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Abstract

Purpose: High tissue pressure prevents chemotherapeutics from reaching the core of pancreatic 

tumors. Therefore, targeted therapies have been developed to reduce this pressure. While point 

probes have shown the effectiveness of these pressure-reducing therapies via single location 

estimates, ultrasound elastography is now widely available as an imaging technique to provide 

real-time spatial maps of shear modulus (tissue stiffness). However, the relationship between shear 

modulus and the underlying tumor microenvironmental causes has not been investigated. In this 

work, elastography was used to investigate how shear modulus influences drug delivery in situ, 

and how it correlates with collagen density, hyaluronic acid content, and patent vessel density, 

features of the tumor microenvironment known to influence tissue pressure.

Experimental Design: Intravenous injection of verteporfin, an approved human fluorescent 

drug, was used in two pancreatic cancer xenograft models (AsPC1 (n=25) and BxPC3 (n=25)).

Results: Fluorescence intensity was higher in AsPC-1 tumors than in BxPC-3 tumors (p < 

0.0001). Comparing drug uptake images and shear wave elastographic images with histological 

images revealed that: (1) drug delivery and shear modulus were inversely related, (2) shear 

modulus increased linearly with increasing collagen density, and (3) shear modulus was 

marginally correlated with the local assessment of hyaluronic acid content.

Conclusions: These results demonstrate that elastography could guide targeted therapy and/or 

identify patients with highly elevated tissue pressure.
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Introduction

High tissue pressures prevent effective treatment of pancreatic ductal adenocarcinoma 

(PDA), the most common form of pancreatic cancer, which is a lethal disease with a 5-year 

survival rate of less than 7 % (1). Currently, surgical resection is the most effective 

treatment, but only 20% of patients have a resectable tumor at diagnosis (2,3). For patients 

with borderline resectable tumors, neoadjuvant chemotherapy can sometimes enable 

downstaging of disease for surgical resection (4,5), but high tissue pressures (on the order of 

10–100 mmHg) can prevent chemotherapeutic agents from reaching the tumor core (6–8). 

Leaky vasculature, high stromal density, and high hyaluronic acid content all increase tissue 

pressure heterogeneously (9–12). Consequently, several groups are now developing targeted 

therapies to reduce pressure. These therapies include the ablation of hyaluronic acid with 

PEGPH20 (6,13–15), losartan (16–18), and stromal targeting (19–21). PEGPH20 in 

combination with Gemcitabine is currently undergoing Phase I/II clinical trials. Early results 

indicate that patients with metastatic PDA suffered no adverse reaction when PEGPH20 was 

administered in combination with Gemcitabine (15,22). However, choosing the most 

appropriate pressure-reducing therapies is difficult because no technique can measure tissue 

pressure in vivo.

Researchers have used invasive pressure catheters (23) to evaluate the effectiveness of 

different pressure-reducing therapies either with animal models or, to a lesser extent, in the 

clinic. Current catheters measure tissue pressure by using either the piezoelectric effect or 

the wick-in-needle method. Piezoelectric catheters measure the stress (solid stress and 

interstitial fluid pressure) exerted on the active element at the probe’s insertion point, while 

catheters based on the wick-in-needle method measure the interstitial fluid pressure 

transmitted through saline solution within the catheter. Provenzano and colleagues (6,24) 

used a piezoelectric catheter to measure the interstitial fluid pressure within murine 

pancreatic tumors and to demonstrate that depleting the tumor microenvironment of 

hyaluronic acid reduces interstitial fluid pressure. Researchers have also used a wick-in-

needle pressure catheter to predict the outcome of patients with cervical cancer (25). Despite 

these important preclinical and clinical results, the invasive nature of pressure catheters and 

their inability to measure the spatial variation of tissue pressure (23,26) have limited their 

clinical use. Elastography could overcome these limitations by providing a surrogate 

measure to tissue pressure.

Elastography uses a three-step process to visualizes shear modulus, an intrinsic property of 

soft tissues that is defined as the ratio of shear stress to shear strain. First, motion is induced 

within the tissue using either an external or internal mechanical stimulation. Second, 

ultrasound measures the spatial variation of the mechanical response. Third, shear modulus 

is inferred by applying either a simplified or continuum mechanical model to the measured 

mechanical response (27). Although elastography cannot measure tissue pressure directly, 

the steep pressure gradient at the tumor margin exerts mechanical stress on the extracellular 

matrix (ECM) and the stromal cells, which in turn increases shear modulus (28). Our long-

term goal is to establish that shear modulus distribution measured non-invasively and in real-

time with elastography is a good alternative to tissue pressure measurements.
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The goal of this work was to use elastography, mapping point by point within spatially-

registered images, to assess (a) the relationship between shear modulus and drug delivery in 

PDA, and (b) the relationship between shear modulus and patent vessel density, hyaluronic 

acid content, and collagen density. To achieve these goals, we used mice bearing two very 

different phenotypic PDA tumor models, AsPC-1 (n=25) and BxPC-3 (n=25), imaging drug 

uptake from verteporfin, a fluorescent drug FDA-approved for human use, and then mapping 

the same tumors for shear modulus. AsPC-1 tumors grow much faster and have higher 

chemotherapy drug uptake (29) than their BxPC-3 counterparts. Both groups of tumors were 

both derived from human PDA. Specifically, we obtained BxPC-3 cells from the primary 

tumor and AsPC-1 cells from ascites of a metastatic site.

Materials and Methods

This section describes the tumor models, imaging protocols (shear wave elasticity imaging 

and fluorescence), and histological and statistical analysis used in this study. The Animal 

Care and Use Committee of the University of Rochester and Dartmouth College approved 

all animal protocols, and the procedures used here followed these approved protocols 

(#101759/2016–024).

Tumor Models

A total of 25 AsPC-1 (ATCC, Cat#CRL-1682) and 25 BxPC-3 (ATCC, Cat#CRL-1687) 

tumors were grown orthotopically in the pancreas of female nude mice (4 months old, 225g, 

Athymic nude mice Charles Rivers Laboratories, Wilmington, MA, USA). We injected 106 

tumor cells in Matrigel™ (BD Biosciences, San Jose, California, USA) and 50% media 

orthotopically in the pancreas of each animal. All tumors were allowed to grow until their 

volume was between 100–200mm3. AsPC-1 tumors reached the desired volume range 

within 4 to 6 weeks; however, BxPC-3 tumors took 10 weeks to reach the same volume 

(30,31).

Shear wave elasticity imaging (SWEI)

We used the single-track-location shear wave elastographic imaging (STL-SWEI) method to 

visualizes the shear modulus distribution of excised tumors, which we recently implemented 

on a Vantage 64 ultrasound scanner (Verasonics Inc., Kirkland, WA, USA) equipped with an 

L7–4 (Phillips Healthcare, Andover, MA, USA) linear transducer array (32). During STL-

SWEI, we used ultrasound beams to both induce and track shear wave propagation in 

tissues. We estimated the speed of shear waves produced with a pair of laterally spaced push 

beams at a fixed location with a single tracking beam. To create an image, we transmit 

several pairs of push beams within the tissue. We then combined local tissue density (ρ) with 

shear wave speed (SWS) to get regional shear modulus estimates (μ = ρ × SWS2). All 

tumors were surgically removed and encased in a 216mm3 gelatin block as previously 

described (33) to minimize the impact of respiration and cardiac motion on shear waves 

estimates (see Fig. S1a–b). Each gelatin block consisted of 10% by weight porcine skin 

gelatin (300 bloom, Type A, Sigma-Aldrich Corporation, St. Louis, MO, USA), 1% by 

weight corn starch (Sigma-Aldrich Corporation, St. Louis, MO, USA), and 89% by weight 

high purity water (18 MΩ). All SWEI was performed using 5MHz pushing and tracking 
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beams. The focal lengths of both beams (pushing and tracking) were placed at the center of 

each tumor, which corresponded to scan depths ranging from 20–30 mm depending on the 

tumor volume. A 400 μs push pulse was used to induce shear waves in the gelatin-

encapsulated tumors, at a pulse repetition frequency of 7 kHz. For each transmitted pulse, 

we acquired multiple tracking A-lines (a lateral line density of ≈4 beams/mm) from a 2 cm 

wide region-of-interest. For each cancer, shear wave elastographic images were acquired 

from multiple cross-sections (n=10)—corresponding to slice intervals of ≈ 2mm (see Fig. 

S2). To minimize registration errors between the shear wave and histological images, the 

central scan plane was marked as illustrated in Fig. S1c–f.

Fluorescence imaging

To assess how shear modulus relates to drug delivery, an FDA-proved fluorescent drug was 

used (1 mg/kg verteporfin, MW 719 DA; Sigma-Aldrich, St. Louis, MO, USA) for 

intravenous injection into each mouse via the tail vein, one hour before sacrifice (34–36). To 

determine the relationship between blood vessel density and drug uptake, 1 mg/kg of Lectin 

(Vector Laboratories, CAT# FL-1211, Burlingame, CA, USA), a fluorescence stain, was 

injected intravenously into all tumor-bearing mice one minute prior to sacrifice. After tissue 

prep and sectioning, slices of tissue were scanned on a flatbed scanner (GE Typhoon 9410, 

GE Healthcare, Piscataway, NJ, USA) and a PerkinElmer Vectra 3.0 fluorescence slide 

scanner (Waltham, MA, USA) to acquire verteporfin and Lectin fluorescence images.

Histological Analysis

To quantify collagen density, patent vessel density, and fluorescence uptake, quantitative 

histology was calculated from all excised tumors. All tumors were formalin-fixed and 

embedded in paraffin for thin sectioning (2 μm) and stained with Masson’s trichrome (MT) 

stain, hyaluronic acid binding protein (HABP-1) (37), and Lectin, after imaging. The 

fluorescence slide scanner was used to image each section, and a three-step color 

segmentation process (see Fig. S3) was implemented in MATLAB (v2016b, The Mathworks 

Inc., Natick, MA, USA) to estimate collagen density from the Masson’s trichrome stained 

images (26). Collagen density (%) was calculated by dividing the number of blue collagen 

pixels by the total number of pixels in the tumor. We used a similar analysis to quantify 

hyaluronic acid density (%).

A global thresholding algorithm was used to isolate pixels stained with Lectin fluorescence 

images, and so the patent vessel density (%) was estimated by dividing the number of 

Lectin-stained pixels by the total number of pixels in the tumor.

Verteporfin perfusion was estimated from the fluorescence maps, by defining regions of 

interest (ROI) within the fluorescence images and computing the mean fluorescence 

intensities within these.

Statistical Analysis

We used a linear regression analysis to determine the correlation between the measured 

biomarkers (e.g., collagen density, patient vessel density, hyaluronic acid content, drug 

uptake, and shear modulus). Statistical significance was determined from the differences in 
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measured biomarkers of each tumor type using a Welch’s t-test. All statistical analysis was 

performed with Prism v7.0 for Mac (GraphPad, La Jolla, CA, USA).

Results

Drug uptake is lower in stiffer tumors than softer ones

To understand how shear modulus affects drug uptake, the fluorescence intensity of 

verteporfin was measured and compared to the mean shear modulus of the two groups of 

excised tumors (AsPC-1 and BxPC-3). We performed a quantitative analysis of Masson’s 

trichrome and Lectin-stained histological images to quantify differences in collagen and 

patent vessel density, factors known to impact drug delivery and tissue pressure. Figure 1 

shows box plots of fluorescence intensity (verteporfin uptake), shear modulus, collagen 

density, and patent vessel density for the two groups of tumors. Fluorescence intensity in 

AsPC-1 was three times higher than that measured in BxPC-3 tumors (Fig. 1(a)). The mean 

shear modulus of AsPC-1 tumors was 36.07 kPa lower than their counterparts (Fig. 1(b)). 

Univariate analysis of variance (ANOVA) revealed that this difference was significant (p 

=0.0008; F-number= 11.87). ANOVA also revealed a within-group variance of 7.46 kPa and 

7.35 kPa for AsPC-1 and BxPC-3 tumors, respectively. The observed difference in the shear 

modulus reflects differences in the total tissue pressure (solid stress and interstitial fluid 

pressure). The observed differences in shear modulus and fluorescence intensity were 

statistically significant (p <0.0001 and p < 0.001). BxPC-3 tumors had higher collagen 

density (Fig. 1(c) and Fig. 2). AsPC-1 tumors had higher patent vessel density than their 

BxPC-3 counterparts (Fig. 1(d)).

Patent vessel density is linearly related to drug delivery and inverse related to shear 
modulus

To understand the relationship between patent vessel density to both drug uptake and shear 

modulus, we assessed the mean properties (shear modulus, patent vessel density, and 

fluorescence intensity) measured for each tumor. This analysis revealed that patent vessel 

density and verteporfin uptake were linearly related (Fig. 3(a)). Additionally, there was a 

strong inverse correlation between patent vessel density and shear modulus (Fig. 3(b)). This 

suggests that the high shear modulus of the extracellular matrix (ECM), which compresses 

tumor vasculature, is the primary mechanism that impedes drug delivery.

Shear modulus and drug delivery are inversely related

Figure 4 (a-d) shows representative shear modulus elastograms and verteporfin uptake maps 

obtained from AsPC-1 and BxPC-3 tumors. For both tumor groups, shear modulus was 

heterogeneously distributed, which is consistent with our previous reported results (33). 

Fluorescence intensity was also heterogeneously distributed, which suggests that drug 

uptake in the tumors varied spatially (Fig. 4 (c) and (d)). Localized regions of high 

fluorescence intensity corresponding to localized region of low shear modulus; whereas, 

regions with low fluorescence intensities corresponding to high shear modulus. Further 

analysis revealed that shear modulus and verteporfin fluorescence intensity were inversely 

related (Fig. 4(e)). The fluorescence intensities of AsPC-1 tumors were consistently higher 
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than those obtained from BxPC-3 tumors—a trend that was consistent with our previous 

study performed with a pressure probe (26).

Hyaluronic acid density is weakly associated with shear modulus

The pancreatic cancer tumor microenvironment often contains high levels of hyaluronic acid 

(HA), which increases interstitial fluid pressure (9–12,38). For both groups of tumors, HA 

density was lower than collagen density (Fig. 5 (b) and (c)) but was distributed 

heterogeneously throughout the tumors. Global assessment of HA density revealed no 

significant difference in HA between the two groups of tumors or any correlation between 

HA density and shear modulus (Fig. 5(e)). Localized assessment of the tumors (identifying 

areas of different HA density on the HABP1-stained images and relating these to the 

corresponding areas in registered shear modulus elastograms) revealed a weak correlation 

between HA density and shear modulus (Fig 5(f)).

Discussion

In this work, imaging of elastography and drug fluorescence within two xenograft pancreatic 

cancer tumor models (AsPC-1 and BxPC-3) was used to study how the shear modulus 

correlates with drug delivery, patent vessel density, collagen density and HA content. 

AsPC-1 tumors were perfused with more fluorescent verteporfin, than their BxPC-3 

counterparts (Fig. 1(a)) due to differences tissue pressure that were measured indirectly 

using shear modulus (Fig. 1(b)). Solid stress and interstitial fluid pressure both influence 

tissue pressure; therefore, to understand which of these two sources are responsible for the 

observed difference in shear modulus, we measured collagen density and hyaluronic acid 

content of all tumors. The BxPC-3 tumors had higher collagen density than AsPC-1, but 

their hyaluronic acid content was similar. Stiffer tumors were more collagen-rich than softer 

ones (Fig. 2). Drug uptake increased linearly with patent vessel density (Fig. 3) but 

decreased linearly with increasing shear modulus (Fig. 3). Patent vessel density was 

inversely related to shear modulus, suggesting that increasing total tissue pressure may cause 

vessels to collapse and impede drug delivery (Fig. 5).

Clinical trends predict that pancreatic cancer will be the second leading cause of all cancer-

related deaths in the United States (39). Consequently, developing therapies for either 

treating the disease or allowing more patients to qualify for surgery is an area of active 

research (4,5). High tissue pressure can impede the delivery of therapeutic agents and 

encourage tumor progression (40,41). Tissue pressure is difficult to measure with current 

invasive pressure catheter. No imaging technique can measure tissue pressure in vivo today, 

but we have previously demonstrated that shear modulus is a good surrogate. Using a 

modified invasive pressure catheter, it was shown that drug delivery in both AsPC-1 and 

BxPC-3 were inversely related to pressure, which is consistent with Fig. 3. Our current work 

is the first demonstration that shear modulus imaging correlates with drug uptake. 

Specifically, drug delivery is inversely related to shear modulus, and hence tissue pressure. 

This implies that imaging could be used to evaluate how well a given therapy reduces shear 

modulus, and this information could serve as a surrogate for drug penetration.
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Preclinical studies demonstrate that depleting the tumor microenvironment of HA lowers 

interstitial fluid pressure, restores vasculature, and improves permeability to 

chemotherapeutics (42,43). Figure 5(a) demonstrates that globally there is no correlation 

between HA and shear modulus. This would imply that SWEI could prove to be an 

ineffective method for monitoring the efficacy of HA ablation. Although consistent with the 

results reported by (44), it contradicts our previous results that showed that shear modulus 

correlated with HA content. The discrepancy in the current results and our previous results is 

shown in Fig. 5(e) and is due to differences in the analysis in the two reports. Specifically, in 

(33), local analysis of HA and shear modulus was performed, whereas in our current work 

the analysis was performed globally. HA concentrates in localized regions within many 

cancerous tissues. Thus, when HA absorbs water and swells, it exerts pressure on the 

collagen-rich extracellular matrix that produces an equal but opposing force in the localized 

region. The magnitude of the resulting pressure depends on the amount of water absorbed 

and the shear modulus of the ECM (i.e., the higher the shear modulus, the higher the 

localized pressure) as we have previously demonstrated (33). We expect the global stiffness 

of the ECM will increase when the number of HA pockets exceeds a critical value or when 

the localized HA pockets are located in areas of abnormally high collagen density. We 

observed neither of these phenomena when HABP-1 stain histological slides were analyzed; 

therefore, the observation that global estimates of shear modulus and HA density (Fig 5e) 

were not related. Figure 5(f) revealed a weak but significant correlation between the local 

estimates of HA and shear modulus. However, because of differences in the frequency of the 

transducers used (10 MHz vs. 5 MHz), there was higher variability in measured shear 

modulus. Therefore, higher frequency probes and methods such as plane-wave-single-track 

location elastography (32) should prove more useful in monitoring HA ablation with shear 

modulus.

Several groups have proposed the use of radiotherapy (45–47), anti-stromal therapy (19–21), 

and targeting hyaluronic acid (6,13,14) to reduce tissue pressure. Stromal density is 

responsible for high tissue pressure; therefore, we predict that anti-stromal therapy will yield 

the greatest reduction in tissue pressure. We are currently conducting preclinical studies to 

corroborate this expectation. If this proves to be true, this would allow clinical researchers to 

assess the efficacy of anti-stromal therapy without relying on endpoint studies.

The current study has three main limitations. First, all studies were performed with 

immunocompromised animals, therefore it is not clear how the immune system will impact 

the results. Preclinical studies demonstrated that targeting the CCR2/CCR5 chemokines axes 

improves immune response and the efficacy of radiotherapy (48). Irradiated mouse tumors 

are palpably softer than non-irradiated tumors, which suggests that besides increasing 

immune response, combining radiotherapy with CCR2 targeting also reduces total tissue 

pressure in PDA. Second, all analysis was performed on excised samples; therefore, we 

could not study how survival correlates with shear modulus. However, this methodology was 

used in order to obtain highly registered images with histology. Advanced SWEI techniques 

could be used in vivo for assessment of shear modulus in future studies. Third, no control 

group was included in this study. AsPC-1 and BxPC-3 tumors uptake different amounts of 

fluorescence which suggests that there are surrogate reporters for vascular perfusion, and 

hence chemotherapy uptake. Higher fluorescence uptake is known to correlate with higher 
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vascular delivery of systemic agents. Thus, the two tumors present cases for lower and 

higher chemotherapy uptake (29).

In this paper, two xenograft models (AsPC-1 and BxPC-3 with different growth rates) were 

used to show that shear modulus directly influences drug delivery for tumors (known to have 

higher (AsPC-1) and lower (BxPC-3) chemotherapy uptake) and that the pathologically-

measured tumor microenvironment modulates the shear modulus. Although local and global 

estimates of tumor stiffness are dependent on collagen density, this was not necessarily the 

case for hyaluronic acid. Specially, a strong correlation was shown between the local 

estimate of shear modulus and hyaluronic acid content for the two groups for tumors, but 

global estimation showed no such correlation. This suggests that elastography could, in 

principle, monitor local changes in tissue pressure during anti-stromal therapy and 

hyaluronic acid depletion, but monitoring HA depletion could prove more challenging since 

this will require local assessment whose accuracy will depend on the resolution of the 

resulting elastograms.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Statement of translational relevance

Surgical resection has prolonged life of a small percentage of pancreatic cancer patients 

(< 20%). For a subset of patients with borderline resectable tumors, neoadjuvant therapy 

can work to downstage the tumor and enable surgical resection, but for many patients 

high tissue pressure prevents neoadjuvant chemotherapeutics from reaching the tumor 

interior. Although no imaging technique can measure tissue pressure, ultrasound 

elastography can measure shear modulus, an excellent surrogate for tissue pressure. 

Understanding the relationship between shear modulus and features of the tumor 

microenvironment (collagen density, hyaluronic acid content, and patent vessel density) 

known to impact tissue pressure and drug delivery would allow us to understand how 

well elastography can monitor changes in the tumor microenvironment of pancreatic 

patients undergoing systemic therapies.
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Figure 1: 
Box plots of elasticity and histological markers measured for AsPC-1 and BxPC-3 tumors. 

Showing (a) fluorescence intensity of verteporfin, (b) mean shear modulus, (c) collagen 

density, and (d) patent vessel density. **** represents p < 0.0001, *** represents p values 

between 0.0001 to 0.001, and ** represents p values between 0.001 to 0.01.
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Figure 2: 
Representative Masson’s trichrome stained images of AsPC-1 and BxPC-3 tumors 

implanted into the pancreas of nude mice. Showing (a) AsPC-1 tumor and (b) color-

segmented collagen distribution of the AsPC-1 tumor. (c) BxPC-3 tumor with (d) 

corresponding color-segmented collagen distribution. The AsPC-1 tumors in (a) and (b) have 

a collagen density of 5.6 ± 1.4%, in comparison to the collagen density of 12.5 ± 1.1% for 

the BxPC-3 tumor in (c) and (d).
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Figure 3: 
Patent vessel density was compared to (a) calibrated fluorescence intensity and (b) shear 

modulus for both the AsPC-1 and BxPC-3 tumors.
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Figure 4: 
Calibrated fluorescence intensity maps and elastographic imaging obtained from AsPC-1 

and BxPC-3 tumors. Shear modulus overlaid on sonograms for a (a) AsPC-1 tumor and (b) 

BxPC-3 tumor. Calibrated fluorescence intensity maps obtained from the corresponding (c) 

AsPC-1 and (d) BxPC-3 tumors. (e) Fluorescence intensity plotted as a function of tumor 

shear modulus.
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Figure 5: 
Shear modulus overlaid on sonograms for the representative (a) AsPC-1 and (b) BxPC-3 

tumors. (c) and (d) color-segmented hyaluronic acid distributions for the corresponding (c) 

AsPC-1 and (d) BxPC-3 tumors. Box #1 1 had an HA density of 15.6% with a shear 

modulus of 298.525 kPa; Box #2 had an HA density of 7.3% and shear modulus of 139 kPa. 

For the AsPC-1 tumor in (b) and (d), box #1 had an HA density of 9.8% with a shear 

modulus of 162 kPa; box #2 had an HA density of 3.6% and shear modulus of 69 kPa. (e) 

shows a scatter plot of global estimate of shear modulus and HA density calculated from 
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whole tumor slice. (f) show a local analysis of shear modulus and HA distribution shown in 

(c) and (d).
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