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A B S T R A C T

Cardiovascular diseases encompassing atherosclerosis, aortic aneurysms, restenosis, and pulmonary arterial hypertension, remain the leading cause of morbidity and
mortality worldwide. In response to a range of stimuli, the dynamic interplay between biochemical and biomechanical mechanisms affect the behaviour and function
of multiple cell types, driving the development and progression of cardiovascular diseases. Accumulating evidence has highlighted microRNAs (miRs) as significant
regulators and micro-managers of key cellular and molecular pathophysiological processes involved in predominant cardiovascular diseases, including cell mitosis,
motility and viability, lipid metabolism, generation of inflammatory mediators, and dysregulated proteolysis. Human pathological and clinical studies have aimed to
identify select microRNA which may serve as biomarkers of disease and their progression, which are discussed within this review. In addition, I provide compre-
hensive coverage of in vivo investigations elucidating the modulation of distinct microRNA on the pathophysiology of atherosclerosis, abdominal aortic aneurysms,
restenosis, and pulmonary arterial hypertension. Collectively, clinical and animal studies have begun to unravel the complex and often diverse effects microRNAs and
their targets impart during the development of cardiovascular diseases and revealed promising therapeutic strategies through which modulation of microRNA
function may be applied clinically.

1. Introduction

Collectively, the varying forms of cardiovascular disease (CVD)
underlie more deaths worldwide than any other illnesses. The under-
lying process which drives most cardiovascular pathologies is athero-
sclerosis, a chronic inflammatory disease of the arterial wall involving
insudation and retention of lipoproteins at sites of disturbed flow and
accompanying dysfunctional endothelium [1]. Advanced coronary ar-
tery plaques which give rise to angina and myocardial infarction, are
characterised by a lipid-rich/necrotic core associated with focal accu-
mulations of inflammatory cells, particularly lipid-filled macrophages
termed foam cells, which is protected from the flowing blood by a
vascular smooth muscle cell (VSMC)-rich fibrous cap [2]. Ensuing
rupture of an advanced plaque is considered the most common cause of
thrombosis and associated clinical events and is attributed to gradual
thinning of the thrombo-protective fibrous cap through loss of VSMCs
alongside accumulation of highly proteolytic macrophages which can
degrade numerous extracellular matrix proteins [3]. Plaque erosion,
considered to involve loss of endothelial cells over highly stenotic
plaques with accompanying occlusive thrombosis, has recently been
proposed as an additional precursor of clinical events [4], although
consistent and robust evidence of this phenomenon is still required [3].

Meta-analysis studies have shown patients with abdominal aortic

aneurysms (AAA) frequently harbour atherosclerosis [5]. There are also
numerous risk factors that are common to the pathogenesis of both
pathologies including smoking, hypertension, obesity and age [5]. Ge-
netic risk factors are also shared between AAA and atherosclerosis and a
sequence variant on chromosome 9p21 is associated with athero-
sclerosis and aneurysms [6]. Moreover, intimal atherosclerosis is com-
monly present in AAA lesions [7], although the composition is different
compared to coronary and carotid plaques, and medial elastin frag-
mentation is more prevalent [5]. Consequently, AAA is considered a
form of atherosclerosis with subtle differences in aetiology to those
observed in nascent atherosclerosis and is regularly referred to as
‘atherosclerotic aneurysm’ [5,8,9]. Pathological observations suggest
that loss of VSMCs, extracellular matrix remodelling in unison with
medial and adventitial inflammation drive AAA formation and pro-
gression, particularly the transition of small ‘silent’ aortic dilatations to
large clinically relevant AAAs [9].

Current clinical intervention strategies to alleviate the consequences
of atherosclerotic plaque rupture within coronary arteries includes in-
travascular stent deployment or coronary artery bypass grafting.
However, both interventions result in vascular injury and are associated
with recurring clinical presentation requiring reintervention, due to a
process known as restenosis. Restenosis involves excessive medial
VSMC proliferation and accompanying migration into the intimal
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portion of the stented artery or bypass graft (usually saphenous vein),
resulting in neointimal formation. The newly formed neointima serves
as a soil bed for accelerated atherosclerotic plaque formation, com-
monly termed neoatherosclerosis [10]. Uncontrolled VSMC growth and
consequent neointimal formation is also a characteristic observed in
many forms of pulmonary arterial hypertension (PAH) [11]. Accord-
ingly, there are numerous mechanistic pathways common between the
pathological processes underlying restenosis within coronary arteries
after clinical intervention and lesion formation within the arterial tree
of the lungs during PAH.

MicroRNAs (miRNAs, miRs) are small noncoding RNA molecules of
approximately 18–22 nucleotides in length which can post-tran-
scriptionally regulate gene expression through inhibiting translation or
promoting degradation of the target messenger (m)RNA. They are
transcribed by polymerase II within the nucleus and are initially pro-
duced as primary miRs (pri-miRs). Processing of pri-miRs into their
smaller precursor forms (pre-miRs) by RNAse III Drosha is necessary
before they can be exported into the cytoplasm. Within the cytoplasmic
compartment, pre-miRs are eventually processed into mature and bio-
logically functional microRNA through the action of Dicer, which is
another RNAse III family member. Mature microRNA can target and
bind the 3′ untranslated regions (3′-UTR) of mRNA and consequently
modulate their expression. It has been predicted that microRNAs may
modulate up to 90% of mammalian genes and therefore play funda-
mental roles in regulating cellular function [12]. There is an obvious
discrepancy between the number of identified mature microRNA and
potential target genes, which is due to the ability of a single microRNA
to bind and regulate many differing target mRNA, although there is
some evidence that the targets may reside within the same functional
networks. There are also more mature microRNAs than precursor
forms, owing to the hairpin structure of precursor microRNA and their
subsequent processing into -3p and -5p, which can target complimen-
tary and distinct mRNAs. Accordingly, microRNA have been proposed
as fine-tuners of gene and protein expression profiles during patholo-
gical conditions and correlative studies have assessed the expression of
select microRNA and their predicted targets in human pathological
samples and tissues from diseased animal models. Furthermore, ap-
proaches to modulate microRNA expression or function have been de-
ployed in animal models to determine direct effects on disease pro-
gression, including numerous cardiovascular diseases. Modulatory
approaches include over-expressing a select microRNA using a miR
mimic or viral construct (such as an adenovirus or lentivirus), or re-
tarding function/expression with an antagomir or a genetically-mod-
ified mouse with deletion of a specific microRNA.

In this review, I will outline the current knowledge on tissue and
circulating microRNA expression changes identified to be involved in
four key cardiovascular diseases; atherosclerosis, abdominal aortic an-
eurysms, restenosis, and pulmonary arterial hypertension. In addition,
the results of in vivo animal studies evaluating the effects of modulating
specific microRNAs on these leading cardiovascular pathologies will be
discussed.

2. Atherosclerosis

2.1. Human studies

The development, progression and culminating rupture of athero-
sclerotic plaques underlies most cardiovascular related deaths [13]. It is
now widely accepted that atherosclerosis is a chronic inflammatory
disease which forms at specific sites within the arterial wall, predilected
through haemodynamic changes in blood flow initiating endothelial
cell injury and the retention of lipoproteins within an adaptive intimal
thickening that develops at such sites [13,14]. Histopathological studies
of human atherosclerotic plaques have elucidated that lesion progres-
sion and increasing susceptibility to rupture are characterised by
monocyte/macrophage infiltration and accumulation, their

transformation into foam cells, lipid/necrotic core expansion, a reduc-
tion in VSMC number, and decreased collagen content [2]. The recent
emergence of microRNAs as key regulators of cellular function and
behaviour, such as cell adhesion, invasion and proliferation, lipid up-
take and efflux, polarisation, and the release of inflammatory mediators
and proteases, has revealed novel mechanistic understanding into their
potential role in atherosclerosis, and illuminated them as potential
therapeutic targets in conjunction with their identification within the
circulation as predictive biomarkers of disease progression.

As previously alluded to, adaptive and pathological intimal thick-
enings are considered the earliest forms of atherosclerosis within
human coronary arteries [15], and a microarray analysis comparing
healthy coronary arteries and those harbouring such early lesions re-
vealed that the expression of miR-29, miR-100, miR-155, miR-199,
miR-221, miR-363, miR-497, and miR-508 were up-regulated whereas
miR-490, miR-1273, and miR-1284 expression were down-regulated
[16]. The microRNA expression profile was also examined between
non-diseased thoracic arteries and atherosclerotic plaques retrieved
from aortic, carotid and femoral arteries, and revealed miR-21, miR-34,
miR-146 and miR-210 to be significantly up-regulated in athero-
sclerotic arteries [17]. A similar study comparing carotid artery ather-
osclerotic plaques and healthy mammary artery established miR-520
and miR-105 as down-regulated and miR-15, miR-26, miR-30, miR-98,
miR-125, miR-152, miR-181, miR-185, and miR-422 as up-regulated in
atherosclerotic plaques [18]. Finally, a focussed array of microRNA
expression between asymptomatic and symptomatic carotid artery
plaques, deemed stable and unstable respectively, revealed expression
of miR-100, miR-127, miR-133 and miR-145 were significantly elevated
in symptomatic carotid plaques [19]. Assessment of coronary athero-
sclerotic plaques revealed that miR-181 expression is increased, and
miR-24 levels decreased in lesions classified as unstable when com-
pared to stable plaques [20,21].

Fluctuations in circulating microRNAs may also serve as a guide to
disease stage and progression. To this end, Leistner and colleagues as-
sessed the correlation of circulating miRs with coronary atherosclerotic
plaque burden (assessed by Optical Coherence Tomography) [22]. This
study implied that circulating levels of miR-29, miR-126, miR-145, and
miR-155 positively correlate with the presence of rupture-prone thin-
capped fibroatheroma (TCFA) [22]. A further study deploying com-
parisons between healthy control subjects and patients with existing
coronary artery disease (as defined by previous clinically history but
now deemed clinically stable [23]), demonstrated that circulating miR-
155, miR-145 and let-7c were significantly decreased in patients with
coronary artery disease [23]. Similar studies have shown that whole
blood levels of miR-17, miR-19, miR-29, miR-30, miR-92, miR-126,
miR-145, miR-150, miR-155, miR-181, miR-222, miR342, miR-378,
and miR-484 are decreased in patients with angiographically defined
stable coronary artery disease [24,25]. With regards to delineating
between stable and unstable coronary artery disease, miR-155 plasma
levels were decreased in patients with either unstable angina, acute
myocardial infarction or multi-vessel disease, compared to patients
with stable or limited disease [26]. A similar approach revealed ele-
vated plasma levels of miR-1, miR-122, miR-126, miR-133, miR-199,
miR-433 and miR-485 classified patients with angina, whereas in-
creased miR-337 levels were distinct for patients with stable angina and
heightened miR-145 was limited to individuals with unstable angina
[27]. Finally, circulating levels of miR-132, miR-150, and miR-186
displayed the greatest discriminatory power for the diagnosis of un-
stable angina, when compared to patients with non-coronary chest pain
or healthy subjects [28].

In addition to assessing microRNA expression within plasma/serum,
researchers have also investigated the biomarker potential of microRNA
levels within circulating blood cells, especially peripheral blood
mononuclear cells (PBMCs), as specific profiles may serve as indicators
or predictors of subclinical atherosclerosis and acute coronary syn-
dromes. Evaluation of microRNA expression in peripheral blood cell
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samples from patients who had suffered an acute myocardial infarction
compared to healthy individuals, identified 121 significantly dysregu-
lated microRNA, with miR-663 providing the best predictive value for
the presence of acute myocardial infarction [29]. However, due to the
study population a proportion of these microRNA (such as miR-145 and
miR-30) may be indicators of myocardial damage rather than athero-
sclerotic plaque disruption [29]. Reduced levels of miR-155 in PBMCs
were negatively associated with angiogram-defined coronary artery
atherosclerosis and proatherogenic risk factors including age, hy-
pertension, LDL cholesterol levels, and smoking [26]. Assessment of
PBMCs from patients carrying a single nucleotide polymorphism in
miR-146 (which results in increased expression of the mature form),
demonstrated a positive association with coronary artery disease risk in
a Chinese cohort [30]. Supportingly, levels of miR-146 are increased in
PBMCs of coronary artery disease patients compared to healthy subjects
and serves as a predictor of future cardiac events [31]. Comparison of
the microRNA signature between patients with coronary artery disease
(defined as exhibiting stable or unstable angina) revealed that the ex-
pression of miR-135a was increased and miR-147 decreased in PBMCs
from coronary artery disease patients, suggesting the miR-135a/
miR147 ratio within PBMCs may serve as a predictive tool for athero-
sclerotic disease risk [32]. Finally, analysis of dysregulated microRNA
within CD14 positive monocytes of obese patients revealed down-reg-
ulation of several members of the miR-181 family, although only re-
duced levels of miR-181a was associated with obesity, metabolic syn-
drome, and angiography-identified coronary artery disease [33].

Collectively, the above findings imply that specific microRNAs de-
tected within the circulation (such as in the plasma, exosomes/micro-
particles, or within monocytes) may associate with subclinical athero-
sclerosis. However, patient baseline characteristics, medical treatments,
and the presence of contraindicative diseases should be taken into
consideration when extrapolating data from profiling studies.

2.2. Animal studies

Microarray studies have also been performed in mouse models of
atherosclerosis to ascertain microRNAs associated with plaque pro-
gression. Using a carotid artery double ligation approach in high fat-fed
apolipoprotein E (Apoe) knockout (KO) mice to assess comparisons
between plaques deemed unstable and stable or non-diseased, Chen and
colleagues identified miR-138, miR-142, miR-322, miR-335, and miR-
450 as microRNA up-regulated in advanced plaques with evidence of
intraplaque haemorrhage [34]. To directly determine the contributory
roles of select microRNA to the development and progression of
atherosclerosis, researchers have relied on several complimentary ap-
proaches. This primarily involves the use of genetically modified mice
which harbour global deletion of Apoe or low density lipoprotein re-
ceptor (Ldlr), which renders them hypercholesterolaemic on con-
sumption of a high-fat diet and consequently precipitates atherogenesis
at distinct locations within the arterial tree including the aortic root/
sinus, carotid and brachiocephalic arteries [35]. Pharmacologically,
two main strategies are employed to modulate the activity of individual
microRNA in vivo; (1) Restoration or over-expression of an individual
microRNA using either synthetic double-stranded RNA molecules
(commonly termed mimics or agomirs), or viral expression constructs;
and (2) inhibition of microRNA activity through use of chemically
modified anti-miR oligonucleotides (commonly termed antagomirs). To
date, there have been more than 30 publications assessing microRNA
modulation in mouse models of atherosclerosis, the salient findings of
which are discussed below (and summarised in Table 1).

2.2.1. miR-let-7g
Using such approaches, a protective role for miR-let-7g has been

proposed as intravenous delivery of a miR-let-7g specific mimic atte-
nuated the development of atherosclerotic lesions within the aorta of
hypercholesterolaemic Apoe KO mice [36]. Further in vitro studies

demonstrated that miR-let-7g can directly target and suppress protein
expression of LOX-1 in aortic VSMCs, and consequently repress their
migratory and proliferative capacity in response to oxLDL, in line with
the effects observed in vivo [36].

2.2.2. miR-19
Gain and loss-of-function studies in Apoe KO mice suggested that

miR-19 supports atherogenesis through promotion of macrophage foam
cell formation, as miR-19 directly regulates macrophage expression of
ABCA1, a key regulator of macrophage cholesterol efflux [37]. Ac-
cordingly, systemic administration of a miR-19 mimic to Apoe KO mice
reduced plasma HDL levels and concomitantly elevated LDL con-
centration [37].

2.2.3. miR-21
Adoptive transfer of miR-21 deficient hematopoietic cells worsened

atherosclerosis within the aortic arch and thoracic aorta of Ldlr KO
mice [38]. The protective effect of miR-21 in atherosclerosis was at-
tributed to promoting macrophage survival and their phagocytic ca-
pacity alongside preservation of ABCG1 expression, a positive regulator
of cholesterol efflux which is negatively regulated by the miR-21 target
MAP2K3 (also known as MKK3) [38]. However, miR-21 expression is
elevated in human plaques when compared to non-diseased arteries,
although this may simply reflect the presence of macrophages [17].

2.2.4. miR-24
Findings from human macrophages and coronary plaques have

shown that down-regulation of miR-24 promotes macrophage invasion
through increased matrix metalloproteinase (MMP)-14 activity and
associates with plaque instability [20]. Indeed, a proof-of-principle
study in atherosclerotic Apoe KO mice demonstrated that miR-24 in-
hibition accelerated atherosclerosis in brachiocephalic arteries which
was linked with heightened intra-plaque macrophage MMP-14 expres-
sion [21].

2.2.5. miR-30
It has been recently shown that miR-30 levels within the liver or-

chestrates packaging and secretion of apoB-containing lipoproteins
such as VLDL and LDL, by regulating expression of the microsomal
triglyceride transfer protein (MTTP) [39]. Pharmacologically, either
lentiviral over-expression of miR-30 or liver-directed delivery of a miR-
30 mimic mitigated hypercholesterolaemia and aortic atherosclerosis in
Apoe KO mice, without inducing hepatosteatosis (an undesirable side
effect of conventional MTTP inhibitors) by diminishing hepatic lipid
synthesis [39,40].

2.2.6. miR-33
Despite a lack of evidence linking alterations in miR-33 expression

to human atherosclerosis, numerous studies employing antagomir in-
hibition or gene deletion approaches have been undertaken in mouse
models of atherosclerosis to ascertain the contributory role of miR-33.
Most of the studies, conducted exclusively in Ldlr KO mice, suggest a
deleterious role for miR-33 on the development and progression of
aortic atherosclerosis. It is evident that miR-33 exerts a key regulatory
role in lipid homeostasis, including key pathways for controlling cho-
lesterol and fatty acid equilibrium [41,42]. Moreover, whole mouse
deletion of miR-33 increased plasma levels of HDL cholesterol and re-
duced aortic root atherosclerotic plaque size in Apoe KO mice [43].
However, hematopoietic cell-restricted deletion of miR-33 did not af-
fect HDL-cholesterol levels or plaque size, although lipid accumulation
within lesions was reduced, attributed to enhanced cholesterol efflux
from foam cell macrophages through restoration of ABCA1 and ABCG1
expression [43]. Conversely, whole body deletion of miR-33 in Ldlr KO
mice did not influence the progression of aortic atherosclerosis despite
inducing marked dyslipidaemia, whereas hematopoietic-specific loss of
miR-33 hampered plaque development but did not impact on
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circulating lipid levels [44]. Moreover, whole mouse deletion of miR-33
was also associated with the development of obesity and insulin re-
sistance, while such deleterious effects were not reported in the he-
matopoietic-specific miR-33 KO animals, and the beneficial effects on
atherogenesis attributed to enhanced cholesterol efflux from plaque
macrophages, limiting lipid accumulation and further inflammatory
cell recruitment [44]. As such, therapeutically it would be advanta-
geous to target macrophage specific miR-33. Nonetheless, several stu-
dies have demonstrated that systemic miR-33 inhibition can attenuate
atherosclerotic plaque development and progression in Ldlr KO mice
[42,45–47] or diabetic REVERSA mice [48], with no or varying effects
on plasma LDL-cholesterol and HDL-cholesterol levels. However, using
a similar approach, Marquart and colleagues observed no preventative
effect of long-term (14weeks) miR-33 inhibition on aortic athero-
sclerosis in high-fat fed Ldlr KO mice [49]. Despite the reported fa-
vourable effects of miR-33 antagonism on circulating levels of HDL-
cholesterol and atherosclerosis, worrying elevations in circulating tri-
glyceride levels alongside development of hepatosteatosis have been
described [43,49]. Taken together, these above findings suggest that to
utilise miR-33 therapeutically, a cell-specific delivery approach will be
necessary to ensure selective targeting of macrophages.

2.2.7. miR-92
The up-regulated expression of miR-92 specifically in endothelial

cells has been associated with arterial sites deemed atherosclerosis-
prone due to haemodynamic changes and LDL modification, in humans
and Ldlr KO mice [50]. Accordingly, down-regulation of miR-92
achieved through delivery of a specific inhibitor to hypercholester-
olaemic Ldlr KO mice, retarded plaque development and favourably
altered lesion composition, ascribed to restored endothelial cell ex-
pression of the negative regulator of cytokine signalling, SOCS5 [50].

2.2.8. miR-126
Haemodynamic alterations also modulate endothelial cell expres-

sion of miR-126, as altered shear stress present at atherosclerosis pre-
dilection sites suppresses endothelial miR-126 levels and reduces their
proliferative capacity due to perturbation of Notch signalling in a DLK1-
dependent manner [51]. Using an endothelial-denudation approach in
Apoe KO mice, systemic delivery of a miR-126 mimic decreased plaque
size, while lesion area was increased in miR-126 antagomir-treated
animals [51]. Further supporting an advantageous role for miR-126,
Apoe KO mice also deficient for miR-126 displayed accelerated aortic
atherogenesis at both predilection and non-predilection sites [51].

2.2.9. miR-145
Evidence from studies evaluating microRNA expression in plasma

and atherosclerotic plaques of patients with advanced atherosclerosis
have provided a strong association between elevated miR-145 levels
and disease progression [19,22]. In line with these findings, Ldlr KO
mice which are also deficient for miR-143 and miR-145 were protected
from the progression of aortic atherosclerosis [52]. Intriguingly, it was
proposed that VSMC miR-145 can be transferred to macrophages in
response to atherogenic stimuli, inducing ABCA1 down-regulation, re-
duced cholesterol efflux, and enhanced foam cell formation [52].
Conversely, miR-145 expression has also been shown to be attenuated
in Apoe KO mouse and human atherosclerosis, although it must be
noted that human plaques were not stratified by histological phenotype
or clinical characteristics, and were compared to plaque-free arteries
[53]. Although further support for a beneficial effect of miR-145 comes
from results demonstrating that circulating levels of miR-145 are re-
duced in patients with coronary artery disease compared to control
subjects [24]. Furthermore, VSMC-specific over-expression of miR-145
retarded plaque progression in Apoe KO mice which was associated

Table 1
Results of in vivo animal studies evaluating the effects of modulating select microRNA on atherosclerosis.

miRNA(s) Role Experimental model – method of microRNA modulation Cellular origin Target mRNA References

miR-let7g Beneficial Apoe KO mouse+HFD model – miR mimic VSMC LOX1 [36]
miR-19 Detrimental Apoe KO mouse+HFD model – miR mimic or antagomir Mac ABCA1 [37]
miR-21 Beneficial Ldlr KO mouse+HFD model – miR knockout Mac MAP2K3 [38]
miR-24 Beneficial Apoe KO mouse+HFD model – miR antagomir Mac MMP14 [20]
miR-30 Beneficial Apoe KO mouse+HFD model – miR lentiviral over-expression or miR lentiviral

inhibition
Hepatocyte MTP [39]

Beneficial Apoe KO mouse+HFD model – miR mimic Hepatocyte [40]
miR-33 Detrimental Reversa mouse model± streptozotocin – miR antagomir Mono/mac ABCA1 [48]

Detrimental/No effect Apoe KO mouse+HFD model± bone-marrow transplantation – miR knockout Mono/mac ABCG1 [43]
No effect Ldlr KO mouse+HFD model – miR antagomir Mono/mac [49]
Detrimental Ldlr KO mouse+HFD model – miR antagomir Mono/mac [46] [47]
Detrimental Ldlr KO mouse+HFD model – miR antagomir Mono/mac [44]
No effect/Detrimental Ldlr KO mouse+HFD model± bone-marrow transplantation – miR knockout Mono/mac [42]
Detrimental Ldlr KO mouse+HFD model – miR antagomir Mac/Hepat [45]
Detrimental Ldlr KO mouse+HFD model – miR antagomir Hepatocyte

miR-92 Detrimental Ldlr KO mouse+HFD model – miR antagomir EC SOCS5 [50]
miR-126 Beneficial Apoe KO mouse+HFD model – miR knockout or mimic EC DLK1 [51]
miR-145 Beneficial Apoe KO mouse+HFD model – miR lentiviral SMC-specific over-expression EC/VSMC ??? [53]

Detrimental Apoe KO mouse+HFD model – miR knockout VSMC/Mac ABCA1/SCARB1 [52]
miR-146 Beneficial/Detrimental Ldlr KO mouse+HFD model± bone-marrow transplantation – miR knockout or

miR antagomir
Mono/mac/EC SORT [56]

Beneficial Double Apoe:Ldlr KO mouse+HFD model & Ldlr KO mouse +HFD model – miR
mimic

Mono/mac ??? [57]

miR-155 Beneficial Ldlr KO mouse+HFD model± bone-marrow transplantation – miR knockout Mono/mac ??? [60]
Detrimental Apoe KO mouse+HFD model± bone-marrow transplantation – miR knockout Mono/mac ??? [58]
Detrimental Apoe KO mouse+HFD model± bone-marrow transplantation – miR knockout Mono/mac BCL6 [59]

miR-181 Detrimental Apoe KO mouse+HFD model & Ldlr KO mouse +HFD model – miR antagomir Mac/VSMC TIMP3/ELN [21]
Beneficial Apoe KO mouse+HFD model – miR mimic Mac NOTCH1 [62]
Beneficial Apoe KO mouse+HFD model – miR mimic EC KPNA4 [61]

miR-182 Detrimental Apoe KO mouse+HFD model – miR mimic or antagomir Mac HDAC9 [65]
miR-223 Beneficial Apoe KO mouse+HFD model – miR knockout or antagomir Mono/VSMC IGF1R [66]
miR-302 Detrimental Ldlr KO mouse+HFD model – miR antagomir Mac/Hepat ABCA1 [67]
miR-320 Detrimental Apoe KO mouse+HFD model – miR mimic or antagomir EC SRF [68]
miR-590 Beneficial Apoe KO mouse+HFD model – miR mimic or antagomir Mac LPL [70]
miR-712 (miR-205) Detrimental Apoe KO mouse+HFD model± carotid ligation – miR mimic or antagomir EC TIMP3 [71]
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with directing VSMCs towards a contractile phenotype [53]. In addi-
tion, it has been shown that under athero-protective stimuli such as
laminar shear stress, endothelial cells release extracellular vesicles rich
in miR-143 and miR-145 which are transported to VSMCs to promote a
contractile phenotype [54]. The paradoxical findings reported above
demonstrate the need for further studies to elucidate the therapeutic
and diagnostic potential of miR-145.

2.2.10. miR-146
The expression of miR-146 is elevated within human atherosclerotic

plaques of the aorta and femoral artery [17]. In addition, a single nu-
cleotide polymorphism in the miR146a gene which influences miR-146a
expression may serve as a predictor for susceptibility to coronary artery
disease [55]. Mice deficient for both Ldlr and miR-146 display sup-
pressed atherosclerosis within the aortic arch which was associated
with reduced circulating LDL cholesterol levels, which alongside the
human findings supports a deleterious role for this microRNA [56].
Complimentary bone-marrow transplantation experiments showed si-
milar findings in Ldlr deficient mice receiving miR-146 knockout bone
marrow, suggesting monocyte/macrophage-derived miR-146 is the
dominant effector of atherogenesis in both models, through targeting of
SORT1 and associated regulation of circulating LDL levels [56]. In
opposition, a protective effect for miR-146 has been proposed as ad-
ministration of a miR-146 mimic to either Apoe and Ldlr double
knockout mice or Ldlr deficient only mice retards aortic root athero-
sclerosis [57]. Further investigations demonstrated that Apoe regulated
macrophage miR-146 levels to dampen NFκβ-driven pro-inflammatory
responses [57]. As such, further studies are required to elucidate the
biomarker potential and contributory role for miR-146 to plaque pro-
gression.

2.2.11. miR-155
The expression of miR-155 is elevated in both experimental mouse

and human plaques [58,59], implying a progressive role for this mi-
croRNA in atherosclerosis. Indeed, loss- and gain-of-function in vitro
studies have demonstrated that macrophage miR-155 expression is as-
sociated with foam cell formation [58] and promoting a pro-in-
flammatory macrophage phenotype, in part through direct repression
of BCL6 and therefore promoting NFκβ-activity [59]. In vivo, global
[58] or bone-marrow restricted deletion [58,59] of miR-155 in Apoe
knockout mice suppressed aortic root atherogenesis, which could be
reversed through localised BCL6 silencing [59]. Conversely, bone
marrow transplantation studies conducted in Ldlr deficient mice re-
vealed hematopoietic miR-155 deficiency accelerated atherogenesis
and therefore intimates that miR-155 exerts anti-inflammatory and
athero-protective effects particularly during hypercholesterolaemia and
is associated with suppression of circulating inflammatory monocyte
numbers and restoration of IL-10 production [60]. It is possible the
divergent effects reported above are in part due to the different mouse
models of atherosclerosis deployed. Indeed, the levels of hypercholes-
terolaemia observed in Apoe and Ldlr deficient mice differ markedly
and macrophage foam cell formation dynamically regulates miR-155
expression [60].

2.2.12. miR-181
The miR-181 family members are differentially expressed between

human classical and non-classical monocyte subsets, and elevated in
human carotid plaques compared to non-diseased arteries [18]. Fur-
thermore, miR-181b expression is increased in unstable coronary pla-
ques compared to their stable counterparts, predominantly by pro-in-
flammatory foam cell macrophages [21]. Accordingly, in vivo
administration of a miR-181b inhibitor retarded both the development
and progression of atherosclerotic plaques in Apoe knockout mice and
Ldlr deficient animals [21]. It was determined that miR-181b nega-
tively regulates TIMP-3 expression in macrophages and ELN levels in
vascular smooth muscle cells [21]. Conversely, two studies revealed

circulating miR-181b levels are decreased in patients with coronary
artery disease [61] or suffering from acute stroke [62]. Furthermore,
utilising systemic delivery of miR-181b mimics (also termed agomirs)
to Apoe knockout mice, elevating circulating exogenous miR-181b le-
vels retarded atherosclerotic lesion formation [61,62]. The beneficial
effects of miR-181b were attributed to suppression of endothelial cell
IPOA3 expression and associated dampening of NFκβ-activity [61], and
promoting anti-inflammatory macrophage polarisation through re-
pressed NOTCH1 expression and downstream signalling [62]. The dis-
crepancies between the above studies may reflect the differing effi-
cacies of miR mimics and locked nucleic acid (LNA)-modified miR
inhibitors to target the atherosclerotic plaque; as LNA-miR inhibitors
are more potent and they have the potential to affect all cells within the
lesion [63].

2.2.13. miR-182
Plasma concentrations of miR-182 are elevated in coronary artery

disease patients compared to healthy controls, implying miR-182 may
serve as a biomarker of atherosclerosis progression [64]. Supporting a
deleterious role for miR-182, systemic delivery of an agomir (mimic) to
high fat fed Apoe knockout mice accelerated aortic atherosclerosis
compared to control animals, while administration of an antagomir
suppressed plaque development [65]. Mechanistic studies revealed
miR-182 targets and down-regulates the histone deacetylase HDAC9 in
macrophages, resulting in increased lipoprotein lipase (LPL) expression
which in turn facilitates lipid accumulation and subsequent pro-in-
flammatory foam cell macrophage formation [65].

2.2.14. miR-223
Levels of miR-223 are elevated within the plasma and diseased

vessels of atherosclerotic Apoe knockout mice and patients [66]. Leu-
kocytes and platelets serve as the major sources of miR-223, which can
be transported into the vessel wall via microparticles and be subse-
quently taken up by vascular smooth muscle cells to down-regulate IGF-
1R expression and retard cell growth [66]. Indeed, delivery of a miR-
223 inhibitor reduced aortic atherosclerotic area in Apoe knockout
mice [66]. However, this may be to the detriment of plaque stability as
miR-223 deficient mice display increased neointimal formation than
wild-type mice after carotid artery ligation injury [66]. Therefore,
while miR-223 inhibition may have therapeutic potential for limiting
atherogenesis and restenosis, it may precipitate plaque rupture and thus
negate its systemic deployment in atherosclerotic patients.

2.2.15. miR-302
A genome-wide screening study evaluating dysregulated microRNA

in macrophages with and without exposure to modified LDL, revealed
miR-302 was inversely correlated with cholesterol efflux [67]. Me-
chanistic studies identified ABCA1 as a direct target of miR-302 in
macrophages and within the liver, therefore forced expression of miR-
302 diminishes cholesterol efflux and fosters both foam cell macro-
phage formation and aberrant hepatic cholesterol clearance [67]. As
such, treatment of Ldlr knockout mice with a miR-302 inhibitor in-
creased circulating HDL levels and reduced aortic atherosclerosis pro-
gression, including perturbed necrotic core size even in the face of
heightened macrophage accumulation [67].

2.2.16. miR-320
Patients with coronary artery disease exhibit markedly increased

circulating levels of miR-320 compared to healthy controls [68]. Sup-
porting a deleterious role for miR-320, systemic plasmid-derived over-
expression of miR-320 promoted atherogenesis in Apoe deficient mice,
which was associated with induction of endothelial dysfunction, while
miR-320 anti-sense delivery attenuated atherosclerosis [68]. Con-
firmatory in vitro findings demonstrated that miR-320 directly targets
and decreases endothelial cell expression of SRF, retarding cellular
proliferation and promoting their susceptibility to apoptosis [68].
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2.2.17. miR-590
In contrast to miR-182 which augments LPL expression through

regulation of HDAC9, miR-590 directly targets and represses macro-
phage LPL levels, thus retarding the formation of pro-inflammatory
foam cell macrophages [69,70]. Accordingly, in high fat-fed Apoe
knockout mice, systemic administration of a miR-590 agomir (mimic)
prevented the progression of aortic atherosclerosis, while delivery of a
miR-590 antagomir increased atherogenesis [70]. As expected, in-
traplaque macrophage LPL expression was modulated in both experi-
ments, and reciprocal changes in circulating LDL-cholesterol levels
were also observed [70].

2.2.18. miR-712
Assessment of microRNAs dysregulated by athero-prone disturbed

flow on mouse endothelial cells in vitro and in vivo identified miR-712
as a mechanosensitive microRNA [71]. Mechanistic findings demon-
strated miR-712 down-regulates endothelial cell TIMP-3 expression,
promoting aberrant proteolysis and promoting endothelial inflamma-
tion and permeability [71]. As such, knockdown of miR-712 through
systemic delivery of miR-712 antagomir prevented atherogenesis in
Apoe deficient mice subjected to partial left carotid ligation and was
associated with restored vessel wall TIMP-3 expression [71]. Validative
studies in human endothelial cells identified miR-205 as a homologue
of murine miR-712 and confirmed miR-205 represses endothelial cell
TIMP-3 expression in a mechanosensitive manner [71].

Through studies conducted in isolated cells and animal models,
alongside human pathological and clinical findings, distinct microRNAs
have been identified and proposed to play key roles in the development,
progression, and disruption of atherosclerotic plaques. Seminal studies
utilising animal models that permit modulation of individual
microRNAs has permitted the identification of specific beneficial and
detrimental roles select microRNA exert on differing target RNA, and
the ensuing significance to atherosclerosis (summarised in Fig. 1).
Collectively, this large body of work has identified certain microRNA
which may serve as therapeutic targets to prevent disease progression,
affecting processes such as cell turnover, proteolysis, and lipid meta-
bolism. However, the importance of identifying the specific cell types
expressing select microRNA is essential when attempting to attribute
causality to multifactorial diseases such as atherosclerosis, especially
when conclusions are derived from whole tissue analysis [72]. For ex-
ample, although miR-145 levels are increased in patients with identi-
fied atherosclerosis, this may reflect ongoing processes within VSMCs to
provide stability to plaques through maintenance of the fibrous cap.
Indeed, the VSMC-specific miR-145 over-expression study demon-
strating direct effects on VSMC phenotypic modulation [53] supports
such a proposition when taken alongside underpinning studies estab-
lishing a fundamental role for miR-145 (and miR-143) in regulating
VSMC function and plasticity [72–74].

3. Abdominal aortic aneurysms

3.1. Human studies

The majority of abdominal aortic aneurysms (AAAs) are clinically
silent or asymptomatic until rupture, and for this reason they are dif-
ficult to detect, and ruptures are linked to mortality in 85–90% of cases
[75]. Pharmacological therapies alongside recurrent imaging are uti-
lised for small aneurysms (less than 5.5 cm in diameter) to limit their
progression [76]. However, when aorta dilatation exceeds 5.5 cm,
elective surgical repair is adopted despite mortality percentages re-
maining high after surgery [75]. Studies have shown that patients with
AAAs frequently have atherosclerosis [77], and are regularly referred to
as “atherosclerotic aneurysms” [5,78]. Similar to coronary athero-
sclerosis, extracellular matrix remodelling in unity with the accrual of
inflammatory cell infiltrate, especially macrophages, at both the ad-
ventitial and medial aspects is a prominent feature of human

atherosclerotic AAAs [79], and also observed in pre-clinical animal
models of AAAs [80]. Accordingly, evidence from both human patho-
logical studies and mouse AAA models have supported a deleterious
role for inflammation and MMPs in AAA progression [83].

Array studies alongside focussed RNA analysis of human AAA and
normal aortic tissue samples have identified numerous miRNA which
are differentially expressed. However, due in part to the heterogeneity
of AAA tissues owing to differences in grade, size, inflammatory nature,
and location of tissue resection, a limited number of miRNA have been
consistently identified. While miR-let7, -15a/b, -21, -29b, -124a, -126,
-146a, -155, -181a/b, -205, and -223 have been observed to be up-
regulated in AAA tissues, and miR-24, -30c, -133a/b, -204, and 331a
down-regulated, only expression of miR-21 and -146a have been con-
firmed to be increased in AAA compared to healthy control tissues in
multiple studies [84,85]. Companion studies have also been performed
to determine if circulating miRNA levels can be deployed as biomarkers
of AAA progression. Plasma levels of miRs shown to exhibit the largest
increase in AAA patients compared to controls, include miR-let-7i, -33a,
-191, -331, -411, -455, -652, and -1281 [86–88]. Conversely, miR-let-
7e, -10b, -15a/b, -16, -29b, -124a, -126, -146a, -155, -192, -194, -195,
-196b, -205, -215 and -223 have all been reported to be decreased in the
peripheral blood of AAA patients compared to controls [86–89]. While
some of the altered levels in circulating miR levels agree with changes
observed in AAA tissues, many studies have shown inverse correlations,
for example miR-29b and miR-146a are increased in AAA tissue and
decreased with in peripheral blood [85], highlighting the caveats of
deploying miRNAs as potential biomarkers of AAA progression. It is
clear larger robust studies are required to correlate peripheral blood
miRNA levels and associated AAA tissue expression, to elucidate the
role of select miRNAs in AAA formation and progression. Further work
should also determine the cellular/tissue sources of circulating miRNA,
as these may be derived from an array of different depots including
circulating immune cells, other cells/organs affected by AAA, or the
diseased aortic wall, in order to evaluate if the circulating miRs are
causal or a consequence of AAA. Finally, in humans, AAA is associated
with atherosclerosis and therefore altered circulating miR levels may
reflect the presence of atherosclerosis (within the coronary vasculature
for example). However, analysis of plasma miRs between AAA patients
and CAD-only individuals revealed that changes in circulating levels of
miR-124a, -155, and -223a were AAA-specific [85], and may therefore
serve as biomarkers of end-stage AAA.

Although not the focus of this review, the pathophysiology of AAA
shares strong similarities to thoracic aortic aneurysms (TAA) and as
such many of the miRs identified to play a role in AAA formation and
progression have also been suggested to modulate TAAs, discerned
through assessment of tissue and circulating miR expression patterns
alongside a small number of in vivo mouse studies (as reviewed by
[90]). Indeed, a meta-analysis study examining association of changes
in miRNAs within AAA and TAA patients revealed a portfolio of miRs
dysregulated in both forms of aortic aneurysm, including miR-24, -29,
-30, -133, -143, -145, −193, -223, and -933 [91]. In vivo studies have
also demonstrated that modulation of specific miRNAs (such as miR-29
and miR-181b) exert similar effects on AAA and TAA formation and
progression [21,92]. Another clinically-relevant site of aneurysm for-
mation is within the cerebral artery, and therefore commonly termed
intracranial aneurysm, and gives rise to complications including sub-
arachnoid haemorrhage, attributed to increasing inflammation and
dysregulated proteolysis [93]. Despite limited research into the con-
tributory roles of microRNA to intracranial aneurysms development
and rupture, genome-wide microRNA screening identified 72 upregu-
lated and 85 downregulated microRNA in intracranial aneurysm tissues
compared to normal temporal arteries, including miR-99b, miR-340,
and miR-493 [94]. Biomarker-associated approaches utilising assess-
ment of plasma has revealed three circulating microRNA which can
discriminate intracranial aneurysm patients from controls, miR-let7b,
miR-183, and miR-200a [95]. Interestingly, miR-29b has recently been
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Fig. 1. MicroRNA identified in animal studies to exert beneficial or detrimental effects on cardiovascular diseases.
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identified as a potential microRNA of therapeutic interest from ex-
pression studies in intracranial tissues and mechanistic studies re-
vealing a role for this microRNA in regulating VSMC phenotypic
modulation [96].

3.2. Animal studies

There are limitations associated with studies involving human AAA
tissues, including the use of end stage disease samples, which limits
elucidation of the contribution of miRs to AAA development and pro-
gression. Furthermore, pathological tissues and associated plasma
samples provide guilt by association but do not permit mechanistic
evaluation or determination of causal roles of specific miRs to AAA
pathogenesis. Accordingly, there is the necessity to use animal models
of AAA formation and progression to assess the contributory roles of
miRs identified as potential modulators of AAA. The angiotensin II (Ang
II)-infused hypercholesterolaemic mouse model and the calcium
chloride peri-vascular application model are the most commonly uti-
lised for mechanistic AAA studies [97], and have been deployed to
ascertain the contributory roles of select microRNA to aortic aneurysm
formation and progression (summarised in Table 2).

3.2.1. miR-21
In agreement with the human data, miR-21 expression is elevated in

Ang II-induced mouse AAA tissues [98]. However, miR-21 inhibition
through use of an antagomir promoted AAA expansion, attributed to
increased phosphatase and tensin homologue (PTEN) protein expres-
sion and an associated anti-proliferative effect on VSMCs [98]. Con-
versely, lentiviral over-expression of miR-21 retarded AAA growth,
repressed PTEN expression and promoted survival and proliferation of
VSMCs [98]. This study suggests that the observed up-regulation of
miRs within AAA tissues does not necessarily translate to them playing
a deleterious role but may represent a counterregulatory physiological
response. As such, caution should be employed when extrapolating
changes in miR expression to pathological guilt.

3.2.2. miR-24
AAA retrieved from mouse elastase-infusion or Ang II-induced

models exhibited reduced miR-24 levels, in accordance with findings
from human AAA tissues [99]. Accordingly, in both models forced in-
creased expression of miR-24 retarded AAA formation while miR-24
inhibition accelerated disease progression, ascribed to miR-24 reg-
ulating Chitinase 3-like 1 (Chi311) expression and associated macro-
phage-driven vascular inflammation [99]. These results are somewhat
surprising given that Chi3l1 is commonly used as a marker of the anti-
inflammatory ‘M2’ macrophage subset in mice, which have been shown
to limit the magnitude and duration of inflammatory responses and

promote wound healing [100].

3.2.3. miR-29
There are several lines of evidence supporting a deleterious role for

miR-29 in AAA formation and progression. Utilising both the Ang II-
infusion and elastase-infusion models, enhancing circulating miR-29
levels augmented AAA growth [101], whereas miR-29 inhibition lim-
ited AAA expansion [89,101]. Gene and proteomics analysis of mouse
AAAs suggested the principal targets of miR-29 included numerous
VSMC generated extracellular matrix proteins (Col1a1, Col3a1, Col5a1,
and Eln) and matrix-degrading enzymes (MMP-2 and MMP-9) [89,101],
which were also validated in human AAA tissues [89]. Interestingly, in
a mouse model of Marfan syndrome which contains a mutation in the
Fibrillin1 gene and spontaneously develops aneurysms throughout the
aorta, miR-29 levels are increased, and miR-29 inhibition prevents
aneurysm formation [102] and progression [103].

3.2.4. miR-181
Multiple studies have identified that miR-181a/b expression is in-

creased in tissues and plasma from AAA patients [21,87,88] and as-
sociates with pro-inflammatory macrophages [21]. However, evidence
in mice and supported by in vitro mechanistic studies suggested that
miR-181b can suppress vascular inflammation, in part through reg-
ulation of NF-κβ signalling in endothelial cells by targeting importin-
α3, a protein necessary for NF-κβ translocation [104]. Still, AAA growth
and severity in Ang II-infused hypercholesterolaemic Apoe-deficient or
Ldlr-deficient mice was reduced through inhibition of miR-181b [21].
Limiting miR-181b expression was associated with increased macro-
phage TIMP-3 expression and VSMC elastin levels, both important
factors for maintaining aneurysm stability [21].

3.2.5. miR-205
Expression of miR-712 and its human homologue miR-205 are in-

creased in mouse and human AAA tissues, respectively [105]. More-
over, elevated levels of miR-712/−205 accompanied decreased ex-
pression of the endogenous MMP inhibitors TIMP-3 and reversion-
inducing cysteine-rich protein with kazal motifs (RECK), and con-
comitant increased MMP activity in endothelial cells of AAAs [105].
Inhibition of either miR-712 or miR-205 in the Ang II-induced mouse
AAA model limited disease formation, restored TIMP3 and RECK ex-
pression, reduced MMP activity and diminished elastin fragmentation
[105].

Collectively, the numerous mouse and in vitro studies moderating
miR expression have afforded a better understanding of their specific
roles to AAA formation and progression (summarised in Fig. 1). As
expected, the microRNA identified target key molecules involved in
either SMC function, inflammation, or proteolysis, three key

Table 2
Results of in vivo animal studies evaluating the effects of modulating select microRNA on abdominal aortic aneurysm (AAA) formation.

miRNA(s) Role Experimental model – method of microRNA modulation Cellular origin Target mRNA References

miR-21 Beneficial C57Bl/6 J mouse+ elastase-induced AAA – miR mimic or antagomir VSMC PTEN? [98]
Apoe KO mouse+Ang II-induced AAA – miR mimic or antagomir

miR-24 Beneficial C57Bl/6 J mouse+ elastase-induced AAA – miR mimic or antagomir Mac/VSMC/EC CHI3L1 [99]
C57Bl/6 J mouse+Ang II-induced AAA – miR mimic or antagomir

miR-29 Detrimental C57Bl/6 J aged mouse+Ang II-induced AAA – miR antagomir VSMC COL1A1? [92]
No effect Apoe KO mouse+Ang II-induced AAA – miR antagomir COL3A1? [92]
Detrimental C57Bl/6 J mouse+ elastase-induced AAA – miR mimic or antagomir Fibroblasts FBN1? [101]
Detrimental Apoe KO mouse+Ang II-induced AAA – miR mimic or antagomir ELN? [101]
Detrimental Apoe KO mouse+Ang II-induced AAA – miR antagomir VSMC MMP2? [89]
Detrimental Fbn1C1039G/+ ‘Marfan’ mouse model of AAA – miR antagomir VSMC BCL2 [102]
Detrimental Fbn1C1039G/+ ‘Marfan’ mouse model of AAA – miR antagomir VSMC [103]

miR-181 Detrimental Apoe KO mouse+Ang II-induced AAA – miR antagomir Mac/VSMC TIMP3 [21]
Ldlr KO mouse+Ang II-induced AAA – miR antagomir ELN

miR-195 No effect Apoe KO mouse+Ang II-induced AAA – miR antagomir VSMC ??? [89]
miR-712 (miR-205) Detrimental Apoe KO mouse+Ang II-induced AAA – miR antagomir EC TIMP3 [105]

RECK
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mechanisms associated with the progression of AAAs in humans.
However, it remains to be seen if targeting the aforementioned select
miRNAs serves as a feasible therapeutic approach for the treatment of
human AAA. Considering the multifactorial nature of AAA pathophy-
siology, targeting multiple microRNA may provide more efficacious,
whilst always considering the potential off-target effects.

4. Restenosis

4.1. Human studies

The dysregulated accumulation of VSMCs into the intimal region of
blood vessels and their associated deposition of extracellular matrix
proteins underlies many occlusive cardiovascular diseases, including
atherosclerosis, restenosis, and pulmonary arterial hypertension [106].
VSMCs reside within the media of healthy blood vessels in a quiescent
and contractile state. However, after vascular injury such as en-
countered upon stent deployment or coronary artery bypass grafting,
VSMCs undergo phenotypic modulation, proliferate and migrate into
the intima resulting in a process commonly termed neointimal forma-
tion or intimal hyperplasia [107]. Excessive neointimal formation can
compromise lumen patency and blood flow restriction directly through
restenosis, or indirectly by facilitating accelerated superimposed
atherosclerosis [107]. Recent discoveries have proposed a major con-
tributory role for microRNAs to the pathobiological mechanisms un-
derlying restenosis after stent deployment or saphenous vein bypass
grafts. Consequently, select microRNAs may serve as novel selective
therapeutic targets or circulating biomarkers to treat and diagnose
susceptibility to restenosis after arterial or bypass vascular injury.

Due to difficulties in retrieving tissue samples from diseased or
failed stented coronary arteries and saphenous vein grafts, there is
limited data on microRNA dysregulation during neointimal formation
after vascular injury in humans. Some studies have demonstrated the
presence of focal accumulations of specific microRNAs within human
neointimal formation. Indeed, both failed vein graft tissues and stented
coronary arteries with developing neointimal formation showed abun-
dant miR-21 expression [108,109]. There is also limited assessment of
the effect of vascular injury on circulating microRNA levels in human.
However, patients deemed to display in-stent restenosis as assessed by
angiography, exhibited elevated plasma levels of miR-21 while miR-
100, -143, and -145 were decreased, when compared to patients which
did not develop marked restenosis after stent deployment, or healthy
non-diseased controls [110]. Though no significant difference in cir-
culating levels of miR-31, -125b, -130a, -146a, -210 and -221 were
detected between the three groups [110]. Several members of the miR-
17-92 cluster are upregulated in carotid arteries exhibiting restenosis
after angioplasty and stenting when compared to adjacent normal ar-
tery, including miR-17, -18a, -19a, -20a, and -92a [111].

4.2. Animal studies

Rodent and large animal models of vascular injury, particularly the
rat carotid balloon injury, and the mouse and porcine stent models have
been used to examine the expression and contributory roles of
microRNAs to neointimal formation (summarised in Table 3). Indeed,
microarray analysis of rat carotid arteries after angioplasty revealed
numerous dysregulated microRNA when compared to uninjured control
arteries; miR-21, -146, -214, -221, -222 and -352 were highly upregu-
lated, whereas miR-125a, -125b, -133a, -143, -145, -347, and -365 were
significantly downregulated [112,113].

4.2.1. miR-21
In line with the limited human findings, miR-21 levels demonstrated

the greatest increase in expression after vascular injury [112], sug-
gesting a prominent role for this microRNA in the induction of neoin-
timal formation. In accordance, several studies have demonstrated that

depletion of miR-21 suppresses neointimal formation after angioplasty
[112], stent deployment [109,114], or vein grafting [108]. VSMCs have
been ascribed as the primary source and modulated cell type by miR-21,
suppressing VSMC proliferation and migration through modulation of
PTEN [108,112,114], BMPR2 [108] and BCL2 [112]. Although within
the in-stent restenosis models, miR-21 was also proposed to affect
macrophage invasion and polarisation, possibly through targeting of
PPARγ [109].

4.2.2. miR-15/16
Two members of the miR-16 family, miR-15b/-16, are highly con-

served amongst mammalian species and have been shown to be down-
regulated during VSMC phenotypic switching from contractile to a
synthetic phenotype in vitro and in vivo [115]. The miR-15b/-16
modulation of VSMC differentiation was shown to be through direct
regulation of YAP [115], a key regulator of VSMC phenotypic mod-
ulation [116]. Accordingly, local adenoviral-mediated over-expression
of miR-15b/-16 suppressed VSMC phenotypic switching, proliferation
and migration, resulting in reduced neointimal formation, all associated
with decreased YAP expression [115].

4.2.3. miR-23
Similarly, miR-23b has been identified as a regulator of VSMC

phenotypic switching through direct regulation of FOXO4, and local
adenoviral-mediated over-expression of miR-23b reduced neointimal
formation within balloon-injured rat carotid arteries [117].

4.2.4. miR-24
A beneficial role for miR-24 has also been demonstrated as adeno-

viral over-expression limited neointimal formation after carotid artery
balloon injury in diabetic rats, associated with an anti-proliferative
effect of miR-24 linked to modulation of a WNT4-dependent signalling
pathway [118].

4.2.5. miR-26
Over-expression of miR-26 also reduces VSMC proliferation and

migration through targeting MAPK6, and inhibited neointimal forma-
tion in a rat model of autologous jugular vein grafting [119].

4.2.6. miR-29
Likewise, over-expression of miR-29 using local oligonucleotide

delivery to the carotid artery suppressed balloon injury-induced
neointimal formation [120]. In vitro analysis revealed that IL-3 sti-
mulated VSMC proliferation and migration were associated with de-
creased miR-29b expression, and subsequent restoration of miR-29b
levels blunted VSMC growth through regulation of Mcl1 and MMP-2
expression [120].

4.2.7. miR-30
Intraluminal lentiviral delivery of miR-30 inhibited neointimal

formation in rats, attributed to suppression of CaMKIIδ protein ex-
pression [121]. Indeed, niR-30 was shown to directly target CaMKIIδ
and suppress rat VSMC proliferation and migration [121], in agreement
with a deleterious role for CaMKIIδ in VSMC growth and neointimal
formation [122].

4.2.8. miR-34
Two members of the miR-34 family, miR-34a and miR-34c, have

both been demonstrated to play protective roles in injury-induced
neointimal formation [123,124]. VSMC proliferation and migration
were perturbed by over-expression of miR-34a and miR-34c, through
direct regulation of Notch1 [123] and SCF [124] respectively. Of note,
despite multiple lines of evidence showing a role for miR-34a in the
regulation of endothelial cell behaviour, re-endothelialisation was not
assessed in the aforementioned studies, which is of concern given that a
wire-injury endothelial denudation model was used [123], and aberrant
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neointimal formation is attributed in part to delayed re-en-
dothelialisation [125].

4.2.9. miR-92
Relatedly, antagomir-directed inhibition of miR-92 enhanced re-

endothelialisation of rat carotid arteries after balloon injury or stenting,
and consequently reduced neointimal formation [126]. The effects were
purported to be endothelial cell specific as proliferation and migration
of VSMCs were not affected by miR-92 modulation, and while miR-92
regulated KLF4 and MKK4 expression in endothelial cells, no change
was detected in VSMCs [126].

4.2.10. miR-126
Recent evidence has demonstrated that endothelial cells undergoing

apoptosis release microparticles which diminish VSMC proliferation
and neointimal formation in mice [127]. Moreover, endothelial cell-
derived microparticles contain abundant miR-126 which is readily
transferred to VSMCs in vitro and modulate their behaviour [127].
Furthermore, miR-126 over-expressing microparticles (derived from
human coronary artery endothelial cells treated with a miR-126 mimic)
reduced neointimal formation in a mouse wire-mediated carotid artery
injury model, attributed to suppressed expression of the miR-126 target
LRP6 and consequent dampening of the β-catenin signalling pathway
[127]. Finally, high miR-126 expression in circulating microparticles
(of undefined origin) was associated with reduced rate of coronary
revascularization in patients with angiographically-defined coronary
artery disease, although the study did not delineate between beneficial
effects on atherosclerosis or restenosis [127]. Indeed, in support of an
atherosclerosis-dependent effect, a similar study demonstrated circu-
lating microparticles from patients with coronary heart disease have
lower miR-126 levels than those obtained from healthy subjects [128].

4.2.11. miR-132
Despite up-regulation of miR-132 in rat carotid arteries subjected to

balloon injury, delivery of a miR-132 mimic was shown to repress
neointimal formation, through attenuation of VSMC proliferation and
associated down-regulation of the validated target LRRFIP1 [129].

4.2.12. miR-133
A key mechanistic role for miR-133 in the regulation of VSMC

phenotypic switching and growth has been shown, through the sup-
pression of the transcription factor Sp-1 [130]. Accordingly, adenoviral-
mediated over-expression of miR-133 reduces but miR-133 inhibition
aggravates VSMC proliferation and neointimal formation [130].

4.2.13. miR-143/-145
Similarly, the miR-143/-145 gene cluster has also been shown to

regulate VSMC phenotypic switching and proposed to retard the VSMC
differentiation associated with cardiovascular diseases [131,132]. In-
deed, over-expression of miR-143 or miR-145 blunted balloon injury-
induced neointimal formation in rats, related to suppression of KLF5
expression and preservation of the contractile VSMC markers Acta2 and
Myh11 [131,132].

4.2.14. miR-195
Over-expression of miR-195 also reduced neointimal formation in

the rat balloon-injury model [133]. The proposed beneficial effects of
miR-195 were attributed to repression of VSMC proliferation, migra-
tion, and expression of growth-related miR-195 target genes Cdc42 and
Ccnd1, alongside up-regulation of pro-inflammatory molecules such as
IL-1β, IL-6 and IL-8, all determined in vitro upon oxLDL treatment of
VSMCs [133].

4.2.15. miR-206
Another microRNA identified to regulate VSMC phenotypic

switching is miR-206, which is associated with and promotes differ-
entiation to a synthetic VSMC phenotype [134]. As such, lenti-viral
over-expression of miR-206 promoted neointimal formation in balloon

Table 3
Results of in vivo animal studies evaluating the effects of modulating select microRNA on neointimal formation/restenosis. Treatments were administered sys-
temically unless otherwise stated.

miRNA(s) Role Experimental model – method of microRNA modulation Cellular origin Target mRNA References

miR-1 No effect Rat carotid artery balloon injury model – miR adenoviral over-expression (local) VSMC ??? [130]
miR-15a/b Beneficial Rat carotid artery balloon injury model – miR adenoviral over-expression (local) VSMC YAP [115]
miR-21 Detrimental Rat carotid artery balloon injury model – miR antagomir (local) VSMC PTEN [112]

Detrimental Mouse stented aorta-interposition graft model – miR knockout BMPR2 [109]
Detrimental Rat stented internal mammary artery balloon injury model – miR antagomir coated stents BCL2 [114]
Detrimental Mouse isogenic vein graft model – miR knockout PPARG [108]

miR-23 Beneficial Rat carotid artery balloon injury model – miR adenoviral over-expression (local) VSMC FOXO4 [117]
miR-24 Beneficial Diabetic rat carotid artery balloon injury model – miR adenoviral over-expression (local) VSMC WNT4 [118]
miR-26 Beneficial Rat autogenous jugular vein graft model – miR lentiviral over-expression (local) VSMC MAPK6 [119]
miR-29 Beneficial Rat carotid artery balloon injury model – miR mimic (local) VSMC MCL2 & MMP2 [120]
miR-30 Beneficial Rat carotid artery balloon injury model – miR lentiviral over-expression (local) VSMC CAMK2D [121]
miR-34 Beneficial Mouse wire injury femoral artery model – miR mimic (local) VSMC NOTCH1 [123]

Beneficial Rat carotid artery balloon injury model – miR mimic (local) SCF [124]
miR-92 Detrimental Rat carotid artery balloon injury model & stenting model – miR antagomir EC KLF4 [126]
miR-126 Beneficial Mouse wire injury carotid artery model – miR mimic and antagomir (EC-derived

microparticles)
EC LRP6 [127]

miR-132 Beneficial Rat carotid artery balloon injury model – miR mimic (local) VSMC LRRFIP1 [129]
miR-133 Beneficial Rat carotid artery balloon injury model – miR adenoviral over-expression (local) VSMC SP1 & MSN [130]
miR-143 Beneficial Rat carotid artery balloon injury model – miR mimic (local) VSMC KLF5 [131]
miR-145 Beneficial Rat carotid artery balloon injury model – miR mimic (local) VSMC KLF5 [131]

Beneficial Rat carotid artery balloon injury model – miR adenoviral over-expression (local) [132]
miR-195 Beneficial Rat carotid artery balloon injury model – miR adenoviral over-expression (local) VSMC CDC42 & CCND1 [133]
miR-206 Detrimental Rat carotid artery balloon injury model – miR lentiviral knockdown (local) VSMC ZFP580 [134]
miR-208 No effect Rat carotid artery balloon injury model – miR mimic (local) VSMC ??? [131]
miR-221/−222 Detrimental Rat carotid artery balloon injury model – miR antagomir (local) VSMC/EC CDKN1B/CDKN1C [135]
miR-329 No effect Mouse femoral artery cuff model – miR antagomir (local) ??? ??? [138]
miR-424 Beneficial Rat carotid artery balloon injury model – miR adenoviral over-expression (local) VSMC CCND1 & CALU [137]
miR-494 No effect Mouse femoral artery cuff model – miR antagomir (local) ??? ??? [138]
miR-495 Detrimental Mouse femoral artery cuff model – miR antagomir (local) VSMC/Mac ??? [138]
miR-663 Beneficial Mouse carotid artery ligation model – miR adenoviral over-expression (local) VSMC JUNB [139]
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injured rat carotids, while miR-206 inhibition suppressed it [134].

4.2.16. miR-221/-222
During neointimal formation in rats after vascular injury, expression

of miR-221 and miR-222 are upregulated, and in vitro studies demon-
strated that VSMC proliferation is reduced through knockdown of miR-
221 and -222 and associated up-regulation of their direct targets p27
and p57 [135]. Accordingly, downregulation of miR-221 and miR-222
through local adventitial delivery of a combined miR-221/-222 in-
hibitor, decreased vessel wall VSMC proliferation and neointimal for-
mation in rat carotid arteries subjected to balloon injury [135]. In-
triguingly, miR-221 and miR-222 exert divergent functional effects on
differing vascular cells. While miR-221 and miR-222 exert pro-pro-
liferative, pro-migratory, and pro-survival effects on VSMCs, they in-
duce opposite roles on endothelial cells [136]. Accordingly, inhibiting
miR-221 and miR-222 would yield a dual beneficial role after vascular
injury through the retardation of VSMC growth alongside promoting
reendothelialization.

4.2.17. miR-424
During human VSMC proliferation and neointimal formation in rats,

expression of miR-424 (or its rat ortholog miR-322) is decreased [137].
Accordingly, forced over-expression of miR-424/-322 attenuated VSMC
proliferation, migration and differentiation in vitro, and limited
neointimal formation after balloon angioplasty in rats [137]. The cell
cycle regulator cyclin D1 and the calcium-binding protein calumenin
which is involved in protein folding and sorting, were both confirmed
as direct targets of miR-424/-322 [137].

4.2.18. miR-495
Studies using a non-constrictive cuff model in mice, demonstrated

that miR-495 knockdown with a gene silencing oligonucleotide sup-
pressed neointimal formation within the femoral arteries [138]. As-
sessment of the vessel wall revealed that miR-495 silencing reduced the
number of medial VSMCs undergoing proliferation, and neointimal
macrophage accumulation, although no direct targets of miR-495 were
identified to elucidate the underlying mechanisms for these favourable
effects [138].

4.2.19. miR-663
Finally, miR-663 has been shown to regulate VSMC phenotypic

switching as over-expression of miR-663 heightens expression of con-
tractile VSMC genes and subsequently suppresses their proliferative and
migratory capacity [139]. Moreover, adenoviral over-expression of
miR-663 in a mouse carotid ligation model limits neointimal formation,
attributable to direct down-regulation of the key growth-related tran-
scription factor JunB [139]. While the aforementioned studies largely
demonstrate biological effects of miR modulation in vivo, there are
several studies which have shown redundant roles for a number of
microRNAs in neointimal formation, including; miR-1 [130], miR-208
[131], miR-329 [138], and miR-494 [138].

Taken together, the large number of published studies over a short
time period demonstrate the appeal of modulating microRNA expres-
sion as a therapeutic strategy to limit restenosis after stent deployment
or coronary artery bypass grafting (summarised in Fig. 1). The me-
chanistic in vitro studies and complimentary in vivo animal studies
have revealed numerous microRNAs which can be modulated to exert
direct effects on VSMC proliferation, migration and phenotypic mod-
ulation after vascular injury. Moreover, ancillary findings have shown
that some microRNA which limit VSMC growth can exert favourable
effects on endothelial regeneration, placing such microRNA at the front
of potential therapeutic targets. Unfortunately, due to the limited re-
trieval of human material after failed stenting or bypass surgery con-
sequent to restenosis, there is a lack of validative data to support the
proof-of-concept findings obtained from the numerous animal studies.
Nonetheless, the suggestion that plasma microRNA levels or their

quantification within circulating microparticles can reflect the biolo-
gical processes occurring within the vessel wall, could be exploited in
humans to predict restenosis rates and the need for further re-
vascularisation. However, many such patients will have extensive
atherosclerosis and careful interrogation of causality of specific mi-
croRNA apportioned to restenosis or atherosclerotic plaque progression
would be necessary.

5. Pulmonary arterial hypertension

5.1. Human studies

Pulmonary arterial hypertension (PAH) is a particularly severe form
of pulmonary hypertension which includes several closely related
pathologies characterised by pulmonary arterial endothelial cell dys-
function, progressive growth of the underlying VSMCs, and subsequent
medial and neointimal thickening [11]. As such, there are striking si-
milarities in the pathogenesis of PAH with restenosis after vascular
injury, including excessive VSMC proliferation and neointimal forma-
tion. As with other cardiovascular diseases and cancers, there has been
growing interest in the contribution of microRNA in the pathogenesis,
diagnosis, and treatment of PAH. Numerous studies have examined
resident lung cells or tissues biopsies from PAH patients for dysregu-
lation of microRNAs through unfocussed microarrays or more specifi-
cally by evaluating expression levels of individual microRNA. Such
studies have identified a number of microRNA which are up-regulated
in lung tissues of patients with PAH (predominantly idiopathic PAH)
compared to non-diseased individuals, including; miR-let7a [140], miR-
21 [141,142], miR-26 [140], miR-27 [140], miR-130 [143], miR-145
[144], miR-199 [140], miR-221 [145], miR-424 [146], and miR-656
[140]. Conversely, decreased expression of miR-21 [147], miR-98
[148], miR-124 [149], miR-140 [150], miR-204 [151], and miR-223
[152] have been reported. In addition, assessment of circulating mi-
croRNA levels in PAH patients have revealed changes associated with
disease outcome, and therefore purported as potential serum bio-
markers of PAH pathogenesis. Elevation of plasma miR-574 levels
alongside down-regulation of miR-150 were reported in treatment-
naïve PAH patients, and in addition, decreased circulating levels of
miR-150 precited poorer survival over time [153]. In line with heigh-
tened tissue expression, increased plasma levels of miR-21 [147], miR-
23 [154], miR-130 [143,155], miR-133 [155], miR-191 [155], miR-204
[155], miR-208 [155], and miR-301 [143] are also observed in PAH
patients. While decreased circulating levels of miR-1 [155], miR-26
[155,156], miR-29 [155], miR-34 [155], miR-451 [155], and miR-1246
[155] have been reported in PAH patients. Finally, a large number of
studies have also assessed the effects of PAH-related stimuli on reg-
ulation of microRNA expression in pulmonary artery endothelial cells
and VSMCs, identifying a number of pertinent microRNAs, their po-
tential targets, and their subsequent effects on cell behaviour (as re-
viewed by [157]).

5.2. Animal studies

Despite the associated caveats with animal models of disease, sev-
eral rodent models have been designed to mimic the pathogenesis of
PAH in humans [158], and subsequently used to examine the expres-
sion and contributory roles of select microRNAs to critical features of
PAH (summarised in Table 4). Indeed, microarray analysis of lungs
from a monocrotaline-induced PAH rat model revealed numerous
down-regulated microRNA when compared to control animals; miR-29,
-125, -148, -192, -193, -210, -224, -326, -328, -330, -339, -342, -532,
-652, -667 and -3557 [159]. Moreover, signalling pathway analysis
revealed the TGFβ transduction pathway as a prominent target of the
identified down-regulated microRNAs [159], in agreement with a role
for dysregulated TGFβ signalling in PAH [160].
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5.2.1. miR-17
A study using both the chronic hypoxia-induced and monocrotaline-

induced mouse models demonstrated that miR-17 inhibition, achieved
through use of a selective antagomir, reduced pulmonary vascular re-
modelling and decreased right ventricular systolic pressure (RSVP),
indicating a deleterious role for miR-17 in PAH, proposed to be through
down-regulation of p21 expression and concomitant increased pro-
liferation of pulmonary VSMCs [161].

5.2.2. miR-20
Similar findings have also been reported for miR-20, where antag-

omir-directed inhibition prevented pulmonary vascular remodelling
through restoration of VSMC BMPR2 levels, signalling and associated
repression of their proliferation [162].

5.2.3. miR-21
Disparate roles for miR-21 in PAH have been proposed, in part re-

liant on conflicting effects on VSMCs and endothelial cells. Two studies
have shown that inhibition of miR-21 protects mice from developing
PAH, associated with preservation of TGFβ signalling in VSMCs through
restored expression of key proteins such as BMPR2 [142,163]. Con-
versely, two reports using miR-21 knockout mice [141,164] or over-
expression [164] supported a protective role for miR-21 in PAH by
promoting endothelial cell survival and vasodilation through repressing
PDCD4 [164] and RhoB expression [141], respectively. Supportingly,
both human lung tissue and circulating levels of miR-21 have been
shown to be reduced in patients with idiopathic PAH [147]. Finally,
miR-21 inhibition using an antagomir had no effect in a chronic hy-
poxia-induced model [161].

5.2.4. miR-27
Pulmonary endothelial cell function and vasodilatory capacity has

been shown to be regulated by miR-27 due to its direct targeting of
PPARγ and associated perturbed NO signalling [165]. Accordingly,
miR-27 inhibition ameliorates monocrotaline-induced endothelial dys-
function and consequent PAH in a rat model [165].

5.2.5. miR-34
Lung expression of miR-34 is diminished during hypoxia induced

PAH in rats, and in isolated pulmonary VSMCs from diseases rats and
humans [166]. Restoration of miR-34 levels through intratracheal
nebulisation with synthetic miR-34 RNA mimic molecules reversed
hypoxia-induced PAH in rats, attributed to down-regulation of VSMC
PDGFRA expression and associated perturbation of their proliferation
[166].

5.2.6. miR-96
Levels of miR-96 are also reduced within the lungs of mice and

humans with PAH, particularly females [167]. Relatedly, the incidence
of PAH is 3-to-4-fold higher in females than males, suggesting female
sex hormones such as oestrogen may exert causative roles in PAH de-
velopment [168]. Indeed, the addition of oestrogen in the form of 17β-
estradiol reduced human pulmonary artery VSMC miR-96 expression
while lung miR-96 levels are increased in oestrogen-depleted female
mice [167]. Accordingly, tail vein delivery of a miR-96 mimic pre-
vented PAH development in a mouse hypoxia model, associated with
down-regulation of the miR-96 target HTR1B, which has previously
been shown to promote VSMC proliferation and PAH formation [169].

5.2.7. miR-130/-301
A systems biology approach to evaluate key microRNA networks

associated with PAH progression identified the miR-130/-301 family as
a potential master regulator co-ordinated through regulation of cellular
proliferation [143]. Confirmatory studies in mouse, rat and sheep PAH
models demonstrated miR-130/-301 family expression is induced
during disease development, while inhibition of miR-130/-301 using
intrapharyngeal delivery of a specific antagomir halted PAH develop-
ment in a mouse hypoxia model [143]. Further evaluation revealed the
miR-130/-301 family down-regulates PPARγ expression and subse-
quently suppresses miR-204 and miR-424/503, which exert anti-pro-
liferative effects on pulmonary artery SMCs and ECs respectively [143].
Supportingly, miR-204 expression is decreased in human and mouse
experimental PAH and its restoration through delivery of synthetic

Table 4
Results of in vivo animal studies evaluating the effect of modulating select microRNA on pulmonary arterial hypertension (PAH).

miRNA(s) Role Experimental model – method of microRNA modulation Cellular origin Target mRNA References

miR-17 Detrimental Chronic hypoxia-induced mouse model & monocrotaline-induced – miR antagomir VSMC CDKN1A [161]
Decreased pulmonary vascular remodelling & reduced right ventricular systolic
pressure (RVSP)

miR-20 Detrimental Chronic hypoxia-induced mouse model – miR antagomir VSMC BMPR2 [162]
miR-21 Detrimental Chronic hypoxia-induced mouse model – miR antagomir – decreased vasc pulm

remodelling
VSMC BMPR2, DDAH1, RHOB,

PDCD4
[163]

Detrimental Chronic hypoxia-induced mouse model – miR antagomir – decreased vasc pulm
remodelling & RSVP

VSMC [142]

Beneficial Chronic hypoxia-induced mouse model – miR knockout EC [141]
Beneficial Chronic hypoxia-induced mouse model – miR knockout & miR over-expression EC [164]
No effect Chronic hypoxia-induced mouse model – miR antagomir VSMC [161]

miR-27 Detrimental Monocrotaline-induced mouse model – miR antagomir EC PPARG [165]
miR-34 Beneficial Chronic hypoxia-induced rat model – miR mimic VSMC PDGFRA [166]
miR-96 Beneficial Chronic hypoxia-induced mouse model – miR mimic VSMC HTR1B [167]
miR-130/301 Detrimental Chronic hypoxia-induced mouse model – miR antagomir VSMC/EC PPARG [143]
miR-140 Beneficial Monocrotaline-induced rat model – miR mimic VSMC SMURF1 [150]
miR-143 Detrimental Chronic hypoxia-induced mouse model – miR knockout & miR antagomir VSMC ??? [171]

No effect Chronic hypoxia-induced mouse model – miR antagomir VSMC [144]
miR-145 Detrimental Chronic hypoxia-induced mouse model – miR knockout & miR antagomir VSMC ??? [144]
miR-204 Beneficial Monocrotaline-induced rat model – miR mimic VSMC SHP2 [151]
miR-210 Detrimental Chronic hypoxia-induced mouse model – miR knockout & miR antagomir EC ??? [172]
miR-221 Detrimental Chronic hypoxia-induced rat model – miR antagomir VSMC AXIN2 [145]
miR-223 Beneficial Monocrotaline-induced rat model – miR mimic VSMC PARP1 [152]
miR-424 Beneficial Monocrotaline-induced rat model, and chronic hypoxia-induced rat model – miR

lentiviral over-expression
EC FGF2, FGFR1 [170]

miR-451 Detrimental Chronic hypoxia-induced mouse model – miR antagomir VSMC ??? [173]
No effect Chronic hypoxia-induced mouse model – miR knockout VSMC ???

miR-503 Beneficial Monocrotaline-induced rat model, and chronic hypoxia-induced rat model – miR
lentiviral over-expression

EC FGF2, FGFR1 [170]
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miR-204 reduced disease severity in a rat monocrotaline model, ap-
portioned to reduced SMC proliferation and their susceptibility to
apoptosis [151]. Similarly, levels of miR-424 and miR-503 are reduced
in PAH and reconstitution in two experimental rat models prevented
and rescued PAH development [170]. Mechanistic studies revealed that
apelin regulates the expression of miR-424 and miR-503, and during
PAH formation all three are down-regulated in pulmonary artery ECs
and is associated with increased expression of FGF2 and FGFR1, pro-
moting proliferation of pulmonary artery ECs and SMCs [170].

5.2.8. miR-140
Evaluation of circulating microRNA expression in patients with PAH

or other forms of pulmonary hypertension consistently revealed miR-
140 expression is decreased, and validative findings in two rodent ex-
perimental models also showed reduced miR-140 levels within diseased
lung tissues [150]. Treatment with nebulised miR-140 mimic prevented
and rescued experimental PAH in both the rat monocrotaline-induced
and hypoxia-induced models [150]. A regulator of BMP signalling in
pulmonary artery VSMCs, SMURF1, was identified as a miR-140 target,
and in accordance with the miR-140 rescue experiments, SMURF1 de-
letion prevented PAH development in the hypoxic rat model [150].

5.2.9. miR-143/-145
The expression of miR-143 is upregulated during PAH in humans

and animal models, possibly in a TGF-β1-dependent manner, and has
been proposed to promote pulmonary artery VSMC migration [171].
Furthermore, pulmonary artery VSMC-derived exosomes have been
shown to exert paracrine pro-migratory and pro-angiogenic effects on
pulmonary artery ECs in vitro, although the mechanism and direct
target(s) of miR-143 within the ECs is yet to be elucidated [171]. Ac-
cordingly, pharmacological inhibition or genetic ablation of miR-143 in
mice prevented the development of hypoxia-induced PAH [171]. In
contradiction, a similar study by the same group reported that sub-
stantial down-regulation of miR-143 expression using a specific miR-
143 antagomir had no effect on PAH development, using the same
hypoxia-induced mouse model [144], although the authors propose this
disparity is due to a lack of statistical power because of small group
sizes in the earlier study [171]. However, using similar group sizes,
Caruso and colleagues were able to show that anti-miR-145 delivery or
miR-145 deficiency protected mice from hypoxia-induced PAH, and
demonstrated that BMPR2/TGF-β signalling may regulate the aberrant
miR-145 expression observed during PAH [144].

5.2.10. miR-210
The expression of miR-210 is elevated in pulmonary artery en-

dothelial cells and the plasma of humans with PAH and experimental
mouse models [172]. As expected, genetic ablation of miR-210 or an-
tisense inhibition of miR-210 specifically in vascular endothelium
protects mice from hypoxia-induced PAH development [172].

5.2.11. miR-221
Recent evidence has shown that miR-221 is elevated within lung

samples and isolated pulmonary artery VSMCs from PAH patients and
animal models of PAH, and miR-221 directly targets a negative reg-
ulator of the β-catenin signalling pathway AXIN2, to promote VSMC
proliferation [145]. Consequently, inhibition of miR-221 attenuates the
progression of hypoxia-induced PAH in rats [145].

5.2.12. miR-223
A protective role for miR-223 in PAH has been advocated as miR-

223 expression is reduced within the lungs of patients with PAH and
isolated pulmonary artery VSMCs [152]. Indeed, restoration of miR-223
levels through delivery of a miR-223 mimic into the lungs of rats with
monocrotaline-induced PAH reversed the disease [152], and this ben-
eficial effect was associated with down-regulation of the miR-223 target
PARP1 and therefore attenuating VSMC proliferation and survival

[152].

5.2.13. miR-451
Finally, in vivo findings have shown that acute suppression of miR-

451 with a specific antagomir retarded disease severity in a hypoxia-
induced PAH rat model, attributed to reduced pulmonary artery VSMC
migration [173]. However, the same study also reported that chronic
genetic ablation of miR-451 in mice has no beneficial effect, which the
authors suggest may be due to pathway redundancy compensating for
long-term miR-451 loss [173].

As can be observed from above, there has been a notable number of
studies evaluating the expression patterns and functional roles of
microRNAs in PAH. Using primarily rodent models of PAH induced by
hypoxia or monocrotaline administration, specific microRNAs have
been identified which can exert protective effects and those that display
deleterious properties (summarised in Fig. 1). Moreover, knowledge has
been gained into which cells produce certain microRNAs and the sig-
nalling pathways which regulate their expression. Indeed, through such
approaches, the bone morphogenic gene and other TGF-β superfamily
members alongside the PPARγ and apelin pathways appear to be no-
table key networks in the pathogenesis of PAH, through either their
regulation of select microRNAs or reciprocal modulation by explicit
microRNAs. Furthermore, identification and validation of key targets of
microRNAs which are common to deleterious biological processes in
PAH, such as uncontrolled VSMC proliferation, may aid stratification of
therapeutic desirable microRNAs. However, due to the wide range of
predicted targets for each microRNA, this limits the therapeutic ap-
proach of using systemic delivery to combat PAH progression. It would
prove more efficacious to use a more localised delivery approach such
as intranasal application, particularly to target or over-express en-
dothelial microRNA [170]. Therefore, the identification of a key mi-
croRNA in combination with the ideal delivery method may prove a
positive approach for the development of microRNA-based therapies to
prevent PAH progression.

6. Conclusions

Over the last decade there has been a large body of published work
describing the regulatory role of both specific and clusters of related
microRNA exert on the function of vascular and inflammatory cells,
alongside effects on cardiovascular pathologies using animal models. In
association with human pathological and clinical findings, it is now
clear that microRNAs play key roles in a number of cardiovascular
diseases and that their modulation may be exploited for therapeutic
purposes. Although possibly through a biased approach, several key
processes are identified to be under direct microRNA regulation during
disease progression, notably, lipoprotein homeostasis, regulation of
endothelial cell inflammation, modulation of inflammatory cell re-
cruitment and activation, maintenance of VSMC function and pheno-
type, and dysregulated proteolysis. These functions play prominent
roles in the pathogenesis of atherosclerosis, aneurysms, neointimal
formation and PAH, and unsurprisingly, select microRNA have been
identified to affect more than one cardiovascular disease (see Fig. 2).
For example, miR-21 is increased in human vessels harbouring ather-
osclerosis, AAA, restenosis or PAH-related plexi-form lesions, sug-
gesting an unfavourable role for this microRNA in the progression of
these cardiovascular diseases. However, modulating miR-21 expression
in relevant animal models has revealed a protective role for miR-21 in
atherosclerosis and AAA, while a detrimental role has been proposed in
restenosis, whereas PAH strategies to control miR-21 levels have pro-
vided protective, neutral, and detrimental effects. Such findings de-
monstrate the requirement to consider both off-target effects of a spe-
cific microRNA but also effects on other pathologies a patient may be
possessing and may consequently exert deleterious effects. For instance,
limiting VSMC growth may provide an effective strategy to retard in-
timal growth after stenting or vein graft implantation, but within an
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atherosclerotic plaque can impede stability by hindering maintenance
of the protective fibrous cap. Similar discrepancies have been noted for
miR-145 with regards to atherosclerosis and restenosis, probably
through mis-interpretation of findings from systemic interventions and/
or analysis of multi-cellular tissues. Indeed, underpinning research has
shown that miR-145 plays a prominent role in regulating VSMC phe-
notypic modulation and consequent function, which may exert di-
vergent effects on atherosclerosis and restenosis, where VSMC growth is
beneficial and detrimental respectively. In fact, it is important to con-
sider and elucidate the cell-type(s) responsible for alterations in mi-
croRNA expression when conducting whole tissue analysis, to ensure
the correct extrapolation and interpretation of the findings, especially
biological connections between specific microRNA and potential target
genes [72].

Nonetheless, as microRNAs can target multiple genes within
common regulatory networks, controlling microRNAs may be exploited
to effect biological functions and pathways within diseased arteries and
other related organs such as the liver, myocardium and spleen.
Furthermore, utilising a custom selection of microRNA inhibitors and/
or mimics may provide an appealing therapeutic approach to manage
single and co-existing cardiovascular diseases and their clinical com-
plications. Further improvements in delivery strategies will also prove

favourable, including cell-targeted delivery, as recently demonstrated
using microRNA-containing microparticles enriched with miR-146a and
miR-181b [174]. Such cell type-specific strategies will be necessary to
exploit the therapeutic potential of several promising anti-athero-
sclerotic approaches to modulate select microRNA, such as targeting
miR-33 solely in macrophages to ensure potentially damaging off-target
effects within the liver are negated. Although no microRNA-based
therapeutics have advanced into clinical testing for cardiovascular
pathologies, several have reached clinical development for other dis-
eases [175]. Notably, modified antisense inhibitors of miR-122 for he-
patitis C, and chemically-enhanced mimics to over-express miR-16,
miR-29, or miR-155 to target differing forms of cancer [175]. These
developments hopefully pave the way for clinical studies utilising mi-
croRNA therapeutics in cardiovascular diseases but will require iden-
tification of the most promising key candidate microRNA or microRNA
targets for each individual disease type. Furthermore, refinement and
further development of novel delivery and cell-targeting platforms will
avoid potential off-target effects and toxicities and facilitate the use of
microRNA therapeutics in the cardiovascular clinical arena.

Fig. 2. MicroRNA identified in animal studies to exert beneficial or detrimental effects on cardiovascular diseases.
This diagram illustrates the microRNA determined detrimental (red), neutral (black), or beneficial (green) in animal models of atherosclerosis, restenosis, pulmonary
arterial hypertension (PAH), or abdominal aortic aneurysm (AAA). MicroRNA depicted by two colours have shown differing effects, while microRNA in grey boxes
are common between AAA and restenosis or atherosclerosis and PAH.
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