
Causal Modeling in Environmental Health

Marie-Abèle Bind
Department of Statistics, Faculty of Arts and Sciences, Harvard University, Cambridge, 
Massachusetts 02138, USA; ma.bind@mail.harvard.edu

Abstract

The field of environmental health has been dominated by modeling associations, especially by 

regressing an observed outcome on a linear or nonlinear function of observed covariates. Readers 

interested in advances in policies for improving environmental health are, however, expecting to be 

informed about health effects resulting from, or more explicitly caused by, environmental 

exposures. The quantification of health impacts resulting from the removal of environmental 

exposures involves causal statements. Therefore, when possible, causal inference frameworks 

should be considered for analyzing the effects of environmental exposures on health outcomes.
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1. INTRODUCTION

Estimating causal effects in the scientific field of environmental health is often difficult 

owing to complications related to human subjects. One obvious reason is that it is often 

unethical to randomize humans to possibly harmful environmental exposures. In many cases, 

it is also not generally feasible to conduct multifactorial randomized clinical trials. 

Therefore, to answer causal questions, epidemiologists relied for decades on retrospective 

data from case-control studies. Epidemiologists now typically collect time series data, 

manage prospective cohort studies that follow participants over time, or conduct controlled 

indoor air experiments. Environmental scientists have departed from studying detrimental 

exposures but instead have conducted creative human experiments randomizing potentially 

beneficial exposures (e.g., physical activity, green and blue spaces).

Because environmental exposures are nonrandomized in observational studies, there is no 

guarantee of the environmental exposure to be unconfounded with the (potential) health 

outcomes. Several strategies have been developed to counter the issue of confounding in 

observational studies. Of course, if the randomization is not successful at balancing 
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background characteristics across exposure groups, even a randomized clinical trial suffers 

from the treatment assignment mechanism being confounded with the potential outcomes.

Measures of association between environmental exposures and human health outcomes have 

been estimated by environmental epidemiology studies (44,49, 77, 105, 111), which 

consequently often conclude that further toxicological and/or epidemiological studies are 

needed to address causality. Whether these environmental health associations in humans are 

spurious or causal has been discussed in the past (21, 82, 107). To address causality between 

an environmental exposure and a health outcome, toxicologists have conducted animal 

studies (71,104,109). In contrast, environmental epidemiologists have chosen to quantify the 

causal effects of environmental exposures on health outcomes in observational human 

studies using causal inference methods that attempt to tackle the issue of confounding due to 

the lack of randomized exposures (9, 38, 65). Some authors have focused on reviewing 

existing causal methods used in environmental health (10, 75). Lewis has discussed the 

impact of different causal models on estimated effects of disinfection byproducts on preterm 

birth (66). Other authors have discussed the weight of causal evidence for the associations 

between an environmental exposure and a health outcome (46, 81, 89, 110).

In Section 2, this article proposes a historical perspective on causal modeling in 

environmental health with a large focus on air pollution. Section 3 discusses fundamental 

concepts and potential issues when modeling the observed data with regression. Section 4 

presents a nonexhaustive review of the causal modeling methods used in the field of 

environmental health, with again a focus on air pollution epidemiology. Finally, Section 5 

discusses the future of causal modeling in environmental health in the era of big data, 

machine learning, and greatly improved computational power.

2. HISTORICAL PERSPECTIVE: WHY DID SUCCESSFUL STRATEGIES 

DISAPPEAR?

2.1. First Milestones in Environmental Epidemiology

Modern environmental epidemiology is often proposed to have started in the 1850s with the 

physician John Snow, who was interested in cholera clustering. He identified the public 

water pump on Broad Street as the source of the cholera outbreak (99). A century later, two 

major milestones in epidemiology occurred. First, the Great Smog of London, which took 

place December 5–9, 1952, preceded an unusual increase in mortality in the city, which led 

to the Clean Air Act of 1956. Another milestone that is often taught in environmental 

epidemiology is the retrospective British Doctors Study published by Doll & Hill in 1954, 

which provided some evidence of an association between tobacco smoking and increased 

risk of lung cancer (32). These major knowledge advances that occurred more than one and 

half centuries ago or decades ago, as illustrated in the timeline in Figure 1, established 

modern environmental epidemiology as an attractive field with the potential to discover new 

medical knowledge using data collected from nonexperimental studies. Even though John 

Snow, Richard Doll, and Austin Bradford Hill got the right answers, was it the right way to 

think about and address these causal questions?
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2.2. Observational Studies and the Matched-Sampling Strategy

Epidemiological studies in biomedicine intend to elucidate whether exposure has some 

causal effect on health outcomes (17), but the assignment mechanism of these exposures to 

participants is generally not random and often unknown. Consequently, in such studies, a 

difference in outcomes between exposed and unexposed groups can be due to confounding 

by another variable that is unbalanced in the two groups. In the 1940s, sociologists used 

matching strategies (12, 47) to limit confounding bias: The goal of matching strategies is to 

find control units that are similar to exposed units. At that time, powerful computers were 

not available. Thus, researchers ran into obvious computational difficulties to identify exact 

pairs of units, for instance one exposed and the other serving as an exposure control. Ideally, 

the pairing needs to be performed with respect to all confounding variables (101).

In the 1950s, Cochran (15) also suggested using matching to analyze observational studies. 

Again, this method precedes the outcome analysis in the matched data set comprising the 

control population similar to the experimental population with respect to disturbing, also 

known as confounding variables. In the 1960s, he explained how to design, analyze, and 

summarize observational studies (17). Cochran suggested that researchers design 

observational studies using matched sampling (e.g., pair matching that consists of finding an 

approximate twin for each unit) and/or blocking on variables to reduce initial differences 

between exposed and control groups. He also argued for shifting the focus from estimates 

with small variance to estimates with small bias (16). Cochran’s influence on causal analysis 

of observational studies was summarized in the 1980s by Rubin (87).

2.3. The Prepersonalized Computer Era: Illustrated by Occupational Epidemiology

In the 1970s, epidemiologists were using matched-sampling strategies to handle 

confounding in cohort studies. For example, Tolenen et al. investigated whether exposure to 

carbon disulfide was associated with coronary heart disease morbidity and mortality in 

viscose rayon workers (52,103). Before comparing (by hand) the means or proportions of 

health outcomes in workers who had been exposed to rayon versus nonexposed workers, the 

authors formed cohorts of 343 men and matched these workers with respect to age, district 

of birth, and similarity of work. Note, these observational studies were not case-control 

studies, and the matching procedure was appropriately performed with respect to the 

exposure (and not the outcome).

In the years preceding the 1980s, computing power consisted of centralized management of 

remote systems; that is, the real computing power and data storage were not on personal 

desktops. Statistical software created in the 1960s, such as Bio-Medical Data Package 

(BMDP) at the University of California, Los Angeles, and Statistical Analysis System (SAS) 

at North Carolina State University, were first operated using batch computing, which 

explains why, in the prepersonalized computer era, epidemiologists invested a large amount 

of time thinking about the relevant variables to match on (or to adjust for) before performing 

statistical analyses. At that time, statistical analyses were tedious tasks, with and even more 

without, centralized computing power.
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The fact that correlation does not imply causation has been a persistent concern in the field 

of environmental epidemiology. The next section presents the evolution of statistical 

methods that model conditional associations between air pollution exposures and health 

outcomes in a nonexhaustive and fairly objective manner. Throughout Section 2.4, the first 

author’s primary affiliation will be flagged if related to the industry for additional context. 

Let us now comprehend how statistical modeling evolves in the personalized computer era.

2.4. The Personalized Computer Era: Illustrated by Air Pollution Epidemiology

Around 1984, there was a shift toward decentralized management of local systems; that is, 

computing power was available on desktops, and the user managed both software and data 

storage. Statistical software became increasingly more available on personalized desktops at 

universities. The availability of statistical software on personalized computers was a crucial 

determinant to explain the shift in the 1980s in how researchers conducted statistical 

analyses in environmental epidemiology. At that time, investigators transitioned away from 

careful thinking and away from planning the statistical analyses toward easier and faster 

answers from statistical methods of an observed health outcome regressed on an 

environmental exposure of interest and background covariates.

In 1984, that is, at the beginning of the personalized computer era, Selvin et al. (96) 

examined the influence of total suspended particulates, sulfur dioxide, and nitrogen dioxide 

on mortality across US regions. The authors described fitting 24 linear regressions stratified 

by sex and adjusted for a set of, what they called, control variables:

Mt, s | APt, Ct = β0, s + β1, sAPt + βC, s
T Ct + ϵt, s,

where Mt, s, APt, and Ct represent the sex-specific daily mortality rate, the daily 

concentration of air pollutant, and the set of control variables in a particular region, 

respectively, and εt, s ~ N(0, σ2). Note, the authors chose a significance level equal to 0.02. 

Using time series to estimate the conditional association between short-term air pollution 

and mortality comports some advantages. In a time series setting, the compared units are 

days, and a major concern is whether days with high air pollution are comparable to days 

with low pollution and comparable to days with moderate pollution. The distributions of 

time-varying confounding variables, such as day of the week, month, year, flu, and 

meteorological variables, are likely to be different across days with low, moderate, and high 

pollution. However, city-specific distributions of smoking, obesity, medication use, diabetes, 

age, and sex across days with low, moderate, and high pollution can be assumed to be 

similar. For example, one can compare mortality counts only between days that are 

proximate in time.

In 1993, Dockery et al. (31) published the well-known Harvard Six Cities Study, which 

linked air pollution to mortality using two covariate-adjusted Cox proportional-hazards 

models stratified by sex and five-year age groups:
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λi, s(t |Cityi, Cit) = λ0, s(t) exp β1, 1 * *1i ∈ City1 + ⋯ + β1, 6 * *1i ∈ City6 + βC
T Cit

λi, s(t | APCity, t, Cit) = λ0, s(t) exp[β1, 1( * *1i ∈ City = 1APCity1, t) + ⋯ + β1, 6( * *1i ∈ City6APCity6, t)

+ βC
T Cit],

where λi, s(t |Z = z), APi ∈ City, t, and Cit represent the hazard of dying at time t for individual i 

and strata s conditional on Z = z, the annual city-specific air pollution level where subject i 
lives, and the subject-specific control variables at time t, respectively.

In 1994, Schwartz (92) used a Poisson regression model that controlled for the year of study, 

continuous time trend of very hot days, temperature, humidity, and winter temperature to 

estimate the causal relationship between high air pollution exposure and daily mortality 

(denoted by Mt) in Philadelphia:

log E Mt = β0 + β1APt + βC
T Ct and E Mt = Var(Mt) .

The same year, Schwartz (91) then used an overdispersed Poisson regression model to 

associate air pollution exposure with respiratory hospital admissions for the elderly (denoted 

by Yt) in Detroit,

Michigan:

log E Yt = β0 + β1APt + βC
T Ct and E Yt = Φ * Var Yt ,

where Φ is an overdispersion parameter.

In 1996, Gamble & Lewis (43) reviewed the literature about the associations between air 

pollution (PM10) and health outcomes (e.g., cardiopulmonary morbidity and mortality, 

hospital admissions for related diseases) and concluded that these associations were weak 

and that Hill’s causal criteria (54) were not met (e.g., temporality, strength of the 

association, biological plausibility). That year, Dunn & Kingham (35) also suggested that 

both epidemiological and toxicological evidence are needed to establish a link between air 

quality and health. In 1997, Kuenzli et al. (62) concluded that experimental studies needed 

to be conducted to investigate the pathophysiological mechanisms involved in the 

associations between air pollution and health outcomes. In 1998, Bruce et al. (11) concluded 

(a) that intervention studies were required for a strong causal link between indoor air 

pollution and health outcomes and (b) that the quantification of the beneficial effects of the 

removal of the harmful exposure should be of interest. In 1998, Gamble (42) published 

another article tackling the plausibility of the PM2.5-mortality association, arguing that 

confounding factors (e.g., physical activity, lung function) could explain the spurious 

association and that animal studies were not relevant to support an effect in humans because 

of the different order of magnitudes between experimental conditions versus ambient air 

pollution levels. In 1999, Schwartz (93) found positive associations between PM10 exposure 
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and hospital admissions for heart disease in the elderly in eight US counties using Poisson 

regression models.

In 2000, Schwartz (93) and Samet et al. (90) attempted to address existent concerns specific 

to the validity of environmental health studies. The authors introduced a time series setting 

with copollutants, AP1, t, AP2, t, and a health outcome, Yt. They introduced a scenario in 

which AP1, t may confound the AP2, t −Yt causal relationship:

AP1, t = α0 + α1, cityAP2, t + ϵAP1, t, 1.

Y t = β0 + β1AP1, t + β2AP2, t + ϵY , t, 2.

and Equations 1 and 2 are equivalent to

Y t = β0 + β1α0 + β2 + β1 α1, city AP2, t + β1 ϵAP1, t + ϵY , t . 3.

Schwartz and Samet et al. proposed to use two-stage regression, an approach that was 

popular in social sciences at that time, to assess confounding by the copollutant AP1, t. First, 

in stage 1, Yt was regressed against AP2, t for each city:

Yt = δ0 + δ2, cityAP2, t + ηY , t .

The estimated δ2, city has an expectation of β2 + β1 α1, city. Then, α1, city is estimated using 

Equation 1. Finally, in stage 2, δ2, city is regressed against α1, city:

δ2, city = θ0 + θ1α1, city + κcity .

The two-stage regression approach assumes that θ0 and θ1 provide valid estimates of β2 and 

β1, respectively. Schwartz and Samet et al. argued that a nonzero estimate of β1 suggests a 

confounded AP2, t–Yt relationship. In 2001, Marcus & Kegler (69) argued against the two-

stage regression strategy by proposing counterexamples and simulations. For instance, he 

introduced a third variable AP3, t such that the AP2, t–Yt relationship is confounded not only 

by AP1, t, but also by AP3, t. The authors argued that in that third-confounder setting the two-

stage approach would incorrectly estimate the magnitude of the AP2, t–AP1, t–Yt pathway.

In 2002, Wong et al. (108) argued that there would be some causal evidence if effect 

estimates were similar when modeling the association between air pollution and hospital 

admissions in Hong Kong and London with the same Poisson regression model. The same 

year, Le Tertre et al. (64) concluded in favor of a causal interpretation of the air pollution-

mortality association. Using overdispersed Poisson regression models, the authors estimated 

air pollution- mortality conditional associations in nine French cities. After conducting a 

Bind Page 6

Annu Rev Public Health. Author manuscript; available in PMC 2019 April 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



meta-analysis, they obtained a significant and positive pooled estimate, even though the nine 

estimates were not always significant.

In 2007, Pope & Burnett (80) disagreed with the argument proposed by Janes et al. (58), 

who, after observing air pollution-mortality associations at the national scale but not at the 

local scale, asserted that the association between long-term exposure to air pollution and 

mortality is more likely to be confounded at the national scale than on the local scale. The 

same year, Brook (10) also proposed his view on the causal question and concluded, on the 

basis of the existing epidemiological studies, that the final evidence was now sufficient to 

implicate particulate matter exposure as a cause of cardiovascular disease. Goldberg (45) 

also argued that standard epidemiological designs could not uniquely identify any individual 

component of air pollution as a causal agent of a health effect. He also suggested that 

researchers examine precisely the toxicity of mixtures of air pollutants. He finally proposed 

toxicological studies and human controlled studies that capitalized on multifactorial designs 

to study specific component(s) of the air pollution mixture.

In 2009, Knol et al. proposed an elicitation based on fourteen European experts, such as 

epidemiologists, toxicologists, and clinicians, to examine the likelihood of (a) a causal 

relationship and (b) causal pathways between ultrafine particles and key health outcomes. 

The experts concluded a medium-to-high likelihood for a causal relationship (61). The same 

year, to understand potential causal mechanisms of the air pollution-cardiovascular 

relationship, Delfino et al. (27) conducted a panel study on elderly participants with 

coronary artery disease and investigated whether traffic- related pollutants were associated 

with inflammatory biomarkers. The authors reported statistically significant positive 

associations using mixed-effects models (27):

Yi j = β0 + ui + β1APi j + βC
T Ci j + ϵi j,

where Yij and ui, represent a health outcome for subject i at visit j and random intercepts, 

respectively.

In 2012, L.A. (Tony) Cox et al. examined the association between short-term exposure to air 

pollution and daily mortality in 100 US cities. The authors concluded that the PM2.5-

mortality relationship was not causal because of nonlinear confounding by temperature 

when modeled with splines (25). This study was a reanalysis of an earlier epidemiological 

study that found mortality associations with PM2.5 and PM10 (33). The conclusions of Cox 

et al. using Bayesian model averaging conflicted with the conditional associations estimated 

by Dominici and colleagues (33) using a Bayesian hierarchical model, including, in 

particular, smooth functions of same-day temperature with six degrees of freedom. The same 

year, Devlin et al. (28) reported causal effects of ozone on cardiovascular markers in human 

controlled exposure chambers. Padula et al. (76) also estimated the causal effects of traffic-

related air pollution during pregnancy and birth weight using machine-learning methods. 

They concluded that the absence of arbitrary model assumptions should result in relatively 

unbiased estimates (76). In 2013, Cox (21) argued for the possibility of spurious spatial 

exposure-response associations in environmental studies and against the causal interpretation 
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of linear regression coefficients in air pollution epidemiology (22). The same year, Jarjour et 

al. (59) conducted a scripted exposure crossover study and found no change in lung function 

when comparing bikers cycling on low-traffic versus high-traffic routes. In 2014, Hackstadt 

et al. (50) used principal stratification in a randomized air cleaner intervention trial to 

quantify the causal effects of the intervention using a subgroup for which the air cleaner 

reduced indoor air pollution. In 2015, Cox (20) used time series to assess whether historical 

air pollution concentrations helped to predict and explain changes in cardiovascular and all-

cause mortality, and he concluded that reducing PM2.5 and O3 did not result in human 

longevity benefits. This strategy is often referred to in economics as conducting a Granger 

causality test (more on this below). However, the authors found no evidence of an 

association between air pollution and mortality and incorrectly accepted the null hypothesis 

of no association. That same year, Schwartz et al. (94) estimated positive causal effects of 

PM2.5 on mortality by capitalizing on an instrumental variable approach that used back 

trajectories of air masses over Boston for a six-year period as random instruments. Back 

trajectories are the most likely estimated paths of air masses, assuming no dispersion in the 

atmosphere.

In 2016, after randomized mouse studies had demonstrated that secondhand smoke has some 

causal effect on long interspersed nuclear element 1 (LINE-1) methylation (104), and after 

an air pollution-methylation association had been observed in observational studies (5), 

Chen et al. (14) performed a causal mediation analysis within a randomized crossover trial 

and estimated a mediated effect of air pollution on cardiovascular markers via a decrease in 

LINE-1 DNA hypomethylation. A creative epidemiological study reported positive 

associations between exposure to ambient air pollution and mortality using observational 

data in cows (19). The authors concluded that these findings reinforce the evidence on the 

plausibility of the causal health effects of air pollution exposures. Wang et al. (106) also 

quantified the causal effect of long-term PM2.5 exposure on mortality using a difference-in-

difference approach. Briefly, this popular method in economics estimates the causal effect of 

an intervention (e.g., pollution reduction in Boston) on a time series outcome in a population 

(mortality in Boston at time t) by estimating the missing potential outcome of no 

intervention using, for example, the mortality at time t of a similar city that did not 

implement the intervention (similar with respect to the outcome time trend).

In 2017, Schwartz et al. (95) used an instrumental variable approach again and estimated 

positive causal effects of local air pollution (PM2.5 and black carbon) on mortality. The 

authors used Granger causality to assess residual confounding. The combination of the 

height of the planetary boundary layers and wind speed was used to construct the instrument 

for PM2.5, black carbon, and NO2. The same year, Sheldon & Sankaran (97) performed a 

two-stage least squares analysis and concluded that Indonesian fires caused an increase in 

acute respiratory tract infections and acute conjunctivitis. Makar et al. (68) also estimated 

the causal effect of low-level PM2.5 on hospitalization using inverse probability weighting 

(IPW), a method used in survey sampling. Briefly, IPW used the estimated propensity score 

to create a hypothetical population in which the exposure assignment can be assumed to be 

independent of the potential outcomes given the confounding variables.
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Cox et al. (23) used machine-learning methods to examine the causal link between short-

term exposure to air pollution and cardiovascular-related hospital admissions among older 

adults. Using random forest and Bayesian network learning, the authors concluded with 

strong statements that geographic location, time, and temperature, but not PM2.5, caused 

cardiovascular-related hospital admissions, again accepting the null hypothesis when failing 

to reject it. Although the authors claimed strong causal conclusions regarding the etiology of 

cardiovascular-related hospital admissions, they also concluded in their article (23) that 

better causal modeling methods are needed to better comprehend how reducing air pollution 

would affect public health.

Bind et al. (8) used quantile mediation analysis and found evidence that the association 

between air pollution and fibrinogen may be mediated by interferon-γ methylation, but only 

for specific quantiles of the mediator and outcome distributions. In 2018, Fiorito et al. (39) 

designed a nested case control study and conducted regression-based mediation analysis in 

nonsmokers. They concluded that the air pollution associations with cardio- and 

cerebrovascular disease are mediated by oxidative stress and inflammation. That same year, 

Zigler et al. (113) also performed a causal analysis to quantify the impact of US ambient air 

quality standard nonattainment on health outcomes.

In 2018, Cole-Hunter et al. (18) conducted a repeated measures study and quantified 

associations between air pollution and cardiopulmonary outcomes in healthy adults using 

multivariate- adjusted linear mixed-effect models. Air pollution exposure was estimated at 

the participant’s residential and occupational addresses. The authors performed mediation 

analyses and reported that occupational-address noise and residential greenness (but not 

physical activity) mediated the air pollution-cardiovascular associations. It is trendy now to 

conduct scripted exposure studies to estimate causal relationship in environmental 

epidemiology. Recently, Sinharay et al. (98) conducted a crossover study randomizing 

elderly participants to a two-hour walk either along Oxford Street in London or in an urban 

park. The authors reported that walking in areas with high levels of traffic pollution induced 

adverse cardiopulmonary effects (98).

2.5. The Analysis of Comparable Groups Makes a Comeback

Balancing strategies, such as matching (17), can help create similar groups with respect to 

important background variables. The construction of comparable groups is now facilitated 

by modern computing power and available software (51,117). In the past few years, 

statistical analysis of comparable groups has become popular again in environmental 

epidemiology. In 2012, Moore et al. (72) illustrated the use of causal models for realistic 

individualized exposure rules (CMRIER) that generalize marginal structural models to study 

the effect of ozone on asthma-related hospital discharge. In 2015, Schwartz et al. (94) 

estimated a positive causal effect of air pollution on mortality using a quasi-Poisson model 

within deciles of the estimated propensity scores. In 2017, Baccini et al. (1) assessed the 

short-term impact of PM10 (dichotomized at 40 μg/m3) on the total number of attributable 

deaths in Milan using propensity score matching. The same year, Bind & Rubin (6) argued 

that the obtainment of comparable groups is a necessary step before comparing health 

outcomes between exposed and unexposed. Before comparing children’s lung function, the 
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authors illustrated how to use matching strategies to create two similar groups of children 

(similar with respect to age, sex, height): one composed of children with smoking parents 

and the other composed of children with nonsmoking parents. The effort to compare apples 

to apples is crucial in nonrandomized settings to depart from association and to address 

causation (100).

The achievement of covariate balance should be presented before estimating causal effects in 

both randomized and nonrandomized studies to convince journal readers and policy makers 

(8, 86). Transparent balance checks allow constructive discussions. If a reader disagrees with 

the author’s conclusion, for instance, because a variable was omitted from the statistical 

analysis, the opportunity exists to consider that particular variable in the next analysis and to 

present the subsequent results at the next debate.

2.6. Centralized Management of Remote Systems Also Makes a Comeback

History also repeats itself in terms of computing management. Some investigators have 

departed from decentralized computing of local systems to return to centralized management 

of remote systems. With the recent availability or collection of big data in environmental 

health, researchers need an adapted computing platform, such as cloud computing, to 

harness the burden of high-dimensional statistics analyses in biomedical research. Griebel et 

al. (48) review the recent increase in cloud computing in health care studies.

3. REGRESSION: WHAT ARE YOU IMPLICITLY IMPUTING?

3.1. The Possible Danger of the Implied Imputation

Most environmental studies have directly modeled the observed outcome eschewing, for 

instance, the definition of a causal estimand as a function of the potential outcomes, the 

comparison of comparable groups, and the consideration of a joint model for the potential 

outcomes. This common analysis strategy can be problematic when obtaining valid causal 

conclusions.

3.1.1. Causal inference: a missing data problem.—Causal inference is inherently a 

missing data problem (55). Therefore, researchers interested in addressing causal questions 

must somehow impute the missing potential outcome for each unit. Modeling the observed 

outcome as a function of covariates and Gaussian noise can be erroneous because it misses 

the essential concept of causal inference (i.e., being a missing data problem). Interesting 

papers have showed differences in estimates of causal effects in settings where (a) the 

exposure was randomized (gold standard setting); (b) the exposure was not randomized and 

a regression was fitted using the observed exposure, covariates, and outcome (63); and (c) a 

data set was reconstructed so that the exposure could be assumed to be randomized given 

covariates (26). Not surprisingly, the estimated causal effects of the first and third strategies 

were close. The third strategy has an implicit imputation of the missing potential outcomes 

capitalizing on the pairing of matched units.

3.1.2. The need for defining causal estimand, a conceptual stage, and a 
design stage.—Environmental epidemiologists need to ponder and lock several 
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considerations before attempting to address causal questions: for example, How would I 

proceed if I could conduct a randomized experiment in the population of interest? What is 

the causal estimand? How can the nonrandom- ized data be described as collected from a 

randomized experiment? How can I use subject matter knowledge to choose the variables to 

balance? Which design strategy will be performed? Which statistical method should be used 

to compare the balanced exposed and unexposed groups?

Posing the causal question and defining the causal estimands as functions of the potential 

outcomes are needed (86). In 2014, Zigler & Dominici (114) argued for well-defined actions 

in terms of potential outcomes in air pollution epidemiology. In 2016, Zigler et al. (116) 

argued for the use of the potential outcome framework to examine the causal effect of air 

quality regulations on long-term health effects.

It is evident that a conceptual stage in environmental epidemiology is also needed. In 2017, 

Bind & Rubin (6) advocated for a multistage strategy (i.e., with conceptual, design, 

statistical, and summary stages) to emphasize how critical the conceptual stage is to draw 

statistical conclusions. In particular, the authors argued that p-values originating from 

analysis of observational studies have no scientific validity without embedding the 

observational study into a plausible hypothetical randomized experiment; that is, 

epidemiologists should state a plausible randomization mechanism before calculating a p-

value.

Rubin (88) has promoted for decades a separation of the design stage from the analysis stage 

in observational studies and illustrated his strategy in the context of the US tobacco 

litigation. Using propensity score matching, he created two comparable groups of male 

current smokers and of male never smokers, blindly of any outcome data (88). Dominici & 

Zigler (34) have also discussed how to evaluate the evidence of causality in air pollution 

epidemiology. The authors proposed criteria to evaluate evidence of causality in 

environmental epidemiology: (a) What actions or exposure levels are being compared? (b) 

Was an adequate comparison group constructed? and (c) How closely do these design 

decisions approximate an idealized randomized study? Each of these three points can be 

thought as arguing, respectively, for the need to define a causal question in terms of potential 

outcomes, have a successful design stage, and have a plausible conceptual stage.

3.2. Causal Estimands

Researchers typically use standard regression to model the mean of the observed outcome, 

often restricting themselves to the selection of a causal estimand that is not necessarily of 

scientific interest (e.g., average causal effect). In environmental epidemiology, some 

evidence has shown that the associations can be stronger at the tail of the observed outcome 

distribution (4). Instead, scientists that impute the missing potential outcomes can choose 

causal estimands of interest because any function of the potential outcomes (that have been 

imputed) can then be calculated.

3.3. Finite versus Super-Population Interpretation and Generalizability

The frequentist approach assumes that the units consist of a random sample from an infinite 

population, whereas the joint Bayesian model of [Y(0),Y(1)] assumes that randomness 
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comes from the exposure assignment and therefore does not extrapolate their conclusions to 

a population beyond the finite sample. Imbens & Rubin (57) discussed technical differences 

between (a) the frequentist linear regression using the observed outcome and (b) the 

Bayesian model of the joint distribution of the potential outcomes [Y(0),Y(1)]. Regression 

coefficients and their confidence intervals estimated by the former approach have a 

superpopulation interpretation, and in contrast, the posterior mode and credible interval 

obtained by the latter strategy have a finite population interpretation. They also compared 

the assumptions of both approaches. For example, the Bayesian model can be more flexible 

because it does not automatically constrain the residual variance to be the same in the 

exposed and unexposed groups.

The difference in interpretation between finite and superpopulation leads inherently to the 

topic of generalizability. Although randomized clinical trials are optimal to address causality 

in humans, study populations of observational studies are generally chosen such that they 

can be generalizable to an entire population of interest. Besides, observational studies are 

often the only ethical and feasible design to study health effects of multiple environmental 

stressors or pollutants in humans. Consequently, causal modeling has an important role to 

play in environmental epidemiology.

4. CAUSAL MODELING METHODS TARGETING ENVIRONMENTAL 

HEALTH SCIENTISTS

4.1. Experimental Studies

Even though randomized experiments are the gold standard for addressing causality, in 

practice they can also suffer from covariate imbalance if the randomization was not 

successful. To avoid this issue, Morgan & Rubin (73) proposed a rerandomization strategy to 

improve covariate balance in experiments. Air pollution chamber studies have been 

conducted in humans and analyzed with mixed-effects models and with paired t-tests that 

assume Gaussian asymptotic distributions (28,29, 112). In randomized experiments, an 

actual randomization occurred and should be incorporated into the statistical analysis. 

Combining Bayesian and randomization-based inferences, as suggested by Bind & Rubin 

(6), could also be useful in human experimental settings with a small number of units. 

Although expertise in causal inference is important when conducting experimental studies, 

mastering classical insights of experimental design and essential concepts in causal 

inference is particularly crucial when conducting observational studies in which the 

environmental exposure mechanism is unknown and nonrandomized.

4.2. Estimating Main Causal Effects in Observational Studies

We present the most common methodological strategies that have been used to estimate the 

main effects of an environmental exposure on a health outcome. Some epidemiological 

studies attempted to tackle the confounding issue capitalizing on the fact that “association is 

causation in the absence of confounding”; others have attempted to obtain a setting in which 

plausible imputations of the missing potential outcomes can be performed. We now present 

the most common approaches that have been used to estimate the main effects of an 

environmental exposure on a health outcome.
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4.2.1. Directed acyclic graphs.—In 2011, Flanders et al. (40) constructed an indicator 

that detected residual confounding in nonrandomized studies based on directed acyclic 

graphs (DAGs) and capitalized on regression coefficients estimated with a future exposure 

variable. In 2012, before obtaining an association between NO2 exposure and increased risk 

of ischemic heart disease, Beckerman et al. (3) constructed a fairly comprehensive DAG to 

identify potential confounders, such as socioeconomic status (see Figure 2). In 2015, 

Weisskopf et al. (107) used DAGs to argue that the air pollution-autism association was not 

confounded by time-invariant factors and concluded that the causal association between air 

pollution and autism was increasingly compelling.

4.2.2. Propensity score.—Because the exposure mechanism is unknown in 

observational studies, researchers have attempted to estimate the distribution of the 

exposure. The propensity score is the probability of a unit to be assigned to a particular 

exposure level given a set of covariates. Matching units with respect to their estimated 

propensity score has been a successful strategy to obtain balanced groups (88). In 2017, 

Baccini et al. (1) argued for this approach to address causality in environmental 

epidemiology because it does not require any modeling of the confounder- outcome 

relationship nor does it require model extrapolation.

4.2.3. g-methods.—Instead of modeling the observed exposure, covariates, and 

outcome, the g- estimation method models the potential outcomes under no exposure as a 

function of observed exposure, covariates, and outcome (79, 84). Using this method, Moore 

et al. obtained a nonsignificant estimate of the effect of ozone reductions on the proportion 

of asthma-related hospital discharges (72).

4.2.4. Mendelian randomization.—Mendelian randomization relies on the principle 

that if a genetic variant has an effect on an environmentally modifiable exposure that itself 

has an effect on a disease, then this genetic variant should also be related to the disease. 

Relton & Davey Smith (83) suggest that there is a potential for several applications in 

environmental epidemiology because DNA methylation has been associated with 

environmental exposures such as smoking, drinking, arsenic, and ambient air pollution.

4.3. Methods Adapted from the Field of Economics

Environmental health studies that reported causal main effects also used causal methods that 

emerged in economics.

4.3.1. Granger causality.—In contrast with its name, the Granger causality approach is 

not a proper causal inference method in the sense that it focuses on prediction and does not 

focus on the imputation of the missing potential outcomes. The approach consists of testing 

whether one time series can be used to predict another. In 2015, Farhani & Ozturk (37) were 

interested in testing the environmental Kuznets curve (EKC) hypothesis, which postulates an 

inverted-U-shaped relationship between different pollutants and per capita income. The 

authors used an auto-regressive distributed lag approach with Granger causality models to 

examine the causal relationship between CO2 emissions, real gross domestic product, energy 

consumption, financial development, trade openness, and urbanization in Tunisia (37). In 
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2018, Chen et al. (13) used a modified Granger causality test and generalized autoregressive 

conditional heteroscedastic (GARCH) models to examine the causal relationship between 

ambient fine particles and human influenza in Taiwan. In 2018, Jiang & Bai (60) conducted 

a Granger causality test to assess whether the air pollution concentration of a given Chinese 

city was affected by air pollution from neighboring cities.

4.3.2. Difference in differences.—As mentioned in Section 2.4, difference-in-

difference estimators can be used to estimate causal effects on mortality at time t > T0 in the 

population of Boston of a pollution reduction intervention that occurred at time T0 defined 

as τBoston, t = Ei∈Boston [Mi, t(intervention = 1)-Mi, t (intervention = 0)], for t > T0. 

Obviously, Mi, t (intervention = 0) is a nonmeasurable potential outcome but can be 

estimated using the mortality of another similar city at time t (similar with respect to 

outcome time trend). Wang et al. (106) applied this approach and estimated the causal 

effects of long-term exposure to PM2.5 on mortality in New Jersey using covariate-adjusted 

regression models.

4.3.3. Regression discontinuity.—The regression discontinuity approach consists of 

studying the effect of an exposure (dichotomized at a certain threshold) on an outcome; that 

is, two groups of units are defined by their exposure level being either below or above a 

threshold. Units that are close to the threshold can be assumed to be very similar and as if 

they would have been randomized to one side or the other (102). This approach capitalizes 

on this approximated randomization to compare outcomes between units that are close to the 

threshold but on either side. In 2017, Ebenstein et al. (36) used the regression discontinuity 

design to estimate the effect of PM10 on life expectancy in China using the Huai River as the 

threshold, also known as the boundary variable.

4.4. Intermediate Variables

Variables in the causal pathway between the exposure and outcome variables are often called 

intermediate or mediator variables. In practice, it is advised not to directly adjust for 

intermediate variables in regression analysis to estimate unbiased main effects. However, the 

mediated effect has been of interest in environmental health.

4.4.1. Principal stratification.—Methods using instrumental variable are particular 

cases of principal stratification, which considers an intermediate variable (in the sense of 

posttreatment variable) in the statistical analysis (41). Zigler et al. (115) used principal 

stratification to “examine causal effects of a regulation on health that are and are not 

associated with causal effects of the regulation on air quality.” Hackstadt et al. (50) also used 

principal stratification in a randomized air cleaner intervention trial to examine the extent to 

which an effect of an environmental intervention on health outcomes coincides with its 

effect on indoor air pollution.

4.4.2. Mediation.—In 2016, Bind et al. (7) derived mediation formulae for examining 

the mediated effect of exogenous exposures, such as air pollution. The authors illustrated the 

method by estimating the mediated effect of two environmental exposures, air pollution and 

temperature, on the intercellular adhesion molecule 1 (ICAM-1) via a change in ICAM-1 
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DNA methylation. In 2017, Balte et al. (2) conducted a path analysis using linear mixed-

effects models to examine the causal pathways among prenatal and childhood factors that 

impact lung function later. Path analysis is used to describe dependencies among variables 

and can be viewed as a special case of structural equation modeling. In 2018, Cole-Hunter et 

al. (18) conducted a regression-based mediation analysis to examine occupational-address 

noise, residential-neighborhood greenness, and total daily physical activity as possible 

mediators in the association between PM10 exposure and cardiopulmonary outcomes. The 

same year, Huels et al. (56) also conducted a regression-based mediation analysis and 

concluded that the association between air pollution and impairment in visuoconstruction 

performance (a measure of cognitive function) was mediated by lung function.

5. THE FUTURE OF CAUSAL MODELING IN ENVIRONMENTAL HEALTH

5.1. Examples of Outcomes Associated with Environmental Exposures for Which 
Epidemiologists Need to Address Causality

In 2018, in the context of environmental exposure effects on autism, Hertz-Picciotto et al. 

(53) discussed whether evidence from observational associations permits causal inference. 

Also in 2018, Lu et al. (67) associated air pollution with criminal and unethical behaviors 

using a 9-year panel of more than 9,000 US cities and conducted a psychological experiment 

to validate their findings. Examining causal links between air pollution exposures and 

complex and still poorly understood health outcomes, such as autism, multiple sclerosis, 

Parkinson’s disease, and types of dementia may be the next challenge for environmental 

epidemiologists.

5.2. Big Data

In 2012, Padula et al. (76) quantified the causal effects of exposure to traffic-related air 

pollution on birth weight using machine learning and targeted maximum likelihood 

estimation (TMLE), which, instead of minimizing variance or mean square errors, targets the 

maximum likelihood estimate but in a way that reduces bias. In 2013, Diaz & van der Laan 

(30) proposed to use inverse probability of treatment weighted (IPTW), augmented IPTW (a 

doubly robust estimator), TLME, and stochastic interventions to assess causality. In 2014, 

Mauderly and coauthors (70, 71) performed a multiple additive regression tree analysis in a 

multipollutant air quality study in rodents. In 2017, Oulhote et al. (74) combined ensemble 

learning (i.e., SuperLearner) and g- computation to estimate the effect of chemical mixtures. 

In 2018, Golan et al. (44) discussed the big data paradigm. In their paper, they performed 

regression-based analyses and provided association estimates between environmental 

exposures and fetal growth. In 2017, Cox et al. used (a) nonparametric models to avoid 

model misspecification and (b) ensemble modeling that averaged over several model results. 

This strategy has become popular because it can yield estimates with lower bias and 

variance (24). Comprehending the statistical properties of black box machine-learning 

methods is currently an area of intense research and should lead to a better understanding of 

which machine-learning methods to use in various causal inference settings.
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5.3. Computational Power

Computers have become increasingly more powerful, leading to the possibility of returning 

to exact causal inference instead of relying on asymptotics and modeling (78). As stated 

before, combining Bayesian modeling with Fisherian exact inference (8) is now possible by 

harnessing greatly improved computational power. Monte Carlo methods can now be used to 

compute in parallel posterior distributions of more complex causal estimands.

Because of the emergence of approximate solvers in the past decade, existing solutions for 

the old Monge-Kantorovich mass transportation problem can now be computed efficiently 

for large data sets (78). In special cases, the Monge-Kantorovich problem is equivalent to the 

optimal matching problem. In 2012, Rosembaum proposed to perform combinatorial 

optimization and to use linear programming methods for optimal matching in causal 

inference (85). Software is now available to perform the task (51, 117). Focusing on optimal 

balanced data sets may not be as optimal for addressing causality in observational studies, 

and the statistical analyses of combined nonoptimal matched data sets may provide better 

statistical properties such as coverage and efficiency.

6. CONCLUSION: WHY SHOULD YOU WORRY ABOUT CAUSATION 

VERSUS ASSOCIATION?

Important concepts of experimental design and causal inference are needed for readers of 

environmental epidemiology to evaluate the quality of papers and for epidemiologists to 

address causal questions with success. Because of the lack of randomization, significant 

results from observational studies should always be interpreted and evaluated with caution. 

In practice, the ignorability assumption is often strong and unrealistic. Sensitivity analyses, 

such as tipping point analyses, should be performed. Reproducibility of the findings, 

especially from observational studies, is also essential for causal inference modeling to draw 

conclusions, to intervene, and to change policies. In addition to learning regression models, 

environmental scientists should be trained in experimental and quasi-experimental designs, 

as well as essential concepts of causal inference. Although there is a need to address 

causality in environmental epidemiology, additional issues should be tackled. For example, 

before considering causal modeling, environmental scientists should address the issues of 

missing data (e.g., perform multiple imputation of the missing values, sensitivity analyses 

such as tipping point analyses), measurement error, model selection, lost follow-up, time-

varying confounding, multiple testing, and reproducibility. Researchers should also consider 

only models that were predetermined in protocols avoiding the issue of p-value hacking 

during the model selection phase. For decades, environmental epidemiology has focused on 

observational designs, and therefore their findings suffered from the fact that association is 

not causation. Implementing the multistage causal strategy coupled with interdisciplinary 

collaborations will be crucial to address the next century’s challenges in environmental 

epidemiology.
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Gamble: investigator from Exxon Biomedical Sciences (in the United States)

L.A. (Tony) Cox: investigator from Cox Associates (located in the United States)
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Figure 1. 
Major milestones of environmental epidemiology. Photographs courtesy of Google Images, 

Wikipedia, The British Library, University of Oxford, and Wikipedia, respectively (left to 
right).
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Figure 2. 
Example of a directed acyclic graph (DAG) in environmental epidemiology. Figure adapted 

from Beckerman et al. (3). Abbreviations: IHD, ischemic heart disease; PM2.5, particulate 

matter with a diameter of 2.5 μm or less; SES, socioeconomic status.
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