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Abstract

To examine the association between metabolic deregulation and pancreatic cancer, we conducted a 

two-stage case-control targeted metabolomics study using pre-diagnostic sera collected one year 

before diagnosis in the Women’s Health Initiative study. We used the liquid chromatography–mass 

spectrometry to quantitate 470 metabolites in 30 matched case/control pairs. From 180 detectable 

metabolites, we selected 14 metabolites to be validated in additional 18 matched case/control 

pairs. We used the paired t-test to compare the concentrations of each metabolite between cases 
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and controls and used the log fold change (FC) to indicate the magnitude of difference. False 

discovery rate (FDR) adjusted q-value < 0.25 was indicated statistically significant. Logistic 

regression model and receiver operating characteristic (ROC) curve analysis were used to evaluate 

the clinical utility of the metabolites. Among 30 case/control pairs, 1-methyl-L-tryptophan 

(L-1MT) was significantly lower in the cases than in the controls (log2 FC= − 0.35; q-value = 

0.03). The Area under the ROC curve was 0.83 in the discrimination analysis based on the levels 

of L-1MT, acadesine, and aspartic acid. None of the metabolites was validated in additional 

independent 18 case/control pairs. No significant association was found between the examined 

metabolites and undiagnosed pancreatic cancer.
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INTRODUCTION

Pancreatic cancer is currently the 3rd leading cause of cancer-related deaths in the United 

States and is projected to become the second most deadly cancer by 2030 (1, 2). More than 

80% of patients with pancreatic cancer present with locally advanced or metastatic disease at 

diagnosis when a surgical resection is no longer a curative option. Consequently, pancreatic 

cancer has the lowest five-year all-cause survival rate among all malignancies (2). Early 

diagnosis of pancreatic cancer holds the promise for improving the prognosis of this disease. 

However, carbohydrate antigen 19-9 (CA19-9), the only US-FDA approved blood-based 

biomarker, is a poor screening tool because the antigen is non-specific (3). The sensitivity 

and specificity of the imaging modalities are also inappropriate to detect a tumor less than 2 

cm (4). With the alarming increasing trend of pancreatic cancer incidence (1), there is an 

urgent need for non-invasive early diagnostic markers for pancreatic cancer.

Metabolomics is a powerful non-invasive technology capable of detecting low-molecular-

weight metabolites in cells, tissues, and biofluids in combination with advanced 

bioinformatics approaches. Cancer (5), including pancreatic cancer (6), is known to have 

altered cellular metabolism (7). The subtle chemical change due to perturbed metabolism in 

cancer development can be detected by the sensitive gas chromatography or liquid 

chromatography-mass spectrometry (GC-MS or LC-MS) or nuclear magnetic resonance 

(NMR) (8). Prior studies have examined the metabolites using pancreatic tumor and normal 

adjacent tissues (9), urine (10, 11), serum (12–17), and plasma (18, 19) using MS or NMR. 

These studies concluded that the metabolites involved in the metabolism of the lipid, 

glucose, amino acid, choline, DNA synthesis, small organic acids, or muscle protein 

breakdown can discriminate pancreatic cancer from healthy controls and chronic pancreatitis 

(20, 21). However, whether the altered metabolite profile may indicate a subclinical early-

stage disease has not been well investigated.

Several studies have used the metabolomics tool in pancreatic cancer early detection (22). 

One study found that the metabolite profiles are distinct among 50 pancreatic cancer 

patients, 50 diabetic patients, and 50 healthy controls (23). In another study of 30 pancreatic 
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cancer patients and 30 patients with new-onset diabetes, N-succinyl-L-diaminopimelic acid 

and PE (18:2) were shown to have a high sensitivity (93.3%) and specificity (93.1%) in 

discriminating pancreatic cancer (24). The other study found that the metabolites in 

combination with CA19-9 can improve early detection rate of pancreatic cancer (25). 

However, most of the prior studies used blood collected after a pancreatic cancer diagnosis. 

It is unknown whether the observed metabolite changes were due to treatment or other post-

diagnostic manipulations.

In this pilot study, we evaluated the metabolite change in pre-diagnostic sera of women who 

developed pancreatic cancer in the Women’s Health Initiative (WHI) Study. We 

hypothesized that a targeted metabolomics discovery platform would yield a panel of 

metabolites that can discriminate undiagnosed pancreatic cancers from non-cancer controls.

MATERIAL AND METHODS

Study population

We conducted a nested case-control study within the WHI Study. Details of the WHI Study 

(NCT00000611) design were previously published (26). Briefly, 161,808 postmenopausal 

women aged 50-79 years were recruited from 40 clinical centers throughout the United 

States between September 1993 and December 1998. A total of 68,132 women in the WHI 

clinical trials (CT) were randomized to three overlapping components: a hormone therapy 

(HT) trial, a dietary modification (DM) trial, and a calcium and vitamin D supplementation 

(CaD) trial. A total of 93,676 women were included in an Observational Study (WHI-OS). 

At baseline, blood samples were obtained following an overnight fast and stored at −70°C. 

We used serum sample that has never gone through a freeze-thaw cycle.

Study design

We performed a targeted profiling of 470 metabolites using the LC-MS in a two-stage nested 

case-control study. Both cases and controls had no cancer history at baseline and controls 

did not develop any cancer during follow-up. We identified 55 cases who were diagnosed 

during the first year of follow-up and 197,000 eligible controls. The controls were 

individually matched to the cases in a 1:1 ratio according to age (± 1 year), race/ethnicity, 

month of blood draw (± 12), time of blood draw (± 3 hours), season of blood draw 

(identical), diabetes status (yes or no), trial assignment, and body mass index (BMI) (± 5 

kg/m2). Seven cases were not included in the study because no adequate controls could be 

identified. We, therefore, included 48 adjudicated cases with pancreatic cancer from OS and 

the placebo group of HT and CaD trials and 48 matched controls in this study. The matched 

pairs were randomly assigned to the discovery set (n = 30 pairs) or the validation set (n = 18 

pairs).

The present research was approved by the WHI and the combined Institutional Review 

Board of Baylor College of Medicine (BCM) and Michael E. DeBakey VA Medical Center. 

The research was conducted in accordance with the US. Common Rule. At baseline, all 

participants in the WHI study provided written informed consent for research.
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Targeted metabolomics research

The Metabolomics core lab at BCM has established a validated pipeline for a targeted 

measurement of 433 metabolites that are involved in the metabolism of lipid, carbohydrate, 

nucleotide, amino acid, energy, CoA & vitamin, secondary compounds, xenobiotics, 

tricarboxylic acid, and urea cycles (27). In addition, we included 37 metabolites that had 

been associated with pancreatic cancer in previous studies (e.g., taurocholic acid, xylitol, 

and trimethylamine-N-Oxide) (13). Therefore, we included 470 metabolites in this study 

(Supplemental material 1).

Reagents

High-performance liquid chromatography (HPLC) grade acetonitrile, methanol, and water 

were purchased from Burdick & Jackson (Morristown, NJ). The mass spectrometry grade 

formic acid and internal standards, including N-acetyl L-aspartic acid-d3, L-

tryptophan-15N2, sarcosine-d3, glutamic acid-d5, thymine-d4, gibberellic acid, trans-zeatin, 

jasmonic acid, 15N anthranilic acid, and testosterone-d3, were purchased from Sigma-

Aldrich (St.Louis, MO). The ESI-L Low Concentration Tuning Mix (Agilent Technologies, 

Santa Clara, CA) was used to calibrate the mass spectrometer.

Serum preparation

Sample preparation was performed on ice. Enrichment of metabolites was achieved using a 

series of organic and aqueous extractions. Briefly, 50 μl of serum was sonicated in 1:4 ice 

cold water:methanol mixture containing an equimolar mixture of 10 standard compounds. 

This was followed by the sequential addition of ice-cold chloroform and water in 3:1 ratio 

and the separation of the organic (methanol and chloroform) and aqueous solvents 

(water:methanol:chloroform:water ratio 1:4:3:1). The aqueous extract was deproteinized 

using a 3 kDa molecular filter (Amicon Ultracel −3K Membrane, Millipore Corporation, 

Billerica, MA) and the filtrate containing metabolites was dried under vacuum (Genevac 

EZ-2plus, Gardiner, NY). The dried extract was resuspended in the identical volume of 

injection solvent composed of water:methanol (50:50).

Metabolomics experiment

A total of 10 μl of suspended samples was injected and analyzed using a 6495-triple 

quadrupole mass spectrometer coupled to a 1290 system (Agilent Technologies, Santa Clara, 

CA) via multiple reaction monitoring (MRM) of a total of 470 endogenous water-soluble 

metabolites. Source parameters were as follows: gas temperature was 250°C; gas flow was 

14 L/min; Nebulizer pressure was 20 psi (Pounds per square inch); sheath gas temperature 

was 350°C; sheath gas flow was 12 L/min; capillary was 3000 V positive and 3000 V 

negative; Nozzle voltage was 1500 V positive and 1500 V negative. Approximately 8–11 

data points were acquired per detected metabolite.

We used three chromatography methods to separate all the metabolites: Method 1: XBridge 

Amide columns (Waters, Milford, MA); mobile phase, A: 0.1% formic acid in HPLC grade 

water, B: 0.1% formic acid in HPLC grade acetonitrile. ESI positive mode. Method 2: Luna 

3μ NH2 column 100A (Phenomenex, Torrance, CA); mobile phase, A: 20 mM ammonium 

acetate in HPLC grade water pH 9, B: HPLC grade acetonitrile. ESI positive mode. Method 
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3: Luna 3μ NH2 column 100A (Phenomenex); mobile phase, A: 20 mM ammonium acetate 

in HPLC grade water pH 9, B: HPLC grade acetonitrile. ESI negative mode. The gradients 

were run starting from 85% buffer B (HPLC grade acetonitrile or 0.1% formic acid in 

acetonitrile) to 35% buffer B for 0–3.5 minutes; 35% buffer B to 2% buffer B for 3.5–11.5 

minutes; 2% buffer B was held for 11.5–16.5 minutes; 2% buffer B to 85% buffer B for 

16.5–17.5 minutes; 85% buffer B was held for 7 minutes to re-equilibrate the column. The 

peak area for each metabolite was integrated using the MassHunter Workstation Software 

Quantitative Analysis Version B.06.00 (Agilent Technologies, Santa Clara, CA).

Quality control measures

The samples were run in random order and in triplicate. The matched case and control pairs 

were assayed consecutively in the same batch. The laboratory personnel performed blind 

sample testing. To check instrument response and exaction efficiency, two types of 

experiment controls were used. First, 20 μl of a matrix-free internal standard was 

reconstituted in 100 μl of methanol: water (50:50) and was analyzed by MRM. In addition, 

the process of metabolite extraction from serum was monitored using the pooled liver 

samples and spiked internal standards. Briefly, 100 mg of pooled liver lysate was extracted 

in tandem with serum using the buffer containing spiked internal standards. Once the 

metabolite of interest was identified, it was subjected to additional confirmation using 

selected reaction monitoring (SRM). The matrix-free internal standards and liver samples 

were analyzed twice daily. We included 3% blinded WHI samples in the study as the 

technical control.

Metabolomics data analysis

The metabolites were identified from the preprocessed mass spectral data using the 

METLIN (Agilent Technologies, Santa Clara, CA) according to both mass and retention 

time. They were further processed via an in-house biostatistics pipeline to determine the 

metabolite levels and define differential compounds (28). The log2 transformed data were 

normalized using the internal standards (L-zeatin for water positive and luna positive; L-

zeatin and gibberellic acid for luna negative). The log2 transformed data were centered by 

the median and scaled by its inter-quartile range. Following the normalization, the paired t-

test was used to detect the significantly differentially present metabolites between cases and 

controls. In the discovery stage, we used the less stringent unadjusted P value < 0.10 in 

combination with the area under the receiver operating characteristics (ROC) curve (AUC) 

to identify the candidate metabolites to be validated. In the validation stage, the false 

discovery rate (FDR) corrected q value < 0.25 was considered statistically significant19.

The normalized data was further scaled for generation of the heatmap and boxplots for each 

comparison. We used the unsupervised principal component analysis (PCA) multivariate 

pattern recognition technique to discriminate cases from controls where each axis value 

explained the percentage of total variance contributed by each principal component.

Statistical construction of a diagnostic model

We used the unconditional logistic regression model to examine the diagnostic value of the 

metabolites identified from the discovery stage. The sensitivity and specificity of each and 
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combined metabolite were evaluated using the ROC curve analysis. Age, ethnicity, smoking 

status, and BMI were included in the multivariable logistic regression model. The statistical 

analyses were conducted using R for Windows and SAS 9.4 (SAS Inc., Cary, NC). All the 

tests were two-sided.

Results

Study participants

Table 1 presents the baseline characteristics of the participants. Participants in the validation 

stage were more likely to be non-Hispanic white and never smokers, and have a lower BMI. 

A total of 42% cases had early or regionally localized cancers. The blinded quality control 

samples showed excellent lab performance with respect to the batch effect (Supplemental 

figure 1).

Targeted metabolomics study – the discovery stage

Among 470 metabolites, the signal intensity of 290 metabolites was below the limit of 

detection (LOD) or had a low signal to noise ratio (< 10). The list of 180 metabolites that 

were successfully quantified in the discovery stage is shown in Supplemental table 1. In the 

discovery stage, 19 metabolites were differentially abundant in cases and in controls (P < 

0.10) (Table 2). The difference in 1-methyl-L-tryptophan (L-1 MT, Aldrich: 447439), 

glycerol-3-phosphate, and acadesine remained statistically significant after adjustment for 

multiple comparisons (FDR q < 0.25) (Figure 1).

Targeted metabolomics study - the validation stage

Twelve out of 19 metabolites were further validated in 18 case/control pairs (Table 2, Figure 

2). We included trimethylamine N-oxide (TMAO) in the validation stage because this gut 

microbiome derived metabolite has been shown to play a key role in chronic inflammatory 

diseases (29). We included aspartic acid in the validation stage because of the high AUC for 

this compound (AUC > 50%). However, after the FDR adjustment for multiple comparisons, 

none of the metabolites was significantly differentially present in cases versus controls. The 

direction of change for fucose and trehalose-6-phosphate was opposite in two stages. The 

PCA did not detect a distinct pattern between cases and controls (Supplemental figures 2 and 

3).

Diagnostic performance

In the discovery stage, the metabolites nicotinamide, acadesine, aspartic acid, L-1MT, and 

ketoglutarate were significantly associated with pancreatic cancer in a univariate 

unconditional logistic regression model (P value < 0.05). When including these metabolites 

and age, ethnicity, smoking status and BMI in the multivariable models, only L-1MT 

remained statistically significant (P = 0.004). The best diagnostic model included acadesine, 

aspartic acid, and L-1MT (area under the ROC curve = 0.83) (Figure 3). The validation stage 

did not show significant differences in metabolites between cases and controls.
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DISCUSSION

In this two-stage targeted metabolomics case-control study in the WHI Study, the abundance 

of metabolite did not differ significantly in cases with pancreatic cancer and in controls. 

Although we found the depletion of L-1MT in near-diagnostic blood of 30 pancreatic cancer 

cases in the discovery study, this finding was not validated in an independent study. Larger 

studies are required to further evaluate the value of metabolomics biomarkers in patient 

stratification or early detection of pancreatic cancer.

Several studies have investigated amino acid metabolites in pancreatic cancer (14, 30, 31). 

Like our study, one cross-sectional study of 360 patients and 8372 controls found that 

patients had significantly lower plasma levels of tryptophan and histidine but higher levels of 

serine than controls (31). However, another study of 32 cases and 32 controls showed the 

higher levels of urinary tryptophan and threonine in cases than in controls (10). Tryptophan 

metabolism has been increasingly recognized as a microenvironmental factor that suppresses 

antitumor responses in pancreatic cancer (32). The degradation of L-tryptophan to 

kynurenine in tumor cells induced by indoleamine-(2,3)-dioxygenase (IDO) is proposed as a 

mechanism of local immune suppression leading to tumor immune escape (33). A few 

metabolomics studies support the dysregulation of tryptophan metabolism in pancreatic 

cancer. One study found a panel of six metabolites including 5-hydroxytryptophan can 

distinguish benign pancreatic diseases from early-stage cancer with high accuracy (34). 

Another study showed that a metabolite panel that includes decreased indole-derivatives 

significantly increased the discriminating capacity of plasma protein biomarkers (35). In the 

present study, we found that the serum levels of indole showed the largest reduction in cases 

in comparison to controls. Indole is produced from dietary tryptophan by bacteria that 

express tryptophanase (36). It remains to be determined whether impaired tryptophan 

metabolism by both host and bacteria can serve as a surrogate marker for 

immunosuppression in patient stratification.

The diagnostic value of metabolites has been evaluated using post-diagnostic blood (22, 30, 

37, 38). Three studies showed > 0.85 AUC when the metabolites were used in combination 

with CA19-9 (31, 39, 40). The diagnostic performance of any single metabolite in our study 

was encouraging with the sensitivity ranged from 63% to 80%. The highest AUC was 

achieved with the combination of L-1MT, acadesine, and aspartic acid in the discovery 

study. Future study is needed to test the metabolite changes in longitudinally collected 

samples yearly before cancer diagnosis to identify early detection markers.

A recent cell-line study using metabolite profiling in concert with gene expression identified 

three distinct metabolic subtypes of pancreatic cancer, including reduced proliferative 

capacity, glycolysis, and lipogenic (41). However, the clinical studies on circulating 

metabolite biomarkers have less agreement. For example, we found non-significantly higher 

levels of TMAO in cases than in controls, whereas an earlier study found the opposite (15). 

Our study also could not validate the markers that were identified by prior studies, including 

glutamate, choline, 1,5-anhydro-d-glucitol, betaine, and methyl-guanidine (13, 38). One 

meta-analysis research tested 18 plasma metabolites (3-hydroxybutyrate, alanine, 

asparagine, choline, glutamate, histidine, isoleucine, lactate, leucine, lysine, lysolPC (18:2), 
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methionine, palmitic acid, threonine, tyrosine, valine, and phenylalanine) in 59 pancreatic 

cancer patients, 48 normal controls, 66 patients with colorectal cancer, and 19 with type 2 

diabetes. The downregulation of alanine, threonine, and tyrosine in pancreatic cancer was 

consistently shown in all published studies (22). These three amino acids were non-

significantly downregulated in cases in our research.

Three prospective studies have conducted the metabolomics research using pre-diagnostic 

blood. One study of 234 pancreatic cancer cases in China found that glycerophospholipids 

were dysregulated in pancreatic cancer (42). In the same line, although not validated, we 

found that the levels of glycerol-3-phosphate were significantly lower in cases than in 

controls (FDR q < 0.25). The other two studies, one in Japanese (43) and one in European 

descendants (44), showed that the levels of branched-chain amino acid including isoleucine, 

leucine, and valine were significantly higher in cases than in controls. However, we did not 

observe this association.

Our study had multiple uniqueness and strengths. Unlike most previous studies, we used 

near-diagnostic fasting blood and the cases and controls were strictly individually matched 

by factors that may confound the observations, such as BMI and diabetes. These stringent 

criteria minimized the non-specific inter-individual variation of metabolites and maximized 

the signal specific to pancreatic cancer. In addition to our rigorous study design, the blinded 

QC samples showed a highly reproducible performance across different batches. We used 

the targeted approach that allowed for an absolute quantification. However, it is likely that 

untested metabolites could have been missed. The non-targeted approach should be 

complemented with the targeted approach for a comprehensive discovery of biomarker for 

early detection.

Our study was a pilot study by nature. None of the metabolites was validated in the small 

validation study. Although the study participants were randomly assigned to the discovery or 

the validation stage, we found the distribution of ethnicity and BMI differed by the study 

stage. This imbalance also likely contributed to an unsuccessful validation. Only 180 out of 

470 targeted metabolites were reportedly detected in this project. For some of the low-

abundant compounds, the signal was below LOD probably due to the matrix effect, sample 

preparation method, or small sample volume (45). The normal phase chromatography 

columns used in this study can detect most metabolites, but we might have missed some 

non-polar metabolites if the experimental condition was not optimized. Some compounds 

with the large fold change were not promoted to validation, such as indole and 

hypoxanthine. Lastly, we did not quantitate CA19-9 as a gold standard for differentiating 

pancreatic cancer cases from controls.

In summary, we found no significant association between examined metabolites and 

undiagnosed pancreatic cancer. Additional studies are required to provide more insight into 

the translational value of metabolomics in managing pancreatic cancer in combination with 

other omics data and CA19-9 (46). Standardized and optimized protocol for sample 

collection, processing, measurement, and bioinformatics should be developed and 

incorporated in future research.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Heatmap of 19 metabolites in cases and controls in the discovery stage.
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Figure 2. 
Heatmap of 14 metabolites in cases and controls in the validation stage.
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Figure 3. 
ROC curve of differentiation of cases and controls using acadesine, aspartic acid and 

L-1MT. The AUC was 0.83.
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Table 1.

Baseline characteristics of cases and controls by study stages

Characteristics Discovery stage Validation stage

Cases n=30 Controls n=30 Cases n=18 Controls n=18

Age (year) 68.9 (6.6) 68.9 (6.7) 68.5 (7.3) 68.1 (7.4)

Race, n (%)

 Non-Hispanic White 23 (76.7) 23 (76.7) 17 (94.4) 17 (94.4)

 Black or African-American 5 (16.7) 5 (16.7) 1 (5.6) 1 (5.6)

 Hispanic/Latino 1 (3.3) 1 (3.3) 0 0

 Other 1 (3.3) 1 (3.3) 0 0

BMI (kg/m2) 28.9 (5.6) 28.3 (5.6) 25.7 (4.1) 25.8 (3.9)

Smoking status, n (%)

 Current 1 (3.3) 3 (10.0) 3 (16.7) 0

 Never 13 (43.4) 10 (33.3) 9 (50.0) 11 (61.1)

 Past 15 (50.0) 16 (53.4) 6 (33.3) 6 (33.3)

 Missing 1 (3.3) 1 (3.3) 0 1 (5.6)

Cancer stage, n (%)

 Distant 9 (30.0) 0 7 (38.9) 0

 Localized 2 (6.7) 0 0 0

 Regional 9 (30.0) 0 9 (50.0) 0

 Missing 10 (33.3) 0 2 (11.1) 0

Medical history (yes, n (%))

 Hypertension 14(46.7) 13 (44.8) 6 (33.3) 3 (16.7)

 Type 2 diabetes 1 (3.3) 1 (3.3) 2 (11.1) 2 (11.1)

 Hormone therapy use 14 (46.7) 15 (50.0) 4 (22.2) 3 (16.7)

 Ever used oral contraceptives 10 (62.5) 6 (20.0) 3 (16.7) 6 (33.3)
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