al., 2014). Also, DENV-NS2A/NS4B inhibits 

TBK1 phosphorylation in a dose dependent manner (Dalrymple et al., 2015). Experiments 

also indicated that DENV infection caused a reduction in STAT2 expression suggesting the 

virus antagonized this innate immune response gene (Ashour et al., 2009). DENV-NS5 is the 

viral polymerase and it has a role in inhibiting STAT2 function. Mature DENV-NS5 is the 

product of a polyprotein and this was important for STAT2 binding and subsequent 

inhibition. Precursor DENV-NS5 in the form of a polyprotein had a single role in inducing 

degradation of STAT2 while the proteolytically processed, mature DENV-NS5 protein had a 

single role in binding STAT2 (Ashour et al., 2009). DENV-NS5-mediated degradation of 

STAT2 is facilitated by the host E3 ubiquitin ligase, UBR4 (Morrison et al., 2013). Finally, 

the DENV protease complex (NS2B/NS3) has been shown to inhibit TLR3-mediated IFN 

induction (Rodriguez-Madoz et al., 2010). Together these studies highlight that many DENV 

nonstructural proteins function in suppressing IFN induction during innate immune antiviral 

responses.
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WNV also encodes mechanisms of innate immune suppression. IFN responses in myeloid 

cells are necessary for control of WNV infection. Mice lacking MAVS and the type I IFN 

receptor had extremely low cytokine production coupled with high WNV replication. These 

findings highlight the importance of IFN signaling through MAVS to control WNV infection 

in myeloid cells (Pinto et al., 2014). Due to the neuroinvasive nature of WNV, IFN responses 

to control WNV infection in the central nervous system have been studied (Ramos et al., 

2012). In vivo experiments showed a significant upregulation of IL-1β during acute WNV 

infection. IL-1β showed a synergistic role with IFN signaling to control WNV infection in 

neurons (Pinto et al., 2014). WNV susceptibility has also been linked to gene expression 

changes in peripheral blood cells. Individuals with resistance to WNV infection had higher 

IL-4 levels in serum as compared to individuals who developed severe symptoms. These 

IL-4 levels altered expression of many genes and correlated with disease outcome (Qian et 

al., 2014). Neuroinvasive human cases from WNV infection were also linked to mutations in 

RFC1 gene through a screen of common genetic polymorphisms. RFC1 aids in proper 

activation of DNA polymerase (Loeb et al., 2011). Additionally, experiments in mice 

revealed that during WNV infection, MAVS is essential for RLR signaling. Mice that lacked 

MAVS exhibited uncontrolled infection and a lack of regulatory T-cell expansions that is 

normally a characteristic of acute WNV infection. These findings highlight the importance 

of MAVS mediated RLR signaling to control WNV infection (Suthar et al., 2010). WNV 

NS1 inhibited K63-linked ubiquitination of RIG-I and blocked IRF3 signaling upon WNV 

recognition. It was specifically determined that WNV-NS1 interaction with MDA5 and RIG-

I induced proteasome degradation of these intracellular receptors (Zhang et al., 2017b). 

Lastly, an attenuated WNV strain containing a mutant NS4B protein (P38G), exhibited 

increased T-cell priming via a TLR7-mediated mechanism (Xie et al., 2013), and TLR3 is 

important in blocking WNV replication and spread into the brain (Szretter et al., 2010; Wang 

et al., 2004). Together, there are a variety of antiviral mechanisms in different cell types 

employed by WNV to antagonize the IFN response.

Interestingly, type 2 diabetes has been shown to increase susceptibility of severe DENV and 

WNV infection. One study showed that DENV infected patients with type 2 diabetes were at 

a higher risk of developing dengue hemorrhagic fever as compared to DENV infected 

patients without type 2 diabetes. This was quantified by an increase in IL-4 and IL-10 

cytokine production in patients with DENV and type 2 diabetes because these cytokines are 

an important immunopathogenesis marker for dengue hemorrhagic fever (Lee et al., 2013). 

Another study described an increase in WNV titer in serum, peripheral tissue, and the brain 

of the diabetic mouse model. Type 2 diabetes caused a non-specific WNV response that 

increased susceptibility of neuroinvasive WNV infection (Kumar et al., 2012). These studies 

highlight the important balance in innate immune signaling that must be present to 

efficiently clear a viral infection.

2.2.3. Zika Virus—Similar to DENV and WNV, Zika virus (ZIKV) is part of the 

Flaviviridae family and is transmitted by mosquitoes. A robust IFN response is also needed 

to control ZIKV infection. ZIKV infection induced RLR signaling in human skin fibroblasts 

to control infection. Human skin fibroblasts infected with ZIKV showed upregulation of 

TLR3, RIG-I, MDA5, and ISGs. There was also sequential activation observed where TLR3 
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was activated 6 h post-infection and RIG-I and MDA5 were activated later in infection 

(Hamel et al., 2015). Other mosquito-borne flaviviruses have been known to infect dendritic 

cells, and this was consistent with ZIKV. Researchers observed that RIG-I response to ZIKV 

in human dendritic cells was activated during infection. However, there was observable 

inhibition of IFN protein translation. Mechanistically, ZIKV was also able to control IFN 

signaling by blocking STAT1 and STAT2 phosphorylation (Bowen et al., 2017). These 

studies show that ZIKV infection leads to the activation of RIG-I and MDA5 but that ZIKV 

also has mechanisms to antagonize down-stream IFN signaling.

There are specific IFN adaptor molecules that increase ZIKV susceptibility and some 

nonstructural proteins of the virus antagonize IFN signaling, as shown for DENV and WNV. 

The MAVS adaptor protein within the IFN signaling cascade is important in the early IFN 

response because mice lacking MAVS had higher viremia than control mice (Piret et al., 

2018). During the development of a ZIKV mouse model, experiments revealed that a triple 

knockout of IRF3, IRF5, and IRF7 increased susceptibility to ZIKV infection through 

decreased IFN signaling. Also, mice lacking the IFN receptor had higher viral load in the 

brain and spinal cord that could not be controlled, which correlates with the neuroinvasive 

nature of the virus (Lazear et al., 2016). On the other hand, increased IFN induction and 

placental inflammation can lead to brain damage in newborns, and inhibition of TLR3 and 

TLR8 led to decreased pro-inflammatory cytokine responses in trophoblasts (Luo et al., 

2018). Many ZIKV nonstructural proteins have been shown to facilitate the inhibition of IFN 

signaling observed during infection. For example, ZIKV-NS5 binds STAT2 and its 

expression correlates with subsequent proteasome degradation of STAT2 (Kumar et al., 

2016). The IFN inhibitory role of ZIKV-NS5 in other flaviviruses is consistent for that of 

ZIKV. DENV-NS5 acts on STAT2 but the mechanism is slightly different than that of ZIKV 

because it involves the E3 ubiquitin ligase UBR4 to induce degradation (Grant et al., 2016). 

ZIKV-NS1 has also been shown to inhibit IFN signaling induction through binding of 

TBK1. This inhibitory role of the ZIKV-NS1 was observed only in ZIKV strains that caused 

epidemics after 2012. This highlights the importance of a fixed mutation in viral evolution 

because the ZIKV-NS1 fixed mutation helped the virus increase infectivity by decreasing 

IFN-β induction (Xia et al., 2018). Therefore, adaptor molecules are important for regulating 

an efficient antiviral response and without them IFN signaling may be uncontrolled. 

Additionally, ZIKV-NS5 and ZIKV-NS1 have IFN inhibitory roles during viral infection.

2.2.4. Respiratory Syncytial Virus—Respiratory syncytial virus (RSV) 

disproportionately causes more severe symptoms in infants as compared to older 

populations. RSV has a negativesense non-segmented RNA genome and it is part of the 

Pneumovirus genus of the Paramyxoviridae family. RSV dsRNA is sensed by RLRs and 

TLRs (reviewed in Klein Klouwenberg et al., 2009; Mukherjee and Lukacs, 2013), and host 

immune responses play a major role in the differences in viral susceptibility (Loo et al., 

2008; van Drunen Littel-van den Hurk and Watkiss, 2012). RSV infection is known to 

specifically cause severe lower respiratory tract infection in newborn infants (Marr et al., 

2014). Differences in the innate immune response to RSV determine the disease severity in a 

child. One study found polymorphisms in immune-related genes of pre-term babies that 

correlated with increased disease susceptibility as compared to babies carried to term 
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(Siezen et al., 2009). Another study found a consistent association in 22 single-nucleotide 

polymorphisms (SNPs) within 21 innate immune genes and the development of severe RSV 

bronchiolitis. These SNPs were identified in a cohort of children hospitalized for severe 

RSV bronchiolitis as compared to the control population. One SNP identified in this study 

with a highly significant association with bronchiolitis was the vitamin D receptor (Janssen 

et al., 2007). Vitamin D is known to mediate NF-κB and STAT1 expression (Stoppelenburg 

et al., 2014). Vitamin D deficiencies have been correlated with increased risk and severity of 

RSV (Hansdottir et al., 2010). Specifically, the FokI vitamin D receptor polymorphism 

abrogated vitamin D’s control of the STAT1-mediated antiviral response (Stoppelenburg et 

al., 2014). Together, these findings illustrate the importance of vitamin D in controlling the 

induction of STAT1 during antiviral responses and the importance of this regulation in RSV 

infection. Many SNPs have been linked to RSV susceptibility and loss-of-function SNPs in 

the vitamin D receptor have a strong association with the development of severe RSV 

bronchiolitis.

Increased susceptibility to RSV has also been linked to dysfunctions in IFN signaling from 

loss-of-function in plasmacytoid dendritic cells (pDCs) and direct inhibition of IFN 

signaling by RSV nonstructural proteins. Researchers have determined that pDCs are 

important in activating IFN responses in lungs during RSV infection. This epidemiological 

study found that newborn infants had increased susceptibility to RSV because they did not 

have fully functioning pDCs and therefore there was low IFN induction by RIG-I (Marr et 

al., 2014). Respiratory macrophages and pDCs are critical in combating RSV infection, not 

only through RLR signaling, but also through TLR3-and TLR7-mediated mechanisms (Qi et 

al., 2015). Using mouse pneumonia virus, the rodent-specific form of RSV, it was shown 

that TLR7 was critical for the host defense response and IFN induction during infection 

(Davidson et al., 2011). These results were corroborated through analysis of RSV-infected 

human pDCs (Schijf et al., 2013). RSV is also known to decrease IFN signaling in airway 

epithelial cells through degradation of STAT2 (Ramaswamy et al., 2004) and through an 

RSV-NS1-dependent but TLR3-independent mechanism (Xu et al., 2014b). Additionally, 

RSV-NS2 was identified as inducing these inhibitory effects on the IFN response 

(Ramaswamy et al., 2006). This innate immune response inhibition by RSV aids in viral 

replication specifically within airway epithelial cells. The control of RSV is complex, and it 

requires fully functioning proteins within the IFN pathway. As seen for other viruses, the 

RSV nonstructural proteins have individual roles in antagonizing the antiviral response.

2.2.5. Nipah Virus—Nipah virus (NiV) is another virus in the Paramyxoviridae family, 

but unlike RSV, it is part of the Henipavirus genus (Ciancanelli et al., 2009). NiV is a deadly 

zoonotic virus, and there is a 40–90% case mortality rate in human infected with NiV in 

Southeast Asia (Bharaj et al., 2016). NiV dsRNA is sensed by RIG-I, but not MDA5, to 

initiate IFN induction (Habjan et al., 2008). Research has shown that many of the NiV 

proteins contribute the deadly symptoms of NiV by antagonizing IFN stimulated antiviral 

responses (Bharaj et al., 2016). First, the NiV phosphoprotein (P) gene encodes the NiV-P, 

NiV-V, and NiV-W proteins that all antagonize IFN signaling (Ciancanelli et al., 2009). The 

NiV-V protein, mainly found in the cytoplasm, binds STAT1 and STAT2 proteins to prevent 

dimerization and nuclear transport (Rodriguez et al., 2004). The NiV-W protein has a very 
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similar role to the NiV-V protein except it sequesters STAT1 in the nucleus to inhibit 

subsequent ISG activation. Therefore, the NiV-V and NiV-W proteins have dual roles but are 

located in either the nucleus or cytoplasm to block STAT1 and induce antiviral functions. 

The NiV-P protein can also bind STAT1 to sequester the inactive protein in the nucleus, but 

to a lesser extent than NiV-V and NiV-W (Ciancanelli et al., 2009; Shaw et al., 2004). In 

comparison, Cedar virus is a henipavirus that is not pathogenic to humans and the Cedar 

virus P gene products do not antagonize STAT proteins as seen in NiV infection. This 

suggests that the antagonizing properties of NiV-P gene protein products greatly contribute 

to the highly lethal nature of the virus (Lieu et al., 2015). Second, the NiV nucleoprotein 

also decreased IFN responses in a dose dependent manner. The specific mechanism of 

inhibition is through targeting of STAT1 and STAT2 complex formation in the cytoplasm. 

NiV nucleoprotein decreases STAT1/STAT2 nuclear transport and subsequently down-

regulates ISG expression (Sugai et al., 2017). Third, the NiV matrix protein has been shown 

to inhibit IKKε kinase activity that is involved in IFN signaling. The NiV matrix protein acts 

by degrading TRIM6, an E3-ubiquitin ligase that generates unanchored polyubiquitin chains 

for IKKε activation. Therefore, this degradation by the NiV matrix protein results in 

decreased activity of IKKε activity and decreases IFN signaling (Bharaj et al., 2016). 

Finally, the nonstructural C protein of paramyxoviruses inhibits IFN signaling (Gotoh et al., 

2003; Mathieu et al., 2012), via inhibition of TLR7 in pDCs (Yamaguchi et al., 2014). 

Together, the gene products from NiV phosphoprotein, nucleoprotein, and matrix protein 

have been shown to antagonize IFN induction at different steps in its signaling pathway. This 

likely contributes to the high virulence of NiV in humans.

2.2.6. Ebola Virus—Ebola virus is negative-sense RNA virus with a non-segmented 

genome similar to that of RSV and NiV. Ebola virus is a hemorrhagic fever virus in the 

Filoviridae family. Zaire ebolavirus (EBOV) has a fatality rate of up to 90% in humans and 

the viral dsRNA is sensed by RIG-I to activate innate immune responses (Habjan et al., 

2008; Kash et al., 2006). Early studies on EBOV were performed in human liver cells. In 

this study, researchers determined that IFN signaling was suppressed during infection. 

Through genomic analysis of gene expression, many antiviral genes were suppressed during 

infection. Researchers hypothesized a global IFN suppression model and also identified 

specific antiviral genes, such as IRF3, as being suppressed during EBOV infection (Kash et 

al., 2006). Further research revealed that the EBOV viral protein 35 (EBOV-VP35) had a 

specific inhibitor mechanism for IRF3. This was a highly specific suppression model 

because a point mutation in EBOV-VP35 altered its inhibitor function. EBOV-VP35 also had 

a role in enhancing viral replication (Hartman et al., 2008). Furthermore, EBOV-VP35 binds 

dsRNA, inhibiting RIG-I-mediated detection of viral dsRNA (Cardenas et al., 2006), and 

EBOV-VP35 is an important cofactor in the viral polymerase complex (Prins et al., 2010). 

Together, EBOV-VP35 plays an important role in EBOV pathogenesis both for spread of the 

virus within the host as well as IFN specific suppression. Further research on EBOV-VP35 

enhanced the understanding of its inhibition mechanism. PACT (PKR activator) is a dsRNA 

binding protein that is known to induce activation of RIG-I. Experiments showed that 

EBOV-VP35 was able to inhibit PACT from activating RIG-I through direct binding. This 

was observed in a dose-dependent manner where increased presence of EBOV-VP35 

increased PACT inhibition. EBOV-VP35 can also bind viral dsRNA and decrease activation 
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of RIG-I during EBOV infection (Luthra et al., 2013). Finally, EBOV-VP35 can inhibit 

TLR3-mediated signaling, but this occurs in a dsRNA-independent manner suggesting that 

the TLRs can circumvent VP35-mediated IFN inhibition (Leung et al., 2011; Yen et al., 

2014). Taken together, EBOV-VP35 is a key antagonist of IFN induction during EBOV 

infection.

Further in vivo experiments have shown a more complex picture of EBOV infection than just 

the antagonizing properties of EBOV-VP35 (Caballero et al., 2016). Transcriptomics 

analysis of peripheral blood mononuclear cells from cynomolgus macaques infected with 

EBOV showed strong innate immune activation during viral infection. Many ISGs were 

upregulated in response to viral infection via an intramuscular injection. These findings were 

contrasting to previous studies that had shown the EBOV-VP35 protein targeted the IFN 

response for suppression. The authors of this study proposed a model of infection where 

EBOV-VP35 inhibits IRF3 activation in the single infected cell. Then, in neighboring cells, 

EBOV-VP35 might be inducing IRF3 nuclear translocation to facilitate induction of IFN 

signaling through an unknown mechanism. This hypothesis aims to explain why in isolated 

EBOV-VP35 experiments, the protein appears to decrease IFN signaling but then during in 
vivo EBOV infection, ISGs are upregulated (Caballero et al., 2016). This elevated pro-

inflammatory response to EBOV has been described in other studies. Rhesus macaques were 

infected with EBOV and monitored daily throughout the infection (Ebihara et al., 2011). 

Blood samples described the cytokine and chemokine profile throughout the course of 

infection. IL-1β and IL-6 pro-inflammatory cytokines were upregulated during infection. 

Interestingly, anti-inflammatory cytokines such as IL-10 and IL-13 were also increased in 

fatal EBOV cases. This shows that the cytokine balance during infection might be an 

important indicator of disease outcome. This study also showed anti-coagulation induced by 

the virus and ultimately contributed to overall pathogenesis (Ebihara et al., 2011). These 

findings were also evident in samples for fatal human cases of Ebola virus disease, 

symptoms of which include hemorrhagic fever. Many cytokines and chemokines were 

upregulated in fatal human cases. When looking at the disease progression in vivo, 

uncontrolled pro-inflammatory responses are a characteristic of fatal EBOV cases. 

Biomarkers of infection were identified as IL-1β and IL-6 along with IL-8 at late stages of 

infection (McElroy et al., 2014). These EBOV studies highlight the important balance of the 

innate immune response in determining disease outcome. EBOV viral proteins have been 

identified to inhibit IFN signaling during infection.

2.2.7. Rotavirus—Rotavirus (RV) is a segmented dsRNA virus within the Reoviridae 
family. It causes severe diarrhea in young children and is known to infect epithelial cells of 

the small intestine (Barro and Patton, 2005). RV dsRNA has been shown to activate RIG-I 

like receptors within intestinal epithelial cells. This virus is unique in that it is sensed by 

both RIG-I and MDA5 either together or separately. When MAVS, RIG-I, or MDA5 were 

silenced, RV titer increased and IFN-β production decreased. These findings suggested that 

RV induced IFN-β production through MAVS signaling after RIG-I and MDA5 activation 

(Broquet et al., 2011). Researchers have looked further into the specific RV RNA transcripts 

that activate IFN signaling. Nascent single-stranded RNA transcripts produced during viral 

replication were a strong inducer of IFN signaling (Uzri and Greenberg, 2013). Also, large 
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RNA transcripts produced 6 h after cells were infected with RV activated IFN signaling. 

This finding was only observed 6 h after infection but not 1 h after infection. Both the 

single-stranded RNA transcripts and large RNA produced 6 h after infection had uncapped 

RNA at the 5′ end. RNA lacking 2′-O-methylated 5′ cap was detected in the large RNA as 

well. The viral protein 3 enzyme of RV is known to encode guanylyltransferase and 

methyltransferase. Therefore, inaccuracy in this enzyme would result in a lack of a 5′ cap or 

2′-O-methyl group on the 5′ cap structure of viral RNA. Then, RNA lacking these 

structural components would activate RIG-I-like receptors and subsequent IFN-β production 

(Uzri and Greenberg, 2013). In conclusion, RNA sensing by RIG-I or MDA5 is important 

for controlled IFN induction during RV infection. Variations in RNA transcripts and 

processing are also an important indicator of IFN-β production levels. Regarding TLR 

signaling and RV, interestingly, TLR3 and TLR7 were required to protect the gut from 

inflammatory-inducing conditions through proper recognition of the gut virome, which 

includes RV (Yang et al., 2016).

RV nonstructural proteins are also known to antagonize innate immune responses. 

Specifically, RV-NS1 (or NSP1) is an antagonist of IRF3 through a common mechanism 

found in other viruses where it induces proteasome-dependent degradation of IRF3 to 

decrease IFN signaling (Barro and Patton, 2005). RV-NS1 also has a novel mechanism of 

decreasing NF-κB activation. This viral protein induces proteasome-dependent degradation 

of β-transducin repeat containing protein, a cellular protein that functions within the multi-

subunit complex responsible for NF-κB activation (Graff et al., 2009). Another study also 

demonstrated that RV-NS1 decreased IFN-β production through a mechanism independent 

of IRF3 degradation as previously reported. RV-NS1 directly bound to RIG-I to decrease 

activation and IFN-β production. This direct interaction was confirmed with 

immunoprecipitation and RV-NS1 interacted with RIG-I outside the IRF3 binding domain 

(Qin et al., 2011). Therefore, RV is sensed by RLRs and this sensing is enhanced with 

inefficiency of viral enzymes that make RNA products of replication more noticeable to the 

RLR sensing domain. However, the virus also has ways to combat this innate immune 

activation and RV-NS1 is a main driver that decreased IFN-β production through 

antagonizing of RIG-I, NF-κB, and IRF3 activation.

2.3 Defects in RNA Sensing and Autoimmunity

Hyperactive or non-functional mutations within the genes coding for RNA sensors or their 

interacting proteins have been show to lead to autoimmune-like phenotypes, such as type 1 

diabetes, Aicardi–Goutières syndrome, Crohn’s disease, Singleton–Merten syndrome, and 

systemic lupus erythematosus. As described below, many of these phenotypes are the result 

of imbalanced IFN or insulin signaling, autophagy, or responses to pathogens (Table 2).

2.3.1. The Role of MDA5 in Type 1 Diabetes and Aicardi–Goutières Syndrome
—Type 1 diabetes (T1D) is characterized by the development of autoantibodies that target 

beta cells of the human pancreas. These autoantibodies and auto-reactive immune cells then 

trigger the destruction of insulin-producing pancreatic beta cells and lead to T1D. 

Researchers have found that there is a genetic component to disease susceptibility along 

with viral infection and environmental variables. Environmental factors are known to be 

Matz et al. Page 14

Int Rev Cell Mol Biol. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



associated with disease manifestation, and one example is vitamin D deficiency. Also, 

Caucasians living in Europe have a high disease incidence that highlights the exogenous 

factors of T1D. Cohort studies linked enterovirus or coxsackie B virus infection with 

increased susceptibility to the development of T1D (Knip et al., 2005). Enterovirus is known 

to target beta cells in the human pancreas. Autopsied pancreases of T1D patients revealed a 

tropism of enterovirus for human pancreatic islet cells (Ylipaasto et al., 2004). A Finnish 

Diabetes Prediction and Prevention Study indicated a positive association between the 

development of autoantibodies for human pancreatic beta cells and enterovirus infection. 

Autoantibodies were more likely to be present in children infected with enterovirus as 

compared to the control groups (Lönnrot et al., 2000). In Europe there is a high prevalence 

of T1D and a low prevalence of enterovirus as compared to other regions of the world, such 

as Cuba. Therefore, another study observed the relationship between enterovirus and T1D in 

Cuba, where T1D incidence is low and enterovirus prevalence is high. The researchers found 

a direct correlation between enterovirus infection and the development of preclinical and 

clinical stages of T1D (Sarmiento et al., 2013). Molecular mimicry is a proposed mechanism 

for this correlation because antibodies made against enterovirus could also target beta cells 

(Jang et al., 2015). Acute cytolytic damage from enterovirus was also a proposed mechanism 

for the association of enterovirus infection with T1D (Sarmiento et al., 2013). A population-

based cohort study in Taiwan of age-and sex-matched children also showed that T1D 

incidence was higher in the enterovirus-infected cohort as compared to non-enterovirus-

infected cohort (Jang et al., 2015). A similar correlation is also evident for coxsackie B 

virus. Data collected throughout many countries in Europe concluded that diabetic children 

were more likely to have antibodies against coxsackie B virus 1 than the control group of 

children without diabetes (Oikarinen et al., 2014). Therefore, infections with enterovirus or 

coxsackie B virus increase susceptibility to T1D. This highlights the connection between 

innate immune signaling dysfunction in response to viral infection and the development of 

autoimmunity.

Dysfunctions in MDA5 have also been linked to the development of T1D. Genetic analysis 

through a genome-wide association study (GWAS) revealed genetic components of T1D 

susceptibility. SNPs have been associated with the development of T1D. Four SNPs with a 

strong association to disease susceptibility were located within the IFIH1 gene that codes for 

MDA5. High IFIH1 gene expression in peripheral blood mononuclear cells also correlated 

with susceptible genotypes. This study highlights an interesting genetic association and gene 

expression importance for IFIH1 in the development of T1D (Liu et al., 2009). Another 

GWAS further linked T1D and IFIH1. It identified four rare variants of IFIH1 that strongly 

correlated with a decreased risk of developing T1D (Nejentsev et al., 2009). Two of these 

IFIH1 variants were correlated with a loss-of-function to MDA5 (Shigemoto et al., 2009). 

This resistance to T1D was evident when mice heterozygous for IFIH1 (MDA5+/–) on a 

NOD/Ltj background, a known mouse model of T1D, had decreased levels of MDA5 protein 

as compared to wild-type mice. Mice heterozygous for MDA5 drove a regulatory T-cell 

response that was protective against T1D during coxsackievirus infection. Mice homozygous 

for MDA5 on the NOD/Ltj background had high MDA5 protein levels that resulted in a 

strong effector T-cells response and beta cell destruction during T1D during coxsackievirus 

infection (Lincez et al., 2015). These findings show how MDA5 function correlates with 
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T1D susceptibility. Reduced MDA5 expression has also been linked to increased 

susceptibility to encephalomyocarditis virus strain D (EMCV-D) and diabetes. EMCV-D 

infects insulin-producing beta cells in the pancreas similar to enterovirus or coxsackie B 

virus. Therefore, a lack of viral infection control is likely to lead to the production of beta 

cell antigens that can cause destruction of the pancreas and increase susceptibility of T1D. 

Mouse experiments revealed that MDA5 along with TLR3 were essential in initiating a 

controlled IFN response against EMCV-D. Also, mice with knockouts in MDA5 and/or 

TLR3 had increased susceptibility to T1D (McCartney et al., 2011). Taken together, loss-of-

function in MDA5 due to genetic polymorphisms or viral infection can lead to autoimmune 

disorders, namely T1D.

Over activation of MDA5 can also lead to autoimmune disorders. Researchers found that 

mice with a missense mutation in IFIH1 quickly developed lupus-like autoimmune 

symptoms without the presence of a viral infection (Funabiki et al., 2014). This means that 

MDA5 not only has a role in controlling viral infections, but can also control autoimmune 

disorders. The IFIH1 missense mutation leads to a gain-of-function in MDA5 and IFN 

induction spread throughout multiple organs. The cytokine production was directly 

correlative to MAVS activity, and without MAVS, the mice with the IFIH1 missense 

mutation did not develop autoimmune symptoms. This clarified the importance of MDA5 

signaling through MAVS in the development of autoimmune disorders (Funabiki et al., 

2014). A regulator of IFN signaling, ubiquitin-specific peptidase (USP18), has an important 

cross talk function with MDA5. USP18 controls IFN-stimulated gene 15 protease during 

IFN signaling through MAVS. A lack of USP18 resulted in over activation of MDA5 and an 

uncontrolled pro-inflammatory response in pancreatic beta cells. The authors suggested that 

USP18 was a major regulator of IFN responses and clarified a mechanism by which MDA5 

expression might influence the development of T1D (Santin et al., 2012). Therefore, MDA5 

gain-of-function also causes unregulated IFN signaling that can lead uncontrolled beta cell 

destruction and the development of T1D.

Dysfunctions in the tight control of MDA5-mediated signaling have also been implicated in 

another autoimmune disease, Aicardi–Goutiéres syndrome (AGS) (Crow et al., 2015). AGS 

is an autoinflammatory, neurodevelopmental disorder that affects the brain, skin, and 

immune system. Characteristics range from chilblains (skin lesions) to cerebral 

calcifications and atrophy that may be present before birth but ultimately result in slow 

neurological decline due to the excess production of IFN-α (Rice et al., 2007). Analysis of 

AGS patient genomes revealed seven gene mutations linked associated with the disease. 

With regards to RNA sensing pathways, candidate genes of particular interest were ADAR1, 

encoding for an RNA-editing enzyme, and IFIH1, encoding for MDA5. Mutations in these 

genes led to an increase in IFN signaling in cerebrospinal fluid and serum that correlated 

with disease symptoms (Crow et al., 2015). ADAR1 is a RNA-editing enzyme known to 

inhibit MDA5 signaling through MAVS (Pestal et al., 2015). Therefore, a loss-of-function 

mutation in ADAR1 contributed to uncontrolled MDA5 antiviral response (Mannion et al., 

2014; Pestal et al., 2015). More specifically, mice with a knock-in mutation in ADAR1 that 

inhibited its RNA-editing ability exhibited embryonic lethality at embryonic day 13.5 due to 

MDA5 hyperactivity (Liddicoat et al., 2015). A study has also shown that the loss of 

ADAR1 in human cells results in PKR hyperactivation and translational shutdown (Chung et 
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al., 2018). A gain-of-function mutation in IFIH1 led to over expression of MDA5 and 

contributed to an over-reactive IFN response (Crow et al., 2015). It is important to note that 

clinical studies have shown that these gene mutations do not always lead to the same clinical 

symptoms in patients. One clinical study observed two siblings both with the loss-of-

function mutation in ADAR1. Even though they both had the same mutation, their 

symptoms presented at different ages in childhood and symptoms were also variable. This is 

important information because early diagnosis and treatment of AGS can help with early 

administration of IFN suppression therapy to minimize brain damage induced by 

inflammation (Schmelzer et al., 2018). These disease phenotypes in relationship to 

uncontrolled IFN signaling show the functional importance of MDA5 and other genes 

involved in facilitating a controlled IFN response (Crow et al., 2015). Moreover, mutations 

in IFIH1 in AGS patients reduce the tolerance of MDA5 to Alu retroelements, and that these 

retroelements can also activate MDA5 during the loss of ADAR1 function. A gain-of-

function mutation in MDA5 (G495R) also retains the minimal Alu duplex length to 30–40 

bp (Ahmad et al., 2018). In conclusion, mutations in genes related to MDA5 signaling have 

been linked to the development of AGS.

2.3.2. P58IPK, PERK, TLRs, and Type 1 Diabetes—The dynamic balance between 

the eIF2α kinases, such as PKR, with P58IPK is important in determining the outcome of 

viral infection and the development of diabetes. As discussed previously, PKR is involved in 

amplifying the IFN response, and P58IPK is a known inhibitor of PKR. P58IPK is important 

for innate immune responses to viral infection along with the development of autoimmune 

disorders. P58IPK was originally discovered and purified from influenza virus-infected cells 

(Lee et al., 1990). During influenza virus infection, P58IPK inhibits PKR’s ability to 

phosphorylate eIF2α, thus facilitating efficient translation of influenza virus mRNAs. In 

influenza virus infected cells lacking P58IPK, there was a notable decrease in influenza 

mRNA translation and increase in eIF2α phosphorylation. In cells lacking the inhibitory 

target of P58IPK, PKR, the results were reversed, and influenza virus mRNA translation 

increased while eIF2α phosphorylation decreased. This suggests efficient influenza virus 

replication if facilitated by P58IPK inhibition of PKR and this has downstream ramifications 

on eIF2α phosphorylation. These results were also observed during VSV infection 

(Goodman et al., 2007). In vivo experiments enhanced our understanding of P58IPK and 

identified it as a cellular inhibitor of the host defense (CIHD). Observation of P58IPK–/– 

mice infected with influenza virus showed the P58IPK helps in host survival. P58IPK–/– mice 

had increased mortality but similar viral load as compared to the wild-type control mice. 

Additionally, in P58IPK–/– mice, there was an observed increase in eIF2α and PKR 

phosphorylation during influenza virus infection. These findings suggested that P58IPK 

activation during viral infection actually enhanced host survival while also prolonging viral 

replication (Goodman et al., 2009). Through computational modeling, it was shown that 

during influenza virus infection there was a significant increase in P58IPK while PKR and 

eIF2α phosphorylation were decreased. The infectious dose of virus also influenced this 

relationship. These findings were confirmed with vaccinia virus infection where rapid 

activation of P58IPK was also observed (Goodman et al., 2011). Proviral roles of P58IPK 

were further demonstrated during coxsackievirus B3 infection where P58IPK suppressed 

virally induced apoptosis (Zhang Huifang et al., 2013). P58IPK is an important regulatory in 
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influenza virus and vesicular stomatitis virus infection within the antiviral innate immune 

response signaling cascade. The tight regulation of PKR by P58IPK is an important indicator 

of viral infection outcome.

P58IPK also inhibits PERK, pancreatic ER-localized eIF2α kinase, which is encoded by 

EIF2AK3. Similar to that of PKR, PERK has a kinase binding domain very similar to that 

found in PKR where P58IPK interacts to inhibit function. During ER stress, defined as the 

continued presence of unfolded proteins, P58IPK is activated. P58IPK then interacts with 

PERK and inhibits its activity through decreased phosphorylation. PERK functions during 

ER stress to decrease protein production in the ER. However, it is important to have 

regulatory proteins, such as P58IPK, to prevent excess protein loss during stress. These 

findings show that P58IPK is an important regulator of PERK in maintaining a controlled 

ER-stress response (Yan et al., 2002). P58IPK and PERK are known to be expressed in 

pancreatic cells, hinting at an important connection between these proteins and the 

development of diabetes (Shi et al., 1999). In mice lacking PERK, progressive diabetes 

mellitus and exocrine pancreatic insufficiency develop (Harding et al., 2001). PERK has a 

high importance in controlling protein synthesis during the ER stress response. The 

important inhibitory role of P58IPK on PERK was confirmed in in vivo experiments where 

adult mice lacking P58IPK developed glucosuria, hyperglycemia, and hypoinsulinemia 

(Ladiges et al., 2005). These mice had greater levels of insulin producing beta cell 

destruction in the pancreas. The gene expression profiles in these mice were significantly 

altered to favor apoptosis of pancreatic islets. These findings suggest an important regulatory 

role of P58IPK in preventing uncontrolled cell destruction during stress. In the absence of 

P58IPK, these mice developed insulin deficiency phenotypes that are very similar to what is 

seen in type 1 and late stage type 2 diabetes (Ladiges et al., 2005). When PERK or P58IPK 

were dysfunctional, ER stress homeostasis was disrupted leading to uncontrolled pancreatic 

beta cell apoptosis and severe diabetic phenotypes. The importance of the DNAJC3 gene has 

also been shown recently in humans to be linked to autoimmunity. A large screen of 

individuals with diabetes revealed a loss-of-function mutation in DNAJC3 that correlated 

with juvenile-onset diabetes and multisystemic neurodegenerative disorders. The identified 

homozygous stop mutation in Dnajc3 in humans leads to a monogenic recessive form of 

diabetes mellitus (Synofzik et al., 2014). Taken together, P58IPK is a key regulator in viral 

infection and autoimmune diseases through its interactions with PKR and PERK.

In addition to the importance of translational control pathways, TLR signaling has also been 

implicated in regulating T1D. Pancreatic beta cells respond to dsRNA treatment via a TLR3 

and TRIF dependent manner, leading to type I IFN induction. Additional treatment with 

IFN-γ leads to beta cell apoptosis (Rasschaert et al., 2005). Furthermore, beta cells that were 

knocked out for TLR3 or the type I IFN receptor were protected from apoptosis during 

dsRNA treatment (Dogusan et al., 2008). The presence of reactive oxygen species was also 

required for TLR3-mediated NF-κB activation and the induction of IFN-β and TNF-α 
(Seleme et al., 2012). In patients that died from fulminant T1D, a subtype of diabetes 

mellitus, TLR3 expression was detected in 85% of T cells that had infiltrated the pancreas 

and in 63% of infiltrated macrophages, leading to beta cell death (Shibasaki et al., 2010). 

Considering the important role of TLR3 in T1D pathogenesis, it follows that polymorphisms 

in TLR3 were shown to be associated with increased risk for T1D (Assmann et al., 2014). 
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Finally, in insulitic islets isolated by laser capture microdissection from patients with recent 

onset T1D, there was increased ISG expression. Specifically, TLR3 and EIF2AK2 were of 

the significantly overexpressed ISGs, which further bolsters the link between translational 

control and innate immune signaling in T1D (Lundberg et al., 2016). In addition to TLR3, 

TLR7 also plays an important role in T1D autoimmune diabetes, since treating non-obese 

diabetic mice with TLR7 agonists accelerated the onset of autoimmune diabetes (Lee et al., 

2011). In patients that are genetically susceptible to T1D who display increased levels of 

autoanti-bodies, there were increased levels of IL-1β, and treating peripheral blood 

mononuclear cells with TLR3 or TLR7 agonists led to increased percentages of IL-1β 
dendritic cells (Alkanani et al., 2012). As such, it has been shown that in TLR7 deficient 

mice, there was attenuated diabetic retinopathy (Liao et al., 2017). Taken together, targeting 

the TLR pathway may provide an opportunity for therapy in patients that may be susceptible 

to the onset of T1D.

2.3.3. Implication of RIG-I in Crohn’s Disease—RIG-I has also been linked to 

autoimmune diseases such as inflammatory bowel disease (IBD) that encompasses Crohn’s 

disease (CD) and ulcerative colitis (UC). Dysfunctions in innate immune response signaling, 

specifically through RIG-I, have been associated with the development of IBD symptoms. In 

RIG-I knockout mice, colitis-like phenotypes developed. In these mice, there was a 

noticeable decrease in the size of Peyer’s patches that are an essential component of 

immunity as they defend against pathogens in the intestine. Therefore, the observed cellular 

apoptosis and decreased size of Peyer’s patches in RIG-I deficient mice may increase 

susceptibility to the colitis-like phenotypes observed. These deficient mice also showed 

down-regulation of G protein αi2 subunit (Gαi2) in many tissues and negatively regulated T-

cell responses (Wang et al., 2007). Gαi2 is necessary for many cellular processes and is a 

candidate gene associated with the development of human IBD (Hampe et al., 2001b). IBD 

developed in Gαi2–/– mice and increases in lymphocyte apoptosis lead to a decrease in the 

size of Peyer’s patches (Ohman et al., 2002). The importance of RIG-I in the development of 

CD was confirmed in a global gene expression analysis. Gut tissue samples of CD and UC 

diagnosed patients were obtained. A decrease in transcription of RIG-I in epithelial layer of 

the ileum was associated with CD patients specifically. These results show that RIG-I is not 

only important in controlling viral infection, but it is also important in controlling the 

development of CD (Funke et al., 2011). Lack of tight regulation in RIG-I can lead to 

changes in Peyer’s patches that increase susceptibility to autoimmune diseases, such as IBD.

An emerging correlation between autophagy regulation and RLR signaling in innate immune 

responses is important in autoimmune disease pathology of CD. Autophagy and IFN-

mediated immunity are meticulously balanced in healthy individuals. Dysfunction in this 

balance can lead to auto-immune disorders, such as CD (reviewed in Deretic, 2016; 

Plantinga et al., 2012; Takahama et al., 2018). Autophagy is a degradation process that has 

been tied to antiviral innate immune responses. Atg5–Atg12 conjugation is a known 

regulator of autophagy and directly interacted with the CARD domain of RIG-I and MAVS 

individually. This binding decreases IFN pathway signaling and production. In this study, 

VSV replication was enhanced by Atg5–Atg12 activity because IFN production was 

suppressed. Therefore, autophagic regulation is an important indicator for infection 
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outcome. Importantly, Atg5–Atg12 can interact with MAVS even in the absence of viral 

infection. This means that Atg5–Atg12 has an important role in cellular homeostasis that 

negatively regulates the IFN response through RIG-I and MAVS signaling in healthy 

individuals (Jounai et al., 2007). In autophagic deficient cells lacking Atg5, RLR signaling 

and IFN secretion increase to resist VSV replication. This deficiency also results in 

increased dysfunctional mitochondrial function and the mitochondrial associated protein, 

MAVS. Dysfunctional mitochondria enhance reactive oxygen species present in the cell and 

this further enhances RLR signaling to further amplify IFN signals. Therefore, autophagic 

signaling is an important regulator of RLR signaling and these data show the important 

balance between autophagy and IFN-mediated immunity (Tal et al., 2009). NOD2, which is 

a member of the NOD-like receptor (NLR) family, is a PRR for bacterial 

lipopolysaccharides (Inohara et al., 2001; Ogura et al., 2001b), and mutations in NOD2 have 

been associated with the onset of CD (Hampe et al., 2001a; Hugot et al., 2001; Ogura et al., 

2001a). NOD2-mediated autophagy has also been proposed as a component of CD onset. 

NOD2 directly interacts with RIG-I to negatively regulate IFN induction. Three specific 

NOD2 mutations associated with CD enhance the capacity of NOD2 and RIG-I to negatively 

signal IFN as compared to wild-type NOD2, while mutations in NOD2 exhibit impaired 

autophagosome formation. Together, RIG-I signaling with NOD2 not only functions in 

response to pathogens, but it also influences the onset of CD (Morosky et al., 2011). 

Negative regulation of IFN via autophagy through RIG-I with MAVS or NOD2 protects 

healthy individuals from developing autoimmune disorders such as CD, highlighting the 

interactions among NLRs, RLRs, autophagy and CD (further reviewed in Coutermarsh-Ott 

et al., 2016; de Bruyn and Vermeire, 2017).

In CD individuals, the balance of autophagy negative regulation and IFN signaling is 

disrupted. The loss of autophagy regulation has been proposed as a key pathogenesis 

mechanism in CD. One study found that an important autophagic response pathway is 

suppressed in CD inflamed epithelial tissue. The EIF2AK4-EIF2A-ATF4 pathway was 

identified as being important in controlling intracellular replication of adherent-invasive 

Escherichia coli in leading to robust autophagic gene expression. EIF2AK4 encodes the 

GCN2 eIF2α kinase, which is activated during amino acid starvation. GCN2 then activates 

ATF4 and subsequently autophagy (B’Chir et al., 2013). This autophagic pathway is 

suppressed in inflamed CD tissue and there is not sufficient autophagic induction to control 

the intracellular E. coli replication. The adherent-invasive E. coli that colonize intestinal 

mucosa are in high abundance because autophagy is not properly activated thereby leading 

to increased inflammation in previously inflamed CD epithelial cells. This study highlights 

the relationships among translational control, autophagy, and inflammatory autoimmunity 

(Bretin et al., 2016). Autophagy can also be increased when the NF-κB transcription factor 

is inhibited. Porcine follicle development experiments showed that the follicle stimulating 

hormone inhibits NF-κB and subsequent IFN induction. This inhibition of NF-κB then led 

to enhanced autophagic activity through Jun N-terminal kinase signaling (Gao et al., 2016). 

Meta-analysis of individuals with and without CD linked two gene polymorphisms with 

disease susceptibility. Polymorphisms in ATG16L1 that limit interaction with Atg12p–

Atg5p to induce autophagy signaling were correlated with an increase in an individual’s 

susceptibility to CD. Mutations in IRGM were also strongly associated with the 
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development of CD and this gene encodes the GTP-binding protein that induces autophagy 

signaling through RIG-I Polymorphisms in ATG16L1 and IRGM were also documented as 

being risk factors for UC disease (Palomino-Morales et al., 2009). One of the CD-risk 

mutations in ATG16L1, T300A, was shown to improve overall survival in colorectal cancer 

patients. While this mutation was not associated with a change in autophagy, there was 

increased type I IFN production and sensitivity to dsRNA treatment via MAVS (Grimm et 

al., 2016). The mechanism behind the control that IRGM has on autophagy was shown to be 

through the interaction between IRGM and NOD2. In fact, IRGM, NOD2, and ATG16L1 

form a complex that regulates the autophagic response to microbes (Chauhan et al., 2015). 

Together, IRGM confers antimicrobial and anti-inflammatory states that are important in 

regulating CD.

2.3.4. Singleton–Merten Syndrome, Systemic Lupus Erythematosus, and 
Prolidase Disorder—Dysfunction in IFN induction through MDA5 and RIG-I has also 

been linked to Singleton–Merten Syndrome (SMS) (Jang et al., 2015; Rutsch et al., 2015). 

SMS is a rare autoimmune disorder and classical SMS manifests in many ways such as 

dental dysplasmia, aortic calcification, glaucoma, and osteopenia. The disorder is known to 

have autosomal-dominant inheritance but clues about the genetic profile contributing to 

disease susceptibility have only recently been reported. Mutations in IFIH1 and DDX58, the 

gene that encodes RIG-I, led to increased induction of IFN-β production and contributed to 

disease symptoms. The missense mutation in IFIH1 enhanced MDA5 function and 

contributed to the enhanced IFN-β production in blood and dental tissue (Rutsch et al., 

2015). Researchers also identified an atypical SMS phenotype in patients that exhibited 

variations in the clinical manifestations listed above. Two different variants of DDX58 led to 

constitutively active functionality of RIG-I that led to uncontrolled IFN induction. The 

Glu373Ala variant of DDX58 correlated with classical SMS symptoms except there were no 

dental abnormalities observed in these patients. The patients with the Cys268Phe variant of 

DDX58 had glaucoma and skeletal abnormalities without dental dysplasmia or aortic 

calcification (Jang et al., 2015). These genetic analyses show the importance of regulated 

RIG-I and MDA5 induction because overproduction of IFN-β can lead to the characteristic 

clinical manifestations of SMS. Another rare autosomal disorder, prolidase disorder (PD), is 

associated with dysfunction in regulated in IFN induction. Mutations in the gene that 

encodes prolidase, PEPD, cause PD in newborns that present with dermatological 

symptoms, that range from rashes to lower extremity ulcers, due to increased 

immunoglobulin levels and decreased complement factor C1q. (Falik-Zaccai et al., 2010; 

Kurien et al., 2013; Pandit et al., 2013). Prolidase deficiency is also associated with systemic 

lupus erythematosus (SLE), an autoinflammatory disorder characterized by the production 

of antibodies against self-DNA and RNA (Arbuckle et al., 2003; Dubois and Tuffanelli, 

1964; Lisnevskaia et al., 2014; Tan et al., 1966), which helps explain the phenotypic 

similarities between PD and SLE (Butbul Aviel et al., 2012; Kurien et al., 2013). 

Interestingly, during flaviviral infection, viral NS5 binds PEPD, resulting in decreased 

expression of the type I IFN receptor. Additionally, PD patients also exhibit decreased type I 

IFN receptor expression, further linking PD with defects in innate immunity (Lubick et al., 

2015).

Matz et al. Page 21

Int Rev Cell Mol Biol. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



TLR-mediated detection of nucleic acids has been shown to exacerbate pathogenesis of SLE 

(Deane et al., 2007). Furthermore, lupus-prone TLR7-deficient mice do not generate 

antibodies to RNA-containing antigens, thus displaying less severe symptoms and prolonged 

survival (Christensen et al., 2006). Since the production of autoantibodies against self-

nucleic acids is a major driving force behind SLE pathogenesis, it follows that B cells play a 

major role in the development of SLE (Fan et al., 2018). Indeed, galectin-9, an s-type lectin 

that induces apoptosis in activated TH1 and TH17 cells while promoting Treg cell 

differentiation (Wu et al., 2014), inhibits maturation of pDCs and B cells, thereby decreasing 

cytokine and antibody production in response to TLR7 ligands (Panda et al., 2018). A recent 

study also showed that polymorphisms in the promoter of TLR7 were associated with SLE 

(Skonieczna et al., 2018). Finally, while pDCs secrete increased levels of type I IFN in a 

TLR7-mediated manner in SLE patients (Murayama et al., 2017), lupus nephritis was 

recently shown to be independent of type I IFN yet remained dependent on TLR7 signaling 

(Wolf et al., 2018).

Taken together, diabetes, Aicardi–Goutières syndrome, inflammatory bowel diseases, lupus, 

and Singleton–Merten syndrome have all been linked to dysfunctions in RLR-and TLR-

mediated initiation of IFN signaling. These autoimmune disorders demonstrate the important 

balance of the innate immune response needed to prevent the development of disorders.

3. INTRACELLULAR RECOGNITION OF DNA

Since 2000, multiple research groups have identified at least 15 different DNA binding 

proteins that induce an innate immune response, referred to as DNA sensors. For example, 

the DNA-dependent activator of IFN-regulatory factors (DAI) was the first cytosolic DNA 

sensor identified to bind directly to the Z and B forms of DNA as well as detect herpes 

simplex virus infection (Furr et al., 2011; Takaoka et al., 2007). When activated, DAI, also 

known as Z-DNA binding protein 1 (ZBP1), induces receptor-interacting protein kinase 3 

(RIPK3)-mediated necroptosis that is inhibited by RIPK1 (Lin et al., 2016; Newton et al., 

2016). However, in addition to DAI signaling, two discoveries in the last 10 years have 

exposed the complexity of DNA-sensing mechanisms as well as highlight the conserved 

function of different sensors to protect the host from exogenous DNA. The first discovery 

was the identification of STING (also known as MYPS/ERIS/MITA), encoded by the 

TMEM173 gene, as a central adaptor protein for immunity to cytosolic nucleic acids and a 

PRR for cyclic dinucleotides (CDN) (Burdette et al., 2011; Ishikawa and Barber, 2008; Jin et 

al., 2008; Sun et al., 2009; Zhong et al., 2008). The second discovery came when cGAS was 

shown to be a direct DNA sensor that synthesizes cGAMP for STING activation (Gao et al., 

2013b; Sun et al., 2013; Wu et al., 2013). Several other DNA sensors have been shown to 

interact with STING signaling such as DDX41, LSm14A, and MRE11 (Kondo et al., 2013; 

Li et al., 2012b; Zhang et al., 2011c). Other DNA sensors induce an innate immune response 

independent of STING, such as RNA polymerase III, LRRFIP1, Sox2, Rad50, DHX9/36, 

and AIM2 (Bürckstümmer et al., 2009; Chiu et al., 2009; Fernandes-Alnemri et al., 2009; 

Kim et al., 2010b; Roth et al., 2014; Xia et al., 2015; Yang et al., 2010). Additionally, the 

DNA sensors Ku70 and IFI16 have been shown to activate STING in cell-and pathogen-

specific manners (Sui et al., 2017; Unterholzner et al., 2010). It is possible that other DNA 

sensors will be identified or that previously identified proteins will be shown to serve as 
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DNA sensors whether dependent or independent of STING. Importantly, the existence of 

diverse DNA sensors, including synthases, DNA repair proteins, helicases, and 

inflammasomes, indicates that recognition of endogenous and exogenous DNA is a critical 

component of the host immune response. Below we describe the centrality of the cGAS/

STING signaling pathway, the pathways induced by STING-dependent sensors, and lastly 

the pathways induced by STING-independent sensors (Fig. 2).

3.1 A Central DNA-Sensing Pathway via cGAS and STING

The presence of host-or pathogen-derived dsDNA in the cytosol can be recognized by cyclic 

guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase (cGAS), an 

enzyme that was recently identified as a critical DNA sensor (Gao et al., 2013b; Li et al., 

2013). cGAS is encoded by the MB21D1 gene and single-molecule assays have shown that 

the N terminus of human cGAS plays an important role in its own activation upon binding 

nonspecific DNA inducing downstream signaling through STING (Tao et al., 2017). Unlike 

some DNA sensors that recognize dsDNA in a sequence-specific manner, cGAS activation is 

independent of the DNA sequence because binding depends on electrostatic and hydrogen 

bonding interactions between the negative sugar-phosphate backbone of DNA and positive-

charged surfaces of cGAS (Civril et al., 2013). Indeed, the crystallization of human cGAS 

revealed its unique zinc-ribbon motif insertion which provides DNA-binding specificity 

(Kranzusch et al., 2013). In this manner, cGAS is a general DNA sensor for its unique ability 

to bind sequence-independent B form dsDNA. In addition, cGAS is unique for its synthase 

function which catalyzes the production of 2′−3′-cyclic GMP-AMP (cGAMP), the 

noncanonical CDN after binding DNA (Gao et al., 2013b). cGAMP has been shown to bind 

to STING to induce an innate immune response that results in the production of type I IFN 

(Ablasser et al., 2013; Diner et al., 2013; Shang et al., 2012; Sun et al., 2013). Several 

biochemical studies have also shown that cGAMP contains mixed phosphodiester linkages, a 

unique distinction from bacterial CDNs, and that the strength of IFN response depends on 

the phosphodiester link-age. That is, 2′−3′-cGAMP has the strongest affinity for human 

STING. Nonetheless, the versatility of STING in recognizing CDNs continues to be an area 

of intense investigation and suggests that some regulation of this pathway depends on 

binding affinity (Ablasser et al., 2013; Gao et al., 2013c; Opoku-Temeng et al., 2016; Sun et 

al., 2013; Wu et al., 2013).

Upon binding of cGAMP, STING dimerizes and translocates in autophagosomes to a 

perinuclear region which is necessary for downstream signaling (Barker et al., 2013; Diner 

et al., 2013; Ishikawa et al., 2009; Moretti et al., 2017; Sun et al., 2009, 2013). STING is an 

ER-resident host protein that contains four transmembrane domains and globular carboxy-

terminal domain (CTD) that enable the binding of STING to TBK1 (Bhat and Fitzgerald, 

2014; Burdette and Vance, 2013). The binding of STING and TBK1 causes 

autophosphorylation of TBK1 at Serine-172, which then facilitates the direct 

phosphorylation of STING at its Serine-366 and Leucine-374 residues by TBK1. 

Consequently, phosphorylation of STING by TBK1 recruits IRF3 to also be phosphorylated 

by TBK1 (Li et al., 2017c; Liu et al., 2015a; Tanaka and Chen, 2012). The association of 

TBK1 with STING facilitates the dsDNA-mediated activation of the NF-κB and IRF3 

transcription factors. Specifically, TBK1 controls the activation of STING-mediated NF-κB 
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signaling through its IKKαβ activation loop while the kinase domain of the ribosomal 

protein S6 kinase 1 (S6K1) binds to STING to facilitate the formation of a S6K1-STING-

TBK1 complex that is necessary for the phosphorylation of IRF3 (Abe and Barber, 2014; 

Wang et al., 2016). Additionally, the activation of NF-κB by IKK depends on the 

phosphorylation of IκBα, which induces its degradation and activates NF-κB (Baeuerle and 

Baltimore, 1988; Beg and Baldwin, 1993; Israel, 2010; Mathes et al., 2008). Once activated 

in a cGAS/STING-dependent manner, IRF3 and NF-κB translocate to the nucleus and 

induce the expression of type I IFN, IL-6, IL-1β, and the production of proinflammatory 

cytokines like TNF-α (Paludan and Bowie, 2013). Additionally, STING translocation from 

the ER to an ER-Golgi intermediate compartment and the Golgi apparatus is an important 

rate-limiting event in signal transduction even in the absence of cGAMP (Chen et al., 2016; 

Dobbs et al., 2015). A recent study has demonstrated that STING senses bacterial c-di-AMP 

as a vita-PAMP, a sub-class of PAMPs derived only form living microbes, to induce ER 

stress and produce IFN (Moretti et al., 2017). This study and others indicate that ER-phagy 

and autophagy pathways play an important role in STING regulation during bacterial 

infections (Watson et al., 2015).

The cGAS/STING signaling pathway is induced by a variety of pathogens including DNA 

viruses, RNA viruses, retroviruses, and bacteria, all of which have evolved mechanisms to 

avoid detection by this pathway. Through a variety of mechanisms, several DNA viruses 

such as adenovirus, herpes simplex virus (HSV)-1, and human papilloma virus (HPV) have 

been shown to induce or actively inhibit a STING-dependent type I IFN response 

(Anghelina et al., 2016; Ishikawa et al., 2009; Lam and Falck-Pedersen, 2014; Lam et al., 

2014; Liang et al., 2015; Sunthamala et al., 2014). For example, over a dozen proteins of 

HSV-1 have been found to actively suppress cytosolic-DNA recognition by the cGAS/

STING pathway (Christensen et al., 2016; Horan et al., 2013; Ishikawa et al., 2009; 

Kalamvoki and Roizman, 2014; Su and Zheng, 2017; Xu et al., 2017; Ye et al., 2017; Zhang 

et al., 2016; Zheng, 2018). Similarly, the E2 proteins of HPV16 inhibit the transcription of 

different ISGs by targeting STING (Sunthamala et al., 2014). Another study has shown that 

both human and mouse cytomegalovirus (CMV) induce a cGAS/STING-dependent type I 

IFN response or actively inhibit STING through its UL82 tegument protein or US9 

glycoprotein (Choi et al., 2018; Fu et al., 2017; Lio et al., 2016). Several studies have shown 

that some retroviruses including HIV, murine leukemia virus, and simian immunodeficiency 

virus can induce a type I IFN response due to recognition of reverse-transcribed DNA by 

cGAS and subsequent production of cGAMP (Gao et al., 2013a; Lahaye et al., 2013; 

Rasaiyaah et al., 2013). DENV can antagonize STING signaling by utilizing viral NS2B3 

proteases to bind and cleave human STING although this cleavage does not occur in mouse 

or nonhuman primate STING (Aguirre and Fernandez-Sesma, 2017; Aguirre et al., 2012; 

Stabell et al., 2018; Yu et al., 2012). HCV has also been shown to antagonize STING 

signaling, highlighting the multifaceted role of STING in pathogen evasion beyond direct 

DNA sensing through cGAS (Ding et al., 2013; Maringer and Fernandez-Sesma, 2014; 

Moriyama et al., 2007; Nitta et al., 2013).

The fact that STING potentiates a type I IFN response in response to bacterial CDNs 

introduced a role for STING in regulating bacterial infection. First, it was found that 

synthetic c-di-GMP could induce a type I IFN response (McWhirter et al., 2009). Then, it 
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was found that Listeria monocytogenes secretes c-di-AMP that also induced a type I IFN 

response (Woodward et al., 2010). Further, a mutant mouse strain called Gold-enticket (Gt) 

had a null mutation in its STING allele (StingGt/Gt) that rendered it unable to detect c-di-

GMP and c-di-AMP from Listeria infection (Sauer et al., 2011). Finally, STING was shown 

to be a direct sensor of c-di-GMP (Burdette et al., 2011). Since then, studies have shown that 

STING mediates a type I IFN response specifically in response to CDNs such as those 

produced by Staphylococcus aureus and Chlamydia trachomatis (Barker et al., 2013; Gries 

et al., 2016; Zhang et al., 2014). Undoubtedly, the role of STING in detecting CDN-

mediated type I IFN response was authenticated by the discovery that cGAS produces 

cGAMP in a DNA-dependent manner (Sun et al., 2013). Further studies since the discovery 

of cGAS and STING have further connected the CDN and DNA-mediated activation of this 

central pathway. In 2013, Chen’s group showed that cGAS–/– macrophages, fibroblasts, and 

dendritic cells as well as cGAS–/– mice could not produce type I IFNs or cytokines in 

response to DNA treatment or infection with HSV-1 or vaccinia virus, but infection with 

Sendai virus, an RNA virus, did induce type I IFN (Li et al., 2013). These infections were 

further tested in StingGt/Gt mice and cells. Notably, the production of IFN-β in cGAS–/– cells 

was rescued by the delivery of cGAMP, but not in StingGt/Gt cells, further supporting the 

role of STING in binding to CDNs. Importantly, this was the first study to use cGAMP as a 

potential adjuvant in the context of STING. They found that injection of the protein antigen 

ovalbumin (OVA) in the presence or absence of cGAMP in wild-type or StingGt/Gt mice 

could boost the development of OVA-specific antibodies in wild-type mice only (Desmet 

and Ishii, 2012; Li et al., 2013). Clinical trials using STING agonists have followed. For 

example, a current Phase I clinical study is using the synthetic, STING-activating CDN 

agonist MIW815 (ADU-S100) to study its safety and efficacy in treating patients with 

advanced/metastatic solid tumors or lymphomas via intratumoral injections 

(ClinicalTrials.gov Identifier: NCT02675439). Another study has shown that c-di-GMP can 

be complexed with simple cell-penetrating peptides that enhance cellular delivery and 

biological activity in murine splenocytes but also that the bacterial 3′−3′-cGAMP is a 

superior stimulator of IFN genes ligand than c-di-GMP in human peripheral blood 

mononuclear cells (Yildiz et al., 2015). A more recent study has shown that expression of an 

inducible c-di-GMP-producing diguanylate cyclase in Klebsiella pneumonia increased 

endogenous concentrations of c-di-GMP which attenuated its virulence in the lung of mice 

(Rosen et al., 2017). Importantly, the attenuation of virulence was independent of STING, 

supporting the idea that CDNs can be used to influence pathogen virulence (Karaolis et al., 

2007a,b; Rosen et al., 2017). Indeed, the use of CDNs as adjuvants has increased in the last 

few years and will likely continue to expand as more pathogens and diseases are studied 

under this framework (Dubensky et al., 2013; Junkins et al., 2018; Karaolis et al., 2007a; 

Miyabe et al., 2014; Škrnjug et al., 2014).

As seen by the diversity of pathogens that cGAS and STING signaling are able to regulate, 

the centrality of this pathway is evident. Many DNA sensors had been identified before 

cGAS, but our understanding of host defense mechanisms has greatly increased due to the 

unique synthase function of cGAS in producing cGAMP in response to the presence of viral 

DNA, thus acting as an amplifier of cGAS-mediated DNA sensing. In addition, the centrality 

of STING is highlighted by its ability to use host-derived CDN, 2′−3′-cGAMP, or bacterial 
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CDNs like 3′−3′-cGAMP, c-di-GMP, and c-di-AMP to an innate immune response. Indeed, 

several groups are investigating the potential use of CDNs as adjuvants in treating human 

diseases but also in controlling bacterial factors like virulence. Other groups are 

investigating novels ways, such as ER-phagy, that STING induces an innate immune 

response. All of these ongoing studies reflect the centrality of STING in the innate immune 

response to cytosolic nucleic acids (Table 3).

3.2. STING-Dependent Sensors: DDX41, Ku70, MRE11, and LSm14A

3.2.1. DDX41—DDX41 is a member of the DEXDc helicase family that was recently 

identified as a DNA sensor in myeloid dendritic cells (mDCs). Knockdown of DDX41 by 

short-hairpin RNA prevents induction of type I IFN response via IRF3 and NF-κB activation 

after treatment with DNA or viral DNA infection but not RNA (Fullam and Schroöder, 2013; 

Jiang et al., 2017; Zhang et al., 2011c). DDX41 can also bind directly to bacterial CDNs 

after which downstream signaling occurs via the recruitment of STING and TBK1 to 

activate IRF3 (Omura et al., 2016; Parvatiyar et al., 2012). Two residues of DDX41 (Tyr364 

and Tyr414) are necessary for its recognition of DNA, and activation of DDX41 depends on 

phosphorylation of its Tyr414 residue by BTK (Bruton’s tyrosine kinase), which then 

facilitates binding to STING (Lee et al., 2015). It is also known that the E3 ligase TRIM21 

interacts with the DEAD domain of DDX41 and that DDX41 is subsequently degraded via 

ubiquitination of its Lys9 and Lys115 residues. These results were corroborated by the 

observation that knockdown of TRIM21 results in over-induction of type I IFN and 

overexpression of TRIM21 results in reduced IFN-β production (Zhang et al., 2012). One 

study showed that TBK1, NF-κB, and IRF3 activation are mediated by direct interaction of 

DDX41 with STING in dendritic cells, bone marrow-derived DCs, and human monocytes 

after infection with HSV-1 or adenovirus (Zhang et al., 2011c). This study found that 

knockdown of DDX41 or STING in THP-1 cells resulted in lower IFN-β production after 

DNA treatment or infection with HSV-1. Another study identified chicken DDX41 as a 

DNA sensor which results in the production of IFN-β in a STING-dependent manner after 

DNA treatment or infection with Newcastle disease virus (Cheng et al., 2017). This study 

used a ssRNA virus to show the role of DDX41 in mediating an innate immune response; 

however, it lacked experiments investigating the role of DDX41 in the context of DNA 

viruses and bacterial infection (Jiang et al., 2017). Nonetheless, it is important to note that 

DDX41 can bind to CDNs such as those produced by L. monocytogenes (Parvatiyar et al., 

2012). Both DNA-and CDN-sensing roles of DDX41 indicate that it may detect a variety of 

intracellular viruses and bacteria.

3.2.2 Ku70—Ku70 is a DNA repair subunit protein that binds to DNA double-strand 

break ends and helps repair DNA via the non-homologous end-joining (NHEJ) pathway 

(Mimori et al., 1986). Recently, Ku70 was identified as a cytosolic DNA sensor that induces 

the production of IFN-λ1, a type III IFN, in primary human cell lines after viral infection 

after translocating from nucleus to cytosol to interact with STING (Sui et al., 2017; Zhang et 

al., 2011a). IRF1, IRF3, and IRF7 are implicated in this Ku70/STING pathway. One study 

has found that the Ku70/80 complex can directly sense hepatitis B virus (HBV) DNA which 

results in recruitment of PARP1, activation and translocation of IRF1 to the nucleus, and 

upregulation of chemokine secretion (Li et al., 2016). The relevance of this study is that it 
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shows the role of Ku70 in mediating an innate immune response of a DNA virus. Similarly, 

another study has found that Ku70 can sense the DNA of human T lymphotropic virus type 

1 (HTLV-1). Specifically, this study also found that knockdown of Ku70 led to decreased 

IRF3 phos-phorylation and induction of IFN-β, TNF-α, and IFN-stimulated gene 56 

(ISG56) (Wang et al., 2017). Importantly, Ku70 was shown to associate directly with STING 

to produce IFN-β. While HTLV-1 is a retrovirus, the involvement of Ku70 in detecting viral 

DNA indicates that Ku70 is an important DNA sensor that may act as reverse transcription 

intermediate and its role in inducing an innate immune response awaits further investigation. 

Other studies have shown that Ku70 induces a type III IFN response after HSV-2 infection 

independently of STING (Zhang et al., 2011a). Nonetheless, the binding of Ku70 to STING 

as well as mediating an IFN-λ1 response to cytosolic DNA and DNA viruses highlights 

ability of Ku70 to function both independently and dependently of STING.

3.2.3. MRE11—Meiotic recombination 11 homolog A (MRE11) is an exonuclease better 

known for its role in microhomology-mediated end-joining (MMEJ). Over-expression of 

MRE11 has been shown to cause mutations that lead to breast cancer (Sharma et al., 2015; 

Spehalski et al., 2017; Yuan et al., 2012). One study has shown that MRE11 can physically 

interact with cytosolic DNA, trigger STING translocation, and subsequently activate IRF3 

via interaction with Rad50, another DNA repair protein. However, this response was not 

observed during infection with Listeria or HSV-1, suggesting that MRE11 may induce a type 

I IFN response specifically to DNA damage instead of pathogen defense (Kondo et al., 

2013). The MRE11/Rad50/NBS1 (MRN) complex is known for its conserved role in DNA 

repair (Maser et al., 1997), yet in Kondo et al., NBS1 was shown to be dispensable for 

inducing STING trafficking upon treatment with exogenous DNA. An important function of 

the MRN complex is to induce a DNA damage response (DDR) from stimuli that results in 

DNA damage (Chapman and Jackson, 2008; He et al., 2012; Paull and Deshpande, 2014). 

How viruses persist despite active DDR remains an unanswered question. For example, how 

is HPV able to establish infection despite inducing a DDR, presumably when it causes 

double-stranded breaks during its replication cycle (Bristol et al., 2017; Kadaja et al., 2009). 

Therefore, a survey of the MRE11-STING pathway with multiple pathogens would help 

clarify the role of MRE11 in inducing an innate immune response via STING.

3.2.4. LSm14A—LSm14A is a processing body-associated sensor of viral RNA and 

DNA that was recently shown to induce a specific type I IFN response via induction of IFN-

α, IFN-β, and IL-6 through regulation of STING activation in mouse dendritic cells but not 

mouse embryonic fibroblasts or macrophages. This indicates that LSm14A is a cell-specific 

sensor of DNA that functions through nuclear mRNA processing. Further investigation into 

this DNA sensor will clarify its role in DNA-sensing and how it may function. Currently, 

only HSV-1 has been shown to induce an innate immune response through LSm14A and 

STING (Li et al., 2012b; Liu et al., 2016).

3.2. STING-Independent DNA Sensors: TLR9, RNA Polymerase III, DHX9/DHX36, AIM2, 
IFI16, Sox2, LRRFIP1, and Rad50

3.3.1. TLR9—TLR9 was first identified by its ability to recognize unmethylated 2′-

deoxyribo(cytidine-phosphate-guanosine) (CpG) DNA from bacteria, and viral DNA is also 
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recognized by TLR9 (Bauer et al., 2001; Hemmi et al., 2000; Hochrein et al., 2004; Tabeta 

et al., 2004). Additionally, TLR9 detects ssDNA of at least 21 nucleotides, and methylated 

ssDNA or dsDNA only weakly activate TLR9 (Pohar et al., 2015a,b). However, the addition 

of oligonucleotides as short as two nucleotides augments TLR activation (Pohar et al., 

2017). In support of this, it has been shown that the endonuclease DNaseII is also required 

for a robust TLR9-mediated response (Chan et al., 2015). Preference for microbial DNA 

rather than self-DNA is due to TLR9’s location in the endolysosomes (Li et al., 2012a). 

TLR9 is localized in intracellular vesicles of the ER, lysosomes, and endosomes of resting 

cells. DNA recognition by TLR9 occurs after transport to endolysosomes, which is mediated 

by the multi-spanning protein UNC93B (Kawasaki et al., 2011; Latz et al., 2007; Tabeta et 

al., 2004, 2006). UNC93B physically interacts with TLR9 through its transmembrane 

domain 2 where the ectodomain of TLR9 is processed by cathepsins to become active 

(Ewald et al., 2011; Latz et al., 2007; Park et al., 2008; Sepulveda et al., 2009; Tabeta et al., 

2006). TLR9 contains a large nonconserved Z-loop between LRR14 and LRR15 that is 

susceptible to cathepsin-mediated proteolysis. While processing of the Z-loop is required for 

subsequent TLR9 oligomerization, DNA binding to TLR9 is independent of the Z-loop 

(Ewald et al., 2011; Li et al., 2012a; Ohto et al., 2015). The chromatin protein HMGB1 

(high mobility group box 1) enhances DNA recognition by TLR9 by bending it and bringing 

it closer to the RAGE (receptor for advanced glycation endproducts) receptor and delivering 

the HMGB1-DNA complex to early endosomes (Li et al., 2012a; Murugesapillai et al., 

2017; Tian et al., 2007). Additionally, it has been recently shown that TLR9 has two DNA-

binding sites, namely CpG and 5′-TCG binding sites, both of which contribute to the 

dimerization of TLR9 (Ohto et al., 2018). Additional activation of TLR9 is enhanced by 

endosome maturation and acidification (Latz et al., 2004; Wagner, 2004; Yasuda et al., 

2005). After DNA binds to TLR9, there is subsequent induction of an innate immune 

response via two mechanisms. The first is through activation of NF-κB-dependent 

proinflammatory cytokines, and the second is through IRF7-dependent type I IFN induction. 

While both pathways are mediated by the adapter protein MyD88 (myeloid differentiation 

primary response 88) and the TNFR-associated factor TRAF6, IRF7-dependent IFN-α 
production requires TLR9 trafficking from endosomes to endolysosomes which is mediated 

by adaptor protein 3 (AP3) (Gohda et al., 2004; Medzhitov et al., 1998; Sasai et al., 2010). 

In contrast, TLR9 that is transported by UNC93B to the early endosome is cleaved and 

signals through NF-κB to induce proinflammatory cytokine genes that encode TNF-α, IL-6, 

and IL-12 (Sasai et al., 2010).

Pathogen-specific studies investigating the mechanism by which TLR9 induces an innate 

immune response were driven by the discovery that TLR9 recognizes unmethylated CpGs 

and that human CpGs are methylated and therefore immunologically inert. For example, the 

genome of HSV-1/2 is heavily unmethylated and CpG-rich, and thus induces a TLR9-

dependent immune response in murine bone marrow-derived macrophages (BMDMs) 

(Lundberg et al., 2003). Bacteria are also capable of activating a TLR9-dependent innate 

immune response. For example, bacterial species such as Campylobacter jejuni, K. 
pneumonia, and S. aureus were shown to activate TLR9 based on the abundance of [CG] 

content. That is, higher CG base content resulted in increased activation of TLR9 and IL-8 

production (Dalpke et al., 2006). One study has demonstrated that TLR9−/− mice infected 
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with K. pneumonia had impaired activation and maturation of dendritic cells, reduced TNF-

α induction, and lower production of TNF-α and IL-12. Interestingly, when dendritic cells 

from wild-type mice were intratracheally transferred into TLR9−/− mice, bacterial load was 

significantly reduced and TNF-α and IL-12 cytokine production increased (Bhan et al., 

2007). Of note, human TLR9 is predominantly expressed in plasmacytoid dendritic cells and 

B cells, resulting in a strong type I IFN response via MyD88/IRF7 signaling. Conversely, 

murine TLR9 is expressed abundantly in myeloid immune cells and can also result in IFN-γ 
production and the recruitment of NK, αβ-, and γδ-T cells (Hartmann, 2017; Hornung et al., 

2002; Krug et al., 2004; Walker et al., 2010). For example, it has been shown that CMV 

infection in mice activates a TLR9/MyD88 response that occurs selectively in CD11+ 

dendritic cells (Krug et al., 2004; Puttur et al., 2016). Other DNA viruses that have been 

implicated in activating an innate immune response through TLR9 are Varicella zoster virus 

(VZV), Epstein-Barr virus (EBV), Kaposi sarcoma-associated herpesvirus (KSHV), vaccinia 

virus (VV), adenovirus (AdV), and human CMV (Appledorn et al., 2008; Basner-

Tschakarjan et al., 2006; Fiola et al., 2010; Lim et al., 2006; Samuelsson et al., 2008; Varani 

et al., 2007; West et al., 2011; Yu et al., 2011). However, the majority of viruses will result in 

the activation of lymphocytes that can then initiate adaptive responses that differ between 

mouse and human models of infection. These species-specific differences highlight the 

importance of understanding how evolution of host defense mechanisms relates to TLR9-

mediated immune responses.

3.3.2. RNA Polymerase III—RNA polymerase III transcribes AT-rich dsDNA into an 

RNA-containing 5′-triosphate moiety which can then be recognized by RIG-I (retinoic acid-

inducible gene I) and induce a type I IFN response through IRF3, IRF7, and NF-κB 

(Ablasser et al., 2009; Chiu et al., 2009). The observation that RNA polymerase III can 

sense cytosolic DNA has helped researchers investigate the complex ways that pathogens 

avoid recognition by the innate immune system (Bauernfeind et al., 2010). While Chen’s 

group showed that inhibition of RNA polymerase III resulted in abrogated IFN-β production 

from Legionella pneumophila infection, Hornung’s group found that inhibition of RNA 

polymerase III resulted in abrogated IFN-α production from EBV infection (Ablasser et al., 

2009, Chiu et al., 2009). Another study demonstrated that during infection with invertebrate 

iridescent virus 6 (IIV-6), an insect DNA virus, the mammalian host requires RNA 

polymerase III to produce IFN-β (Ahlers et al., 2016). Through whole exome sequencing of 

21 human patients, a recent study found that different mutations in the RNA polymerase III 

gene can explain why some patients suffer from severe acute VZV infection (Ogunjimi et 

al., 2017). In contrast, sequencing of 222 patients suffering from herpesviral encephalitis did 

not result in identification of RNA polymerase III mutations, which may be explained by the 

presence of high AT base content in several genome islands of VZV and overall lower cGAS 

expression in blood cells (Gram et al., 2017; Ogunjimi et al., 2017). Together, these studies 

indicate the important role of RNA polymerase III in mediating an innate immune response 

to DNA viruses.

3.3.3. DHX9/DHX36—DEAH box proteins 9 and 36 (DHX9 and DHX36) are cytosolic 

helicases that were found to bind to CpG viral DNAs but not RNAs in human primary 

dendritic cells (Kim et al., 2010b). Specifically, DHX9 and DHX36 sense CpG-
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oligodeoxynucleotides, CpG-B and CpG-A, respectively, through the adaptor protein 

MyD88. DHX9 and DHX36 both bind directly to the TIR domain of MyD88 independent of 

TLR9 signaling (Hochrein et al., 2004; Hokeness-Antonelli et al., 2007; Kim et al., 2010b; 

Ohnishi et al., 2009). Cytosolic binding of DHX9/DHX36 to CpG-B/A is corroborated by 

fractionation experiments that showed DHX9/36 are not present in any endosomal structures 

(Kim et al., 2010b). After binding to MyD88, DHX9 activates NF-κB, which then induces 

TNF-α and IL-6 production while DHX36 activates IRF7 and induces high IFN-α 
production. Interestingly, DHX9 and DHX36 were first identified as RNA helicases as they 

are part of the DExD/H box family, including proteins that have critical roles in RNA 

metabolism. However, DHX9 and DHX36 have also been shown to act as DNA helicases 

(Linder, 2006; Zhou et al., 2003). The role of DHX9 as an RNA or DNA helicase has been 

studied in the context of cancer such as colorectal and lung cancer, where DHX9 regulation 

is cancer-specific (He et al., 2017; Mi et al., 2016; Rahman et al., 2017; Sun et al., 2014). It 

is also known that DHX9 binds to viral dsRNA in myeloid dendritic cells, leading to the 

activation of NF-κB and IRF3, along with the production of IFN-α/β (Zhang et al., 2011d). 

Similarly, DHX36 has been shown to form a complex with DDX1 and DDX21 to function 

as a dsRNA sensor that uses the TRIF adaptor molecule to activate NF-κB and a type I IFN 

response in dendritic cells (Zhang et al., 2011b). As DNA sensors, DHX9/36 proteins have 

shown to mediate an innate immune response to HSV but not influenza virus (Kim et al., 

2010b). These and other studies evidence suggests that the function of RNA and DNA 

sensing in DHX proteins depends both on cell type and viral genome that highlights the need 

for more in-depth investigation in this family of proteins.

3.3.4. AIM2 and IFI16—Cytosolic DNA can also bind directly to the AIM2 (absent in 

melanoma 2) inflammasome protein and activate ASC (apoptosis-associated speck-like 

protein containing a CARD), a critical component of the inflammasome complex 

(Fernandes-Alnemri et al., 2007, 2009; Muruve et al., 2008). AIM2 is member of an IFN-

inducible HIN-200 family of proteins that contains an N-terminal pyrin domain and a C-

terminal oligonucleotide/oligosaccharide-binding domain (Ludlow et al., 2005). Recruitment 

and activation of caspase-1 by AIM2 depends on the pyrin domain and direct interaction 

with the adaptor protein ASC. Direct binding of cytoplasmic DNA to AIM2 results in 

oligomerization which results in the formation of the oligomeric ASC pyroptosome that is 

required for caspase-1-dependent inflammatory cell death known as pyroptosis (Fernandes-

Alnemri et al., 2007, 2009). While other inflammasome proteins such as NALP3 belong to 

the NLR protein family, AIM2 is not an NLR due to its unique pyrin domain needed for 

binding of host and pathogen-derived DNA in the cytosol which was first found to directly 

activate the inflammasome complex independent of NALP3 (Buürckstuümmer et al., 2009; 

Fernandes-Alnemri et al., 2009; Halle et al., 2008; Pétrilli et al., 2007). Nevertheless, AIM2-

dependent DNA binding also results in the maturation of proinflammatory cytokines like 

pro-IL-1β and pro-IL-18 into their active and secreted forms, IL-1β and IL-18 (Muruve et 

al., 2008; Pétrilli et al., 2007). A recent study has shown that AIM2-like receptor knockout 

mice respond differently to endogenous retroviral DNA which suggests that AIM2-like 

receptors might have a more important role in sensing endogenous DNA (Nakaya et al., 

2017).
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Several bacterial species activate the AIM2 receptor to induce an inflammasome-mediated 

immune response, such as Francisella tularensis and L. monocytogenes (Fernandes-Alnemri 

et al., 2010; Jones et al., 2010; Kim et al., 2010a). Listeria is known to activate several innate 

immune pathways, but in the context of a inflammasome-dependent caspase-1 activation 

response, AIM2 compensates for an inflammasome response in NLRC4-and NLRP3-

deficient mouse macrophages (Kim et al., 2010a). Other bacterial species that have been 

shown to activate AIM2 include Streptococcus pneumonia, some Mycobacterium species, L. 
pneumophila, and S. aureus (Fang et al., 2011; Ge et al., 2012; Hanamsagar et al., 2014; 

Saiga et al., 2012). The disruption of bacterial vacuoles allows bacterial DNA to be 

recognized by AIM2. For example, Francisella novicida infection increases the expression of 

IRF1 which then induces the expression and activation of IFN-inducible GTPases called 

guanylate-binding proteins (GBPs) to disrupt the bacterial vacuole (Meunier et al., 2015). 

GBPs colocalize with the IFN-inducible protein IRGB10 to cause bacteriolysis and ultimate 

exposure of DNA that can be recognized by AIM2 (Man et al., 2015). Recently, Chlamydia 
muridarum and trachomatis have also been shown to employ GBPs to induce caspase-1 and 

caspase-11-mediated inflammasome responses via NLRP3 and AIM2 (Finethy et al., 2015). 

In contrast, the role of AIM2 in detecting viral DNA is much less explored. For example, 

mouse CMV and HPV have been shown to activate an AIM2-mediated inflammasome 

assembly but the mechanism whereby viral DNA is exposed in the cytosol remains unclear 

(Milutin Gašperov et al., 2014; Shi et al., 2015). Interestingly, recent studies have showed 

that influenza virus can induce lung damage that results in the release of host DNA and 

subsequent AIM2-mediated activation (Schattgen et al., 2016; Zhang et al., 2017a). 

However, Zhang et al. showed that AIM2-deficient human and mouse cells are still able to 

induce caspase-1 activation, which may be due to difference in viral dose, virus propagation 

source, or difference between cell culture and in vivo models. It will be interesting to see 

how further research into different host cell types, in vivo models and accessory proteins that 

mediate AIM2-dependent activation of caspase-1 will clarify pathogen and host-specific 

differences.

Another DNA sensor closely related to AIM2 is IFI16 (gamma-IFN-inducible protein Ifi-16 

or IFN-inducible myeloid differentiation transcriptional activator), which is part of the pyrin 

and HIN-200 domain-containing protein family. In contrast to AIM2, which induces the 

assembly of an inflammasome complex, IFI16 is known to induce a type I IFN response 

upon binding to intracellular dsDNA (Trapani et al., 1994; Unterholzner et al., 2010). 

Knockdown of IFI16 has shown that it is required to maintain EBV latency in Akata cells, 

an EBV-producing cell line (Pisano et al., 2017). A more recent study has shown that IFI16-

depleted human foreskin fibroblasts display increased replication of HSV-1 as well as 

expression of HSV-1 immediate-early, early, and late proteins, which confirms previous 

studies using siRNA to knockdown IFI16 ( Johnson et al., 2014; Merkl et al., 2018). 

Although IFI16 is thought to induce a type I IFN response through STING, one study also 

links IFI16 to caspase-1 and ASC induction in response to KSHV, showing that the 

inflammasome also functions in the nucleus (Kerur et al., 2011). However, it has been shown 

that in primary fibroblasts, IFI16 is not required for an immune response to human CMV 

and that the AIM-like receptors are unnecessary for the response to immunostimulatory 

DNA (Gray et al., 2016). Further research into the specific pathway in which IFI16 mediates 
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an innate immune response to different pathogens might indeed show more similarities 

between AIM2 and IFI16 as inflammasome assemblers and their specific roles in a cytosolic 

DNA-mediated immune response.

3.3.5. Sox2, LRRFIP1, and Rad50—Sex determining region Y-box 2 (Sox2) is a 

transcription factor that is expressed in the cytosol of neutrophils and that was recently 

discovered to bind bacterial DNA in a sequence-specific manner (Xia et al., 2015). 

Specifically, upon bacterial DNA stimulation, Sox2 interacts with TAB2, which causes the 

TAB2/TAK1 kinase complex to dimerize and lead to the activation of NF-κB and AP-1 

signaling. A recent study analyzed the long control regions, which are important sites of 

viral replication regulation for HPV16, and found that overexpression that Sox2 can repress 

the E6 and E7 oncogene expression of HPV16 (Martínez-Ramírez et al., 2017). Although 

this study did not investigate innate immune induction by Sox2, this study highlights the role 

of Sox2 in mediating a DNA virus infection and will need further investigation to clarify its 

mechanism. While further research is needed to understand the DNA sensing pathway by 

Sox2 in humans, the discovery of Sox2 as a DNA sensor also highlights the conserved 

sequence-specific recognition system of foreign DNA used by eubacteria and archaea (Jinek 

et al., 2012; Xia et al., 2016).

Leucine-rich repeat flightless-interacting protein 1 (LRRFIP1) is a transcriptional repressor 

that binds to a GC-rich consensus sequence (5-AGCCCCCGGCG-3) and is thought to 

control smooth cell proliferation via platelet-derived growth factor repression, and positively 

regulate TLR signaling (Choe et al., 2013; Dai et al., 2009; Labbé et al., 2017). One study 

showed that LRRFIP1 can mediate a type I IFN response to VSV and Listeria infection via a 

β-catenin-dependent pathway (Yang et al., 2010). Specifically, this study showed that 

LRRFIP1 interacts and promotes β-catenin activation, resulting in the binding of β-catenin 

to IRF3. The LRRFIP1-β-catenin interaction results in the recruitment of the 

acetyltransferase p300 to the IFN-β-enhanceosome through IRF3. Importantly, Yang et al. 

showed that knockdown of LRRFIP1 decreased the expression of IFN-β mRNA induced by 

bacterial DNA in the cytosol but not by extracellular LPS. Similarly, the presence of 

LRRFIP1 increased production of IFN-β following Listeria and VSV infection. While 

further studies have examined the role of LRRFIP1 in inducing a type I IFN response during 

RNA virus infection, additional studies investigating the role of LRRFIP1 in sensing 

cytosolic DNA would be beneficial (Bagashev et al., 2010; Liu et al., 2015b). For example, 

while the crystal structure of LRRFIP1 shows that it remains highly extended while bound to 

DNA but aggregates at high concentrations of DNA (Nguyen and Modis, 2013), further 

studies examining the conformational changes of LRRFI1P1 from different DNA pathogens 

will help elucidate how DNA-binding mediates signaling through LRRFIP1.

As described previously, Rad50 is an important DNA repair protein in the MRN complex. 

Recently, a study has shown that Rad50 directly interacts with DNA to form a complex with 

the adaptor protein CARD9 and induce an immune response resulting in the production of 

IL-1β (Roth et al., 2014; Zhong et al., 2018). These groups observed that delivery of dsDNA 

or infection with vaccinia virus resulted in recruitment of Rad50 binds which recruited 

CARD9 and then the B-cell lymphoma/leukemia 10 protein (Bcl10) is recruited through its 

CARD-binding domain, the entire complex being necessary to activate NF-κB, increased 
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transcription of pro-IL-1β, and IL-1β production. Importantly, this study also showed that 

activation of NF-κB and subsequent proinflammatory response was independent of an 

inflammasome-mediated immune response or type I IFN response via STING as seen by 

unaffected levels of caspase-1 and IRF3. The implications of this study highlight the 

importance of the MRN complex in sensing DNA and inducing an innate immune response 

through STING-dependent and independent mechanisms. Specifically, many viruses have 

developed strategies to avoid Rad50-mediated NF-κB activation and subsequent IL-1β 
production. For example, adenovirus is known to inhibit Rad50 signaling while several 

vaccinia virus strains produce a soluble IL-1 receptor that can bind the host-produce IL-1β 
and prevent fever (Alcamí and Smith, 1996; Stracker et al., 2002). A recent study has shown 

that even different serotypes of adenovirus have different effects in their mechanism of 

inhibiting MRN/ATM activation (Pancholi and Weitzman, 2018). Further investigation into 

the MRN proteins like MRE11 and Rad50 will help elucidate the pathogen-specific 

mechanisms by which host innate immune response is blocked by DNA viruses as well as 

create the possibility of viral targets.

In summary, a number of DNA-sensing proteins have been identified over the past decade: 

TLR9, DAI, AIM2, RNA polymerase III, LRRFIP1, DHX9/DHX36, IFI16, Ku70, DDX41, 

Sox2, and cGAS. Notably, DAI has recently been shown to recognize viral RNA in addition 

to its role in DNA sensing to induce necroptosis (Maelfait et al., 2017; Thapa et al., 2016). 

The ability of STING to potentiate signals from many of these DNA sensors and bind CDNs 

places it central to the DNA sensing pathway for viral and bacterial infections. Indeed, the 

wide diversity of proteins that can recognize DNA and induce an innate immune response 

shows that host defense mechanisms have a critical role in promoting protection and host 

survival. When these DNA-sensing mechanisms are dysfunctional, they can result in 

autoimmune and autoinflammatory disorders, a significant area of research driven by the 

need to discover new therapeutic targets. The next section will discuss autoimmune and 

autoinflammatory disorders in the context of DNA-sensing.

3.4. Autoimmune and Autoinflammatory Disorders Derived From Immune System 
Dysfunction

A critical application of innate and adaptive immunity in the context of human disease has 

been to dissect how autoimmune and autoinflammatory disorders occur as a result of 

immune system dysfunction. Autoinflammatory disorders are generally driven by innate 

immune components and do not actively rely on adaptive immune components. In contrast, 

autoimmunity generally refers to disorders that originate from defects in the innate immune 

system but require adaptive immune components such as lymphocyte influx or T and B-cell 

responses. A classic group of autoinflammatory disorders are the cryopyrin-associated 

periodic syndromes (CAPS), also known as familial cold autoinflammatory syndrome 

(FCAS), which result from gain-of-function mutations in the NLRP3/CIAS1 gene (Cordero 

et al., 2018; Hoffman et al., 2001; Kanneganti et al., 2006; Li et al., 2017a). On the other 

hand, classic autoimmune disorders include Aicardi–Goutières syndrome (AGS), and 

although several mutations in AGS patients are rooted in innate immune dysfunction, AGS 

has both autoimmune and autoinflammatory components. Differences in disease progression 

have been observed between human and mouse models, illustrating species-specific 
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differences in these disease phenotypes. In characterizing autoimmune and 

autoinflammatory diseases, it is important to dissect the origins of disease. Our 

understanding of autoimmune disorders relies on our knowledge of innate immune 

recognition proteins such as the DNA sensors described above. While not all autoimmune/

inflammatory disorders have a common DNA-sensing origin, this section will focus on 

disorders that originate in failures of DNA sensing pathways.

3.5. DNA-Sensing Molecular Mechanisms of Diseases and Nucleic Acid Accumulation

A group of disorders that result from errors in the innate immune system that result in 

constitutive activation of type I IFN signaling are collectively termed type I 

interferonopathies. While there are different causes of type I interferonopathies, two classes 

can summarize the majority of those derived from errors in DNA-sensing proteins with an 

end result of unregulated production of IFNs. The first derives from mutations in genes 

encoding enzymes that regulate accumulation of nucleic acids that ultimately feed into the 

cGAS/STING pathway. The second results from constitutive activation or hypersensitivity of 

the cGAS/STING and RLR pathways. In the next subsections we describe how nucleic acid 

accumulation through mutations or dysfunction of genes encoding the proteins TREX1, 

RNase H2, SAMHD1, and STING results in autoimmune/autoinflammatory diseases such as 

AGS, SLE, Sjögren’s syndrome, STING-associated vasculopathy with onset in infancy 

(SAVI), and familial chilblain lupus (Table 4).

3.5.1. TLR9, TREX1, RNase H2, and SAMHD1—As introduced in the previous 

section, AGS is characterized as a heritable inflammatory disease that can lead to severe 

neurological disorders. In addition to the roles that ADAR1 and MDA5 have in AGS, AGS 

has also been documented to be caused by genetic mutations encoding nucleic-acid-

metabolizing proteins, such as TREX1, RNASEH2A-C (Ribonuclease H2), and SAMHD1 

(Crow et al., 2006a,b; Rice et al., 2009, 2012, 2014). Mutations in three of these proteins, 

namely TREX1, RNase H2, and SAMHD1, result in the direct accumulation of nucleic acids 

and subsequent activation of the cGAS/STING signaling pathway. Dysfunctions in nucleic 

acid sensing are also found in SLE patients and include hyperactivity of TREX1 or TLR9 in 

B cells (Barrat et al., 2005; Christensen et al., 2005; Crispín et al., 2013; Lenert, 2010; Wu et 

al., 2009; Yu, 2006).

As described in the previous section focused on cytosolic RNA sensing, mice lacking TLR7 

exhibited decreased SLE pathology, due to lower levels of autoantibodies and lymphocyte 

activation. In contrast, the loss of TLR9 results in increased SLE pathology, lymphocyte 

activation, type I IFN, and autoantibodies (Christensen et al., 2006). B cells from SLE 

patients display impaired TLR9 signaling and decreased levels of CD19 and CD21, while 

pDCs from SLE patients displayed normal TLR9 signaling. However, TLR7 signaling was 

normal in SLE B cells (Gies et al., 2018). Moreover, when lupus-prone Sle1 mice were 

crossed with TLR9−/− mice, SLE pathology was exacerbated, and TLR7 expression was 

increased, leading to increased antigen presentation on DCs (Celhar et al., 2018). Similar 

results were also observed in TLR9−/− mice treated epicutaneously with imiquimod, which 

induces local inflammation, as compared to wild-type mice (Liu et al., 2018). Recently, a 

mechanism behind TLR9-mediated tolerance of SLE was shown to function through the 
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AhR transcription factor, which is activated in apoptotic cells via TLR9 and drives anti-

inflammatory IL-10 production. The loss of AhR also resulted in a more severe SLE 

phenotype (Shinde et al., 2018). Together, these studies highlight the protective role TLR9 in 

TLR7-mediated SLE and the role of apoptotic-cell DNA in promoting B-cell tolerance.

An important detector of cytosolic DNA is TREX1 (three prime pair exonuclease 1), whose 

major function is to digest ssDNA and dsDNA in the cytosol and prevent autoimmune 

activation (de Silva et al., 2007; Hoss, 1999; Lehtinen et al., 2008; Mazur and Perrino, 1999; 

Yang et al., 2007). Unlike other proofreading DNases, TREX1 is anchored to the ER by its 

C-terminal region (Chowdhury et al., 2006; Mazur and Perrino, 2001; Richards et al., 2007; 

Stetson et al., 2008; Wolf et al., 2016). Indeed, the role of TREX1 in AGS has been 

documented extensively by several groups which have identified different loss-of-function 

mutations in the TREX1 gene in AGS (Abe et al., 2014; Bailey et al., 2012; Crow, 2011; 

Crow et al., 2006a; Grieves et al., 2015; Lindahl et al., 2009; Namjou et al., 2011; Olivieri et 

al., 2013; Orebaugh et al., 2011; Uyur Yalçın et al., 2015). Mouse models of TREX1 

deficiency have demonstrated that TREX1−/− mice have increased type I IFN signaling, 

inflammation in multiple tissues, and increased mortality (Gall et al., 2012; Peschke et al., 

2016; Stetson et al., 2008; Xu et al., 2014a). Importantly, disease progression in TREX1−/− 

mice depends significantly on cGAS, STING, and sub-sequent IRF3 activation, due in part 

by the accumulation of 2′−3′-cGAMP in TREX1−/− mice. Importantly, double knockout 

cGAS/TREX1 mice lack the autoinflammatory phenotype due to the loss of the cGAS DNA 

sensor (Ahn et al., 2012; Gao et al., 2015; Gray et al., 2015). The origin of cytosolic DNA 

that leads to overstimulation of cGAS and STING has also been studied extensively 

(Ablasser et al., 2014). Some groups have shown that TREX1 may function specifically to 

be a detector of viral retroelements which is supported by its role in metabolizing the of 

HIV-derived DNA and overall HIV pathogenesis (Booiman et al., 2014; Pontillo et al., 2013; 

Wheeler et al., 2016; Yan et al., 2010). Indeed, Beck-Engeser et al. suggest that the 

treatment of AGS patients with retroelement inhibitors may is a potential therapy, but 

Achleitner et al. has shown that these types of drugs do not improve disease (Achleitner et 

al., 2017; Beck-Engeser et al., 2011). Alternatively, it could be that TREX1 functions 

primarily to prevent DNA damage and serves a dual purpose in feeding into the cGAS/

STING pathway when it detects cytosolic DNA. This hypothesis is supported in part from 

evidence showing that TREX1 metabolizes cytosolic DNA and contributes to the prevention 

of genome instability (Ahn et al., 2014; Domínguez-Sánchez et al., 2011; Yang et al., 2007). 

Indeed, a recent study has shown that TREX1 has a nuclease-independent function in 

preventing L1-mediated retrotransposon-induced DNA damage, thus maintaining genome 

integrity (Li et al., 2017b).

AGS is also caused by mutations in alleles in the trimeric protein RNase H2, whose two 

main functions are to degrade RNA/DNA hybrids resulting from misincorporation of 

ribonucleotides and to cleave dsDNA at a phosphodiester linkage adjacent to a single 

ribonucleotide (Crow et al., 2006b; Reijns et al., 2012). It is now well-documented that 

mutations in RNASEH2A, RNASEH2B, and RNASEH2C lead to the abnormal 

accumulation of nucleic acids which result in AGS (Chon et al., 2013; Coffin et al., 2011; 

Günther et al., 2015; Hiller et al., 2012; Kind et al., 2014; Pizzi et al., 2015; Pokatayev et al., 

2016; Ramantani et al., 2010; Reijns et al., 2011). RNase H2-deficient mouse models show 
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that mutations in this complex are embryonic lethal, indicating a critical function of all 

subunits (Reijns et al., 2012). Nonetheless, mice expressing mutant RNASEH2A and 

RNASEH2B alleles show that these mutations result in the direct accumulation of nucleic 

acids that induce IFN through cGAS/STING signaling (Mackenzie et al., 2016; Pokatayev et 

al., 2016). Evidence suggests that the specific origin of nucleic acids that leads to RNase H2-

mediated inflammatory disease may occur through DNA damage responses as well as 

recognition of retroelements (Bartsch et al., 2017, 2018; Günther et al., 2015; Zhao et al., 

2018). Furthermore, two recent studies have also shown that DNA damage leading to the 

formation of micronuclei induces an IFN response through cGAS and that this occurs in 

frequently in the absence of RNASEH2B (Harding et al., 2017; Mackenzie et al., 2017).

A third and recently characterized protein that plays a role in AGS is SAMHD1 (SAM 

domain and HD domain-containing protein 1), which encodes an enzyme with 

phosphohydrolase activity as well as antiviral protection from HIV (Beloglazova et al., 

2013; Goldstone et al., 2011; Powell et al., 2011; Rice et al., 2009). Specifically, SAMHD1 

detects and cleaves deoxyribose adenine triphosphates (dNTPs) to prevent the reverse 

transcription of the HIV genome (Goldstone et al., 2011; Lahouassa et al., 2012). A recent 

study using SAMHD1-deficent mice showed these mice lack autoimmune phenotypes but 

are hyperactive in cGAS/STING signaling and induce the expression of type I IFN genes 

Ifit1 and Ifi44 (Behrendt et al., 2013; Maelfait et al., 2016). Additionally, SAMHD1 has also 

been implicated in DNA damage responses through its ability to maintain genome stability, 

digest ssDNA fragments at stalling replication forks, and inhibiting a cGAS/STING 

inflammatory response (Coquel et al., 2018; Kretschmer et al., 2015; Medeiros et al., 2018). 

A recent study has shown that SAMHD1 can suppress innate immune induction 

independently of its dNTPase activity. Specifically, SAMHD1 can mediate suppression of 

NF-κB through its interaction with NF-κB1/2 and preventing phosphorylation of IκBα, and 

also by interacting with IKKε to prevent IKKε-dependent phosphorylation of IRF7 (Chen et 

al., 2018). Importantly, this study suggests that because SAMHD1 negatively regulates an 

innate immune response, it may serve as a therapeutic target. Indeed, all of these recent 

findings highlight the need to continue studying the multiple mechanisms that TREX1, 

RNase H2, and SAMHD1 have in mediating an inflammatory response that can lead to AGS 

and other inflammatory diseases.

3.5.2. Sjögren’s Syndrome—Sjögren’s syndrome (SS) is an autoimmune disorder 

characterized by dry mouth and eyes due to reduced lacrimal and salivary gland secretion 

first described in 1933 by Henrik Sjögren (Mutlu and Scully, 1993). The molecular 

mechanisms behind SS are unclear as symptoms are similar to rheumatoid arthritis and 

many groups have grappled with defining indicators and causes (Baldini et al., 2018; Daniels 

and Fox, 1992; Wang et al., 2018; Yang et al., 2018). Studies have documented that the DNA 

sensor IFI16 is upregulated in SS patients and leads to increased antibodies against IFI16 

(Alunno et al., 2015; Baer et al., 2016; Mondini et al., 2006). A recent study has implicated 

STING hyperactivation as a possible cause of SS, shown by the increase in circulating levels 

of the IFN-α, IFN-β, IL-6, and TNF-α proinflammatory cytokines in primary salivary gland 

cells of mice after DMXAA-mediated activation of STING. Notably, these mice developed 

antibodies to STING, and STING/TBK1/IRF3 signaling resulted in increased IFN-β 
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production in the salivary glands. In addition, transfection with cGAMP in salivary glands 

also resulted in robust production on IFN-β which suggests that a possible mechanisms for 

SS might be due to the presence of cytosolic DNA that leads to the activation of cGAS and 

subsequent STING signaling (Papinska et al., 2018). Importantly, this is the first study to 

associate SS with accumulation of nucleic acids that activate the cGAS/STING signaling 

pathway, but further dissection of the pathway in this disorder will be needed to clarify a 

mechanism.

In summary, it is evident that accumulation of nucleic acids leads to autoinflammatory and 

autoimmune diseases such as AGS, SLE, and SS. The proteins TREX1, RNase H2, and 

SAMHD1 all have important roles in protecting the cell from hyperactive cytosolic nucleic 

acid signaling via the cGAS/STING signaling pathway. Further studies connecting cytosolic 

DNA presence to AGS, SLE, and SS will clarify how DNA damage responses and innate 

immune responses like cGAS/STING lead to autoimmune and autoinflammatory disorders.

3.6. Hypersensitivity of cGAS/STING Signaling

In addition to accumulation of nucleic acids, another important cause of autoimmune and 

autoinflammatory disorders is hypersensitivity of the cGAS/STING pathway. This type of 

dysfunction is due to mutations that result in the constitutive activation of STING and type I 

IFN in the presence or absence of ligands, namely CDNs. Two examples of such disorders 

are SAVI and familial chilblain lupus where mutations in the TMEM173 gene encoding the 

STING protein result in constitutive production of IFN and proinflammatory cytokines. 

Lastly, we describe an example of a therapeutic option in a mouse model of MS that 

indirectly connects it to the cGAS/STING signaling pathway.

3.6.1. SAVI and Familial Chilblain Lupus—De novo, gain-of-function mutations in 

the TMEM173 gene were documented to cause SAVI (Liu et al., 2014). The disease begins 

in the first few months of life and autoinflammatory symptoms include rash, flares, nodules, 

blistering of fingers, toes, nose, cheeks, fever, and joint pain (de Jesus et al., 2015; Jeremiah 

et al., 2014; Munoz et al., 2015; Picard et al., 2016). Other characteristics of SAVI include 

ulcerating skin lesions that resemble chilblain lupus. Indeed, sequencing of TMEM173 in 

chilblain lupus patients has also revealed gain-of-function mutations in STING which lead to 

disease (König et al., 2017). Previously, the identified gain-of-function mutations in patient 

samples had involved one of four amino acids in STING at positions 147, 154, 155, or 166 

which sequester STING in the ER, simulate ligand binding, resulting in increased 

production of IFNs (Dobbs et al., 2015; Liu et al., 2014; Zhang et al., 2013). However, 

substitutions in the amino acid residues 206, 281, and 284 of STING implicated a ligand-

independent mechanism of STING activation (Melki et al., 2017). Additionally, a recent 

study in which whole exome sequencing was performed from a 9-month-old Ecuadorian boy 

displaying fever and a severe neck abscess revealed he had a missense heterozygous 

mutation resulting in the STING variant R284S which constitutively activates STING in the 

absence of CDNs (Konno et al., 2018). Interestingly, the chilblain lupus mutations that result 

in activation of STING and production of IFN-β are also induced in the absence of CDNs, 

indicating that other STING-trafficking mechanisms need to be investigated. For example, 

the constitutive production of IFN-β in SAVI has been thought to occur by activation of 

Matz et al. Page 37

Int Rev Cell Mol Biol. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



TBK1 and IRF3. However, a study generated STING N153S heterozygous knock-in mice 

and observed that these mutants develop disease symptoms independent of IRF3 which 

suggests that other type I IFN-independent mechanisms are involved causing diseased state 

or that species-specific differences exist molecularly (Warner et al., 2017).

As seen by the gain-of-function mutations in TMEM173, it is evident that overstimulation or 

activation of STING is enough to induce a diseased state. The use of JAK1/2 inhibitors is 

currently a growing therapeutic approach being used treat other inflammatory diseases such 

as rheumatoid arthritis and myelofibrosis that may also be used to treat SAVI. Indeed, a 

recent study showed that when the JAK inhibitor baricitinib was used to treat SAVI patients, 

resulting in amelioration of vasculitis (Sanchez et al., 2018). Nevertheless, many questions 

remain regarding JAK inhibitors such as their side effects which prevent FDA approval 

(Shreberk-Hassidim et al., 2017). Another therapeutic strategy lies in the development of 

STING-specific inhibitors to treat STING-mediated autoinflammatory diseases. In fact, 

covalent small-molecules have been developed that target a transmembrane domain of 

STING to block its palmitoylation and subsequent multimeric assembly at the Golgi (Haag 

et al., 2018). These molecules improve inflammatory disease in TREX1−/− mice and may 

soon be used for clinical trials in SAVI patients or other STING-mediated 

interferonopathies.

3.6.2. S6K1 and Multiple Sclerosis—One interesting therapeutic example for 

autoimmune disorders has been observed through the use of the mouse model of multiple 

sclerosis (MS), namely experimental autoimmune encephalitis (EAE). MS is an autoimmune 

disease that leaves scars, namely sclerosis, in the myelin sheath of multiple nerve fibers over 

time by the influx of T lymphocytes into the CNS (McFarland and Martin, 2007). Symptoms 

include muscle weakness, fatigue, difficulty balancing and walking, as well tremors, speech 

problems, and cognitive issues like cerebral and brainstem dysfunction (Landtblom et al., 

2010; Minagar, 2014). There are varying degrees of MS ranging from subtle to severe that 

change over time as the disease progresses. Microarray analysis, large-and small-scale gene 

expression studies, and GWAS have been performed in patients and have revealed over 20 

mutations that may lead to disease, some of which induce the production of cytokines by 

Th1 and Th17 cells (Munoz-Culla et al., 2013; Murugaiyan et al., 2011). There is no explicit 

evidence supporting DNA-sensing mechanisms involved in MS pathogenesis, however, there 

is one possible therapeutic option that indirectly connects to the cGAS/STING signaling 

pathway. Earlier, the ribosomal kinase S6K1 was described in the mechanism for cGAS/

STING signaling where it forms a complex with STING and TBK1 to induce IRF3 

activation in the context of cytosolic DNA sensing (Wang et al., 2016). Inhibition of S6K1 

with a pan-ribosomal S6 kinase inhibitor BI-D1870 protected mice from EAE (Takada et al., 

2016). Furthermore, when EAE mice were injected with DNA nanoparticles (DNPs) which 

led to selective activation of STING, subsequent IFN-α/β release, and overall suppression of 

EAE by reducing the recruitment of Th1 and Th17 cells into the CNS (Lemos et al., 2014). 

This therapeutic option mediated by DNPs suggests that other accessory proteins may 

indeed be able to serve as targets for other autoimmune or inflammatory diseases.

While type I interferonopathies are characterized by varying degrees of autoinflammation, 

autoimmunity, or immunodeficiency, only a few have been documented to be caused directly 
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or indirectly by dysregulation of DNA-sensing mechanisms. Specifically, the molecular 

dissection of autoinflammatory and autoimmune disorders like AGS, SS, SAVI, and familial 

chilblain lupus has all revealed a commonality in DNA-sensing errors. Namely, mutations in 

the proteins TREX1, RNase H2, and SAMHD1 lead to nucleic acid accumulation while 

mutations in TMEM173 lead to overstimulation of STING and subsequent overproduction 

of IFN-β. On the other hand, SLE and SMS are indirectly connected to DNA-sensing 

mechanisms but nonetheless represent the complexity of the mechanisms behind these 

disorders.

4. PROSPECTIVE

Detailed mechanistic understanding of innate immunity is crucial for the development of 

novel therapies to combat microbial infection and provide relief to those suffering from 

certain autoimmune pathologies. Already, it has been shown that the STING pathway can be 

exploited to reduce infectious load of a number of viral (Guo et al., 2017; Skouboe et al., 

2018) and bacterial (Barker et al., 2013; Karaolis et al., 2007b; Rosen et al., 2017) 

pathogens. Additionally, STING-specific adjuvants can boost vaccine efficiency ( Junkins et 

al., 2018; Sˇkrnjug et al., 2014) and be used for cancer immunotherapy (Miyabe et al., 

2014). Similarly, RIG-I agonists can be used to reduce viral burden (Bedard et al., 2012; 

Coch et al., 2017; Green et al., 2016; Nielsen et al., 2017; Pattabhi et al., 2015) and induce 

anti-tumor activity (Dassler-Plenker et al., 2016). Given these advances in developing small 

molecules and methods to activate innate immunity to reduce microbial burden, methods to 

inhibit hyperactive innate immune signaling may aid in the development of therapies for 

autoimmune disorders. Already, small molecules have been developed that target cGAS and 

reduce its activity (An et al., 2015; Hall et al., 2017; Vincent et al., 2017). Given the 

evolutionary arms race between pathogens and host, especially with respect to the co-

evolution of DNA-and retro-viruses with humans (Elde and Malik, 2009), might it be 

possible to develop virally based strategies or molecules to inhibit hyperactive innate 

immunity? As the saying goes, “…keep your enemies closer.”
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Fig. 1. 
RIG-I, MDA5, LGP2, PKR, and TLRs3/7/8 are activated during viral infection in the 

presence of non-self dsRNA. RIG-I recognizes short dsRNA and non-self ssRNA with 5′-

triphosphate or 5′-diphosphate, while MDA5 recognizes long dsRNA. LGP2 acts upstream 

to regulate RIG-I and MDA5 activation in the presence of dsRNA. RIG-I and MDA5 interact 

with MAVS adaptor protein located on the mitochondrial membrane. MAVS then activates 

FADD/RIP1 and TBK1/IKKε protein kinases that induce nuclear translocation of NF-κB 

and IRF3 following phosphorylation of IκBα or IRF3. PKR is also activated in the presence 

of dsRNA and it transmits activation signals through NF-κB. Endolysosomal TLRs3 and 7/8 

lead to TBK1 and IRF7 activation via adaptors TRIF and MyD88, respectively. NF-κB, 

IRF3, and IRF7 are transcription factors that induce proinflammatory cytokine production, 
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including IFN-β. Autoamplification of IFN signaling occurs through activation of the Jak/

STAT pathway upon IFN-β binding. While IFN-stimulated genes spread antiviral signals to 

surrounding cells, viral proteins inhibit multiple steps of these pathways (see Table 1). 

Inhibitors of these signaling pathway also work to control activation signals and 

dysfunctions in these molecules can contribute to various autoimmune disorders. For 

example, P58IPK inhibits PKR while USP18 and ADAR suppress MDA5 activity (see Table 

2).
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Fig. 2. 
Sensing of cytosolic DNA or cyclic dinucleotides via multiple sensors leads through the 

induction of interferon and proinflammatory cytokines. Cytosolic DNA derived from viral or 

bacterial infection (see Table 3), as well as self-DNA, is sensed by receptors that signal 

through STING (pink), receptors that are independent of STING (red), and receptors that 

signal via STING-dependent or -independent mechanisms (blue). STING binds to cyclic 

dinucleotides, by-products of some bacterial infection and also metabolized by cGAS upon 

binding to dsDNA. While AIM2 leads to caspase and inflammasome activation, DNA-

mediated activation of the other receptors leads to IRF or NF-κB transcription factor 

activation and the induction of IFN and proinflammatory cytokines. Dysfunction or 

hyperactivation of these DNA-sensing pathways can lead to autoimmunity (see Table 4).
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Table 2

Summary of Polymorphisms in RNA Sensors and Their Associated Syndromes

RNA Sensor

RNA Sensor 
Associated 
Protein Genetic Polymorphisms That Causes Dysfunction Associated Syndrome/Pathology

MDA5 1. Four loss-of-function variants IFIH1-gene that encodes 
MDA5 (Lincez et al., 2015; Liu et al., 2009; Nejentsev et 
al., 2009; Shigemoto et al., 2009)
2. Gain-of-function IFIH1 mutations (Crow et al., 2015)
3. Missense mutation in IFIH1 (Funabiki et al., 2014)
4. Missense mutation in IFIH1 leading to overactive 
MDA5 (Rutsch et al., 2015)

1. Type 1 diabetes
2. Aicardi–Goutieres syndrome
3. Lupus-like symptoms
4. Singleton–Merten
Syndrome

USP18 1. Loss-of-function in USP18 induces overactivation of 
MDA5 (Santin et al., 2012)

1. Type 1 diabetes

ADAR 1. Loss-of-function in ADAR induces overactivation of 
MDA5 (Crow et al., 2015; Pestal et al., 2015)
2. Gain-of-function mutation in IFIH1 led to over 
expressed MDA5 (Crow et al., 2015; Schmelzer et al., 
2018)

1–2. Aicardi–Goutieres syndrome

PKR

P58IPK 

interaction 
with PERK

1. Knockout of P58IPK (Ladiges et al., 2005)
2. Loss-of-function mutations in Dnajc3 (Synofzik et al., 
2014)
3. Homozygous stop mutation (Synofzik et al., 2014)

1. Symptoms associated with type 1 and late 
stage type 2 diabetes
2. Juvenile-onset diabetes and 
multisystemicneurodegenerative disorders
3. Monogenic recessive diabetes mellitus

RIG-I 1. Knockout of RIG-I (Wang et al., 2007)
2. Downregulation of G protein αi2 subunit (Hampe et al., 
2001b)
3. Decreased expression of RIG-I (Funke et al., 2011)
4. Variants of DDX58 causing overactive RIG-I (Jang et 
al., 2015)

1. Colitis-like phenotype associated with 
inflammatory bowel disease
2. Human inflammatory bowel disease
3. Crohn’s disease
4. Singleton–Merten Syndrome

NOD2 1. NOD2 mutations that imbalance IFN signaling through 
RIG-I (Morosky et al., 2011)

1. Crohn’s disease

TLR3 1. Polymorphisms in TLR3 (Assmann et al., 2014) 1. Type 1 diabetes

TLR7 1. Polymorphisms in TLR7 promoter (Skonieczna et al., 
2018)

1. Systemic lupus erythematosus
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Table 3

Summary of Host Proteins That Sense DNA Virus or Bacterial Infections

DNA Sensor DNA Sensor Associated Protein Pathogens That Stimulate Sensor

cGAS STING • Adenovirus (AdV) (Anghelina et al., 2016; Ishikawa et al., 2009; Lam and Falck-
Pedersen, 2014; Lam et al., 2014)
• Herpes simplex virus 1 (HSV-1) (Christensen et al., 2016; Horan et al., 2013; Ishikawa et 
al., 2009; Kalamvoki and Roizman, 2014; Li et al., 2013; Su and Zheng, 2017; Xu et al., 
2017; Ye et al., 2017; Zhang et al., 2016; Zheng, 2018)
• Human papillomavirus (HPV) (Sunthamala et al., 2014)
• Human and mouse cytomegalovirus (HCMV or MCMV) (Choi et al., 2018; Fu et al., 
2017; Lio et al., 2016)
• Human immunodeficiency (HIV) (Gao et al., 2013a; Lahaye et al., 2013; Rasaiyaah et 
al., 2013)
• Dengue virus (DENV) (Aguirre and Fernandez-Sesma, 2017; Aguirre et al., 2012; 
Stabell et al., 2018; Yu et al., 2012)
• Hepatitis C virus (HCV) (Ding et al., 2013; Maringer and Fernandez-Sesma, 2014; 
Moriyama et al., 2007; Nitta et al., 2013)
• Listeria monocytogenes (Sauer et al., 2011; Woodward et al., 2010)
• Staphylococcus aureus (Gries et al., 2016; Zhang et al., 2014)
• Chlamydia trachomatis (Barker et al., 2013)

DDX41 STING • HSV-1 (Zhang et al., 2011c)
• AdV (Zhang et al., 2011c)
• Newcastle disease virus (NDV) (Cheng et al., 2017)
• Listeria monocytogenes (Parvatiyar et al., 2012)

DAI STING • HSV-1 (Furr et al., 2011)

IFI16 1. STING
2. ASC

• (1) Epstein-Barr virus (EBV) (Pisano et al., 2017)
• (1) HSV-1 ( Johnson et al., 2014; Merkl et al., 2018; Orzalli et al., 2012; Unterholzner et 
al., 2010)
• (2) Kaposi’s sarcoma-associated herpesvirus (KSHV) (Kerur et al., 2011)

Ku70 STING-dependent or independent • Hepatitis B virus (HBV) (Li et al., 2016)
• Human T lymphotropic virus type 1 (HTLV-1) (Wang et al., 2017)
• HSV-2 (Zhang et al., 2011a)

MRE11 STING • MRE11 is not required or induce a type I IFN response to HSV-1 or Listeria 
monocytogenes infection but plays a role in DNA damage recognition (Kondo et al., 2013)

LSm14A STING • HSV-1 (Li et al., 2012b)

RNA pol. III RIG-I/MAVS • Legionella pneumophila (Chiu et al., 2009)
• EBV (Ablasser et al., 2009)
• Invertebrate iridescent virus 6 (IIV-6) (Ahlers et al., 2016)
• Varicella zoster virus (VZV) (Ogunjimi et al., 2017)

LRRFIP1 β-Catenin • Vesicular stomatitis virus (VSV) (Yang et al., 2010)
• Listeria monocytogenes (Yang et al., 2010)

Sox2 TAB2, TAK1 • HPV (Martınez-Ramırez et al., 2017)

DHX9/36 MyD88 • HSV-1 (Kim et al., 2010a)

Rad50 CARD9 • Vaccinia virus (VV) (Alcamí and Smith, 1996; Roth et al., 2014)
• AdV (Pancholi and Weitzman, 2018; Stracker et al., 2002)

AIM2 ASC • Francisella tularensis (Fernandes-Alnemri et al., 2010; Jones et al., 2010)
• Listeria monocytogenes (Kim et al., 2010a,b)
• Streptococcus pneumonia, Mycobacterium tuberculosis, Legionella pneumophila, 
Staphylococcus aureus (Fang et al., 2011; Ge et al., 2012; Hanamsagar et al., 2014; Saiga 
et al., 2012)
• Francisella novicida (Meunier et al., 2015)
• Chlamydia muridarum, Chlamydia trachomatis (Finethy et al., 2015)
• MCMV (Shi et al., 2015)
• HPV (Milutin Gasperov et al., 2014)
• Influenza virus (Schattgen et al., 2016; Zhang et al., 2017a)

TLR9 MyD88 • HSV-1/2 (Krug et al., 2004; Lundberg et al.,
2003)
• Campylobacter jejuni, Klebsiella pneumonia, Staphylococcus aureus (Bhan et al., 2007; 
Dalpke et al., 2006)
• VZV (Yu et al., 2011)
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DNA Sensor DNA Sensor Associated Protein Pathogens That Stimulate Sensor

• HCMV (Varani et al., 2007)
• MCMV (Krug et al., 2004; Puttur et al., 2016)
• EBV (Fiola et al., 2010; Lim et al., 2006)
• KSHV (West et al., 2011)
• VV and Ectromelia virus (Samuelsson et al., 2008)
• AdV (Appledorn et al., 2008; Basner-Tschakarjan et al., 2006)
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Table 4

Summary of Polymorphisms in DNA Sensors and Their Associated Syndromes

Protein Genetic Polymorphisms That Lead to Autoimmunity/Autoinflammation Associated Syndrome/Pathology

TLR9 1. Loss of TLR9 leads to increased lymphocyte activation, type I IFN, and 
autoantibodies (Christensen et al., 2006)
2. Impaired TLR9 signaling in B cells with decreased CD19/21 (Gies et al., 2018)

1–2. Systemic lupus erythematosus

TREX1 1. Loss-of-function mutations in TREX1 of AGS patients (Abe et al., 2014; Bailey et 
al., 2012; Crow, 2011; Crow et al., 2006a; Grieves et al., 2015; Lindahl et al., 2009; 
Namjou et al., 2011; Olivieri et al., 2013; Orebaugh et al., 2011; Uyur Yalçın et al., 
2015)
2. TREX1-deficient mice have cGAMP accumulation and produce high amounts of 
proinflammatory cytokines (Ahn et al., 2012, 2014; Gao et al., 2015; Gray et al., 
2015)
3. Missense TREX1 mutations present in systemic lupus erythematosus patients 
(Lee-Kirsch et al., 2007)

1–3. Aicardi–Goutières syndrome, 
familial chilblain lupus, systemic lupus 
erythematosus

RNase H2 1. Mutations in RNASEH2A, RNASEH2B, and RNASH2C lead to nucleic acid 
accumulation (Chon et al., 2013; Coffin et al., 2011; Günther et al., 2015; Kind et 
al., 2014; Pizzi et al., 2015; Ramantani et al., 2010; Reijns et al., 2011)
2. RNase H2-deficient mice are embryonic lethal; all subunits are necessary (Hiller 
et al., 2012; Reijns et al., 2012)
3. Mice that are RNASEH2A-and RNASEH2B-null have increased nucleic acid 
accumulation and increased ISG expression (Mackenzie et al., 2016; Pokatayev et 
al., 2016)

1–3. Aicardi–Goutières syndrome, lupus-
like symptoms

SAMHD1 1. Over 16 missense, nonsense, and 12-nucleotide deletion mutations (e.g., AGS82, 
AGS92, and AGS91) have been identified in AGS patients and their families (Rice et 
al., 2009)
2. Mice deficient in Samhd1 lack AGS symptoms but have increased ISG expression 
(Maelfait et al., 2016)

1. Aicardi–Goutières syndrome
2. Increased cGAS/STING signaling

STING 1. De novo gain-of-function mutations in TMEM173 (Dobbs et al., 2015; Jeremiah 
et al., 2014; Konig et al., 2017; Konno et al., 2018; Liu et al., 2014, 2015a; Melki et 
al., 2017; Munoz et al., 2015; Picard et al., 2016; Warner et al., 2017)
2. Activation of STING via agonist leads to development of anti-STING antibodies, 
results in production of IFN-β in salivary gland cells (Papinska et al., 2018)

1. SAVI, familial chilblain lupus
2. Sjögren’s syndrome
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