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Abstract
Studies designed to examine effects of fat mass reduction (including lipodystrophy and lipectomy) on human serum total and 
LDL-cholesterol concentrations are inconsistent. The purpose of this study was to examine effect of partial lipectomy in rats 
(as an experimental model of fat mass reduction in humans) on (1) circulating total cholesterol, LDL-cholesterol + VLDL-
cholesterol and HDL-cholesterol concentrations, and (2) factors which may affect serum cholesterol concentrations such 
as: (a) liver LDL-receptor level, (b) expression of liver PCSK9 and (c) circulating PCSK9 concentration. Reduction of rat 
adipose tissue mass resulted in an increase in circulating total and LDL + VLDL—cholesterol concentrations, which was 
associated with (a) decrease in liver LDL-R level, (b) increase in liver PCSK9 expression, and (c) increase in circulating 
PCSK9 concentration as compared with sham controls. These changes were accompanied by elevated liver HNF1α (and 
HNF4α) mRNA levels. Silencing HNF1α in HepG2 cells by siRNA led to decrease in PCSK9 mRNA levels. This sug-
gests that overexpression of HNF1α gene in liver of lipectomized rats can lead to overproduction of PCSK9. In conclusion, 
up-regulation of PCSK9, due to overexpression of HNF1α gene in liver of lipectomized rats and subsequently increase in 
circulating PCSK9 concentration lead to decrease in liver LDL-R level. This may contribute, at least in part, to an increase 
in the concentration of circulating cholesterol in rats with reduced fat mass. These findings provide a possible explanation 
for the molecular mechanism of hypercholesterolemia observed sometimes after reduction of fat mass in human.
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Introduction

Liposuction is popular esthetic surgery to remove signifi-
cant amount of subcutaneous adipose tissue within a short 
period of time, recommended by the American Academy 
of Cosmetic Surgery [1]. However, the metabolic conse-
quences of liposuction or abdominal lipectomy, especially 
changes in serum lipids concentrations, are still controversial 

[2]. The results of previous studies performed in humans 
have shown: (a) no change [3–7], (b) decrease [8–11], or 
(c) increase [12] in one or few cardiovascular risk factors 
including dyslipidemia.

Conflicting results regarding dyslipidemia character-
ized by: (a) elevated serum total and LDL-cholesterol, (b) 
elevated serum TAGs and (c) reduction of serum HDL-cho-
lesterol in patients with lipodystrophy were also observed 
[13–15]. Moreover, individuals with lipodystrophy are at 
significantly increased risk of atherosclerosis and its con-
sequences like heart disease [16]. Also the results concern-
ing the effect of liposuction on serum cholesterol levels are 
inconsistent [3–11]. Thus, further studies are needed to clar-
ify the effect of fat loss on lipid metabolism at the molecular 
level. It seems that, the lipectomy model offers some insight 
into how fat mass reduction may affect hypercholesterolemia 
sometimes observed in individuals after weight loss.

Lipectomy performed in obese rat (obesity induced by 
animal feeding with high fat and high cholesterol diet) had 
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no significant effect on serum concentration of total, LDL- 
and HDL- cholesterol, but caused higher concentrations of 
TAGs [17]. Recently we have shown, that partial surgical 
removal of white adipose tissue in rats is associated with 
the parallel up-regulation of liver HNF1α (and HNF4α) and 
genes encoding proteins involved in synthesis, assembly and 
secretion of TAGs (including ApoB-100 and microsomal 
triglyceride transfer protein—MTP) as well as serum TAGs 
concentration [18]. Up-regulation of gene encoding HNF4α 
was also observed by Ling et al. [17] in lipectomized rats as 
compared to control animals. Since VLDL and LDL contain 
ApoB-100 and plasma ApoB-100 concentrations correlates 
with plasma LDL-cholesterol concentrations [19], one can 
suppose that increased apoB-100 synthesis and its plasma 
concentration is also associated with elevated cholesterol 
concentrations in lipectomized rats.

It is well documented that HNF1α and HNF4α contrib-
ute to enhanced expression of genes encoding: (a) ApoB-
100 [20, 21] and (b) proprotein convertase subtilisin/kexin 
9 (PCSK9) in liver, what is associated with an increase in 
serum PCSK9 concentrations and consequently with ele-
vated serum cholesterol concentration [22–26]. PCSK9 plays 
a pivotal role in posttranslational regulation of LDL-R level 
and subsequently regulation of serum LDL-cholesterol con-
centration [27]. Several papers reported a positive correla-
tion between concentrations of PCSK9 and LDL-cholesterol 
in circulation [28–31]. Loss-of-function mutations in human 
HNF4α cause maturity—onset diabetes of the young type 
1 (MODY1) and decrease of plasma cholesterol concentra-
tions [32–35]. Moreover HNF4α is an upstream activator of 
HNF1α [36], which in turn affects the expression of genes 
involved in cholesterol and other lipids metabolism [37, 38]. 
Thus, reciprocal relationship between HNF1α and HNF4α 
[39, 40] may play important role in regulation of serum cho-
lesterol concentrations.

The aim of this study was to verify if an increase in 
HNF1α and HNF4α gene expression in the liver is associ-
ated with activation of PCSK9 production, which through 
degradation of LDL-R may lead to increase in serum cho-
lesterol concentrations in lipectomized rats.

Methods

Animals and surgeries

The rats were fed ad libitum with standard commercial chow 
(Laborfed, Poland). Briefly, 12-week-old male Wistar rats 
were randomly divided into two groups: (1) lipectomized 
rats (n = 10) subjected to resection of epidydymal and ret-
roperitoneal WAT, and (2) controls (n = 10) that under-
went sham surgery: anesthesia and incision of the skin 
and muscles without the removal of WAT. After 30 days, 

the lipectomized rats were anesthetized again with sub-
sequent removal of subcutaneous WAT, and the controls 
were subjected to another sham surgery. Mean weight of 
WAT removed from the lipectomized rats was 7.7 ± 0.6 g 
(3.8 ± 0.3 g, 2.0 ± 0.4 g, and 1.9 ± 0.4 g for inguinal, epidy-
dymal, and retroperitoneal WAT, respectively). The lipec-
tomy was performed as the two-step procedure in order to 
reduce perioperative mortality and the surgeries were con-
ducted carefully to avoid bleeding. All animals received 
human care in compliance with the guidelines for the pro-
tection of animals used for scientific purposes (Directive, 
2010/63 EU, Decision, 2012/707/UE and RD 53/2013). 
All the procedures involving animals and their care were 
approved by the Institutional Ethics Committee. The rats 
were anesthetized and killed by decapitation (between 
8:00 a.m. and 10:00 a.m.) after 90 days from the first sur-
gery. Blood samples from the carotid artery were collected 
to the tubes without anticoagulant, centrifuged at 3000 × g 
for 15 min at 4 °C, and the serum was stored at − 80 °C. At 
the end of experiments the liver fragments were obtained, 
immediately frozen in liquid nitrogen and stored at − 80 °C 
until analysis. Epidydymal, retroperitoneal and inguinal 
WAT from the controls, as well as the residual WAT from 
the lipectomized animals, were removed and immediately 
weighted.

Serum PCSK9 determination

Commercial ELISA kit was used to estimate PCSK9 in rat 
serum (CSB-EL017647RA, CUSABIO). Assay was per-
formed according to the manufacturer instruction.

Serum cholesterol concentrations assays

Serum total cholesterol concentration was determined using 
a routine method, at the Central Clinical Laboratory, Medi-
cal University of Gdansk. Serum HDL- and LDL- + VLDL-
cholesterol was measured using HDL and LDL/VLDL 
Quantitation Kit (Sigma, MAK045). Serum samples were 
mixed with Precipitation Buffer (2:1), incubated for 10 min 
at room temperature and centrifuged at 2000 × g for 10 min. 
The precipitate contains LDL/VLDL and the supernatant 
HDL fractions of cholesterol. Sediment was collected and 
centrifuged again to remove all remaining trace HDL super-
natant. Precipitate was resuspended in Phosphate Buffered 
Saline (PBS) and the rest of the experiment was performed 
according to the manufacturer instruction.

Liver cholesterol assays

Total liver cholesterol, cholesterol esters and free cholesterol 
were measured using Cholesterol Quantitation Kit (Sigma, 
MAK043). In brief: 10 mg of liver tissue was extracted 
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with 200 µL of chloroform:isopropanol:IGEPAL CA-630 
(7:11:0.1) (Sigma, I8896) in a microhomogenizer. Samples 
were centrifuged for 10 min at 13,000 × g in order to remove 
insoluble material. Organic phase was transferred to a new 
tube and dried at 50 °C and further placed under vacuum 
for 30 min to remove all organic solvents. Dried lipids were 
resolved in 200 µL of the Cholesterol Assay Buffer, vortexed 
and sonicated until mixture became homogenous. Choles-
terol was measured using fluorometric method (λex = 535/
λem = 587 nm). Cholesterol esterase was used to hydrolyze 
cholesterol esters in order to measure cholesterol esters and 
total cholesterol in samples tested.

Cell culture and small interfering RNA (siRNA) 
transfection

Human hepatocellular carcinoma cell line HepG2 was 
obtained from ATCC (ATCC; Manassas, VA). Cells were 
maintained in standard Minimum Essential Eagle’s Medium 
(MEM; Sigma) with the addition of 2 mM glutamine, 1% 
non-essential amino acids, 10% fetal bovine serum, penicil-
lin (100 IU per mL), and streptomycin (100 µg per mL). 
Prior to small interfering RNA (siRNA) transfection, cells 
were passaged in 6-well plates at 105 cells per well and cul-
tured at 37 °C and grown to approximately 70% confluence. 
Two different sequences of siRNA targeting HNF1α were 
used: (a) Hs-TCF1-2, No SI00011620, and (b) Hs-TCF1-5, 
No SI03095015. AllStars Negative Control, No 1027280 
was used as negative control (siRNA NC). All siRNAs were 
obtained from Qiagen (Crawley, UK). HepG2 cells treated 
by lipofectamine were used as controls (CON). HepG2 cells 
were transfected with siRNA at concentrations of 10 nM, 
using 0.1% (v/v) Lipofectamine RNAiMAX (Invitrogen, 
Paisley, UK), as described in the manufacturer’s protocol. 
Transfection reactions were performed in serum-free Opti-
MEM (Invitrogen, Paisley, UK). Cells were harvested after 
48 h and used for total RNA isolation.

RNA isolation and mRNA level determination

Total cellular RNA was isolated from the frozen liver sam-
ples and HepG2 cell pellets with a commercial RNA iso-
lation kit (Total RNA Mini, A&A biotechnology, Poland). 
RNA concentration was determined on the basis of absorb-
ance at 260 nm; all the samples showed 260/280 nm absorb-
ance ratio of about 2.0. Prior to the reverse transcription, 
the RNA samples were treated with RNase-free DNase I 
(Fermentas, International Inc., Canada). First strand cDNA 
synthesis and the determination of mRNA levels by RT-
PCR were performed as described previously [41], using a 
CFX Real-Time Detection System (Bio-Rad Laboratories 
Inc., USA). The primer sequences used in this study are 
presented in Table 1. β-actin mRNA was used as an internal 

standard. Relative quantities of the transcripts were calcu-
lated using the 2−ΔΔCT formula [42]. The amplification of 
specific transcripts was further confirmed on the basis of the 
melting curve profiles.

SDS‑PAGE and immunoblotting

Frozen rat liver was homogenized in 20 mM Tris–HCl buffer 
(pH 7.8) containing 0.2% Triton X-100 and protease inhibi-
tor cocktail (Sigma, USA), and then centrifuged (15 000 × 
g, 20 min, 20 °C). Aliquots of the obtained supernatants con-
taining 10 µg of protein were separated by 10% SDS-PAGE 
and electroblotted to Immuno-Blot™ PVDF Membrane 
(Bio-Rad Laboratories, Hercules CA, USA). The mem-
brane was blocked by incubation with blocking buffer, and 
then incubated with rabbit polyclonal anti- HNF4α antibody 
(NBP1-00876, Novusbio), mouse monoclonal anti-HNF1α 
antibody (GTX12064, GeneTex), rabbit polyclonal anti- 
LDL-Receptor antibody (AB30532, ABCAM), goat poly-
clonal anti-PCSK9 (AF3985-SP, R&D Systems), and rab-
bit polyclonal anti-actin antibody (A 5060, Sigma–Aldrich). 
Secondary HRP-conjugated antibodies were obtained from 
Sigma Aldrich (A0545, A9044, A5420). The reactions were 
visualized with a SuperSignal West Pico chemiluminescent 
substrate (Thermo Fisher Scientific Inc., Rockford, IL, 
USA). The bands (visible on the film after the chemilumi-
nescent detection) were compared to molecular mass protein 
markers (SM1811) obtained from Fermentas, visible on the 
membrane after electroblotting. The film was adjusted to 
the membrane in such way that the membrane edges were 
visible on the film. Blots were analyzed using Quantity One 
program, version 4,0 (Bio-Rad).

Statistical analysis

Statistical analysis was conducted using a MS Excel 2010 
spreadsheet (Microsoft). All the data were expressed as 
mean values (± SD) for the controls and lipectomized rats. 
The significance of differences was analyzed with Student 

Table 1   The sequences of primers used in this study

Gene Primer sequence (5′–3′)

HNF1α F: AAG​ATG​ACA​CGG​ATG​ACG​ATGG​
R: GGT​TGA​GAC​CCG​TAG​TGT​CC

HNF4α F: AAA​TGT​GCA​GGT​GTT​GAC​CA
R: CAC​GCT​CCT​CCT​GAA​GAA​TC

PCSK9 F: TGG​CTG​CAT​GAC​ATT​GCT​TCTC​
R: GCA​CTG​GAG​AAC​CAC​ACA​GG

β-actin F: GAA​ATC​GTG​CGT​GAC​ATT​AAG​
R: GCT​AGA​AGC​ATT​TGC​GGT​GGA​
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t-test. The differences were considered significant at p 
value < 0.05.

Results

The effects of lipectomy on the mass of inguinal, retrop-
eritoneal and epididymal WAT were previously reported 
[41]. Briefly, lipectomy resulted in a complete reduction of 
inguinal adipose tissue and approximately 80% reduction of 
retroperitoneal and epididymal adipose tissue as compared 
to the control rats. Consequently, the overall reduction of 
sum inguinal, retroperitoneal, and epididymal adipose tis-
sue mass in the lipectomized rats corresponded to approxi-
mately 90%. However, one has to keep in mind that other 
anatomical WAT sites like mesenteric, gluteal, perirenal, and 
interscapular, whose corresponds to approximately 75–80% 
of total adipose tissue in rats [43], has not been dissected 

(except of mesenteric WAT). Mean baseline body weights 
of the controls and lipectomized rats were essentially simi-
lar (312 ± 18 g vs. 315 ± 19 g). Mean final body weights 
determined at the end of the experiment were 403 ± 21 g 
and 407 ± 17  g for the controls and lipectomized rats, 
respectively. Similar final body weight for the controls and 
lipectomized rats, suggested that partial lipectomy induces 
a compensatory increase of adipose tissue mass located in 
different anatomical sites, including visceral fat. Previously, 
we have observed significant increase of mesenteric WAT 
mass after lipectomy as compared to control rats [44]. It 
should be noted that in normal weight women abdominal 
liposuction also induces increase of visceral fat [45].

Partial lipectomy was reflected by an increase in the 
serum concentration of total cholesterol (Fig.  1a), and 
VLDL-cholesterol + LDL- cholesterol (Fig. 1b). Simul-
taneously, slight but statistically significant decrease in 
serum HDL-cholesterol concentration in lipectomized rats 
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Fig. 1   Serum cholesterol concentrations: a total serum cholesterol (TCH); b VLDL + LDL-cholesterol; c HDL-cholesterol and d serum HDLC/
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was found (Fig. 1c). Subsequently serum HDL-cholesterol/
VLDL-Cholesterol + LDL—Cholesterol ratio significantly 
decreased in lipectomized rats as compared to control ani-
mals (Fig. 1d). The increase of serum total cholesterol and 
VLDL-cholesterol + LDL- cholesterol concentrations was 
associated with an increase in the liver tissue of: (a) total 
cholesterol (Fig. 2a, b) free cholesterol (Fig. 2b, c) choles-
terol esters (Fig. 2c) content. Moreover there was a strong 
negative correlation between the increase of total serum 
cholesterol and weight of total fat that resembled after two 
surgeries (r = − 0.79; p < 0.05).

Changes in serum and liver cholesterol concentration 
after partial lipectomy were associated with significant 
decrease in the liver LDL-receptor (LDL-R) determined 
by Western blot (Fig. 3). The decrease in liver LDL-R was 
associated with higher level of PCSK9 mRNA in liver of 
lipectomized rats (Fig. 4a). Different liver expression levels 
of PCSK9 mRNA observed in the controls and lipectomized 
rats were reflected by intergroup differences in the liver lev-
els of PCSK9 protein documented on Western Blot analysis 
(Fig. 4b) and serum PCSK9 concentrations (Fig. 4c). Thus, 
it is very likely that enhanced expression of gene encoding 
liver PCSK9 leads to higher serum PCSK9 concentration 
(Fig. 4d) and contributes to the decrease in the liver LDL-R 
(Fig. 3). In turn, these changes probably contribute to the 
increase in serum total and VLDL + LDL-cholesterol con-
centrations (Fig. 2). This assumption was supported by: (a) 
very strong negative correlation found between the serum 
PCSK9 concentration and the liver LDL-R level (r = − 0.92; 
p < 0.05) and (b) very strong positive correlation between 
serum VLDL-cholesterol + LDL-cholesterol and serum 
PCSK9 level (r = 0.95; p < 0.05).

As expected, partial lipectomy was reflected by approxi-
mately three-fold increase in the liver HNF1α (Fig. 5a) and 
about five-fold increase in HNF4α (Fig. 5b) mRNA levels. 
The different liver levels of HNF1α and HNF4α mRNA of 
the controls and lipectomized rats were reflected by inter-
group differences in the HNF1α and HNF4α protein levels 
documented on Western Blot analysis (Fig. 5c—representa-
tive western blots and Fig. 5d, e—densitometric analysis of 
Western Blots bands).

The pattern of changes in the liver HNFs mRNA and 
protein levels of the controls and lipectomized rats resem-
bled the one observed in PCSK9 mRNA and protein levels 
(Figs. 4, 5, respectively). Moreover, strong positive corre-
lations were found between the liver levels of PCSK9 and 
HNF1α mRNA (r = 0.82, p < 0.05). Thus one can suppose 
that up-regulation of HNF1α and HNF4α plays a key role 
in the increase of PCSK9 gene expression in lipectomized 
rats. To confirm this assumption HNF1α deregulation was 
performed and its effect on PCSK9 gene expression in hepat-
ocyte cells (HepG2) was examined. As shown in Fig. 6 the 
decrease in HNF1α mRNA levels by two different siRNA 

(TCF 1–2 and TCF 1–5) was associated with the decrease in 
PCSK9 mRNA level. Together, the results presented above, 
especially parallel expression of PCSK9 and HNF1α both 
in vivo and in vitro, suggest that up-regulation of HNF1α 
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contributes to the increase in liver PCSK9 gene expression 
and leads to hypercholesterolemia in lipectomized rats.

Discussion

This study was the first to show that reduction of fat mass 
induced by the surgical removal of total inguinal and major-
ity of retroperitoneal and epididymal adipose tissue in rats 
may be associated with up-regulation of gene encoding liver 
PCSK9 and subsequently with higher level of PCSK9 in 
serum. This in turn may lead to decrease in liver LDL-R 
and elevated serum cholesterol concentration. PCSK9 is a 
serine protease synthesized and released mainly by liver, 
which binds to LDL-R on the surface of hepatocyte, forming 
a complex that is internalized and degraded [46]. By promot-
ing degradation of LDL-R, PCSK9 prevents its recycling to 
the hepatocyte membrane, leading to a substantial reduction 
of LDL-R level [47]. As shown in this paper, the increase in 
expression of gene encoding PCSK9 and increase in serum 
PCSK9 concentration (Fig. 4) were associated with the 
decrease in LDL–R level (Fig. 3) and increase in the serum 
and liver cholesterol concentrations (Figs. 1, 2). This sug-
gests that the up-regulation of gene encoding PCSK9 in liver 
and subsequently elevated serum PCSK9 concentration may 
contribute to the decrease in liver LDL-R after lipectomy. 

Therefore, the changes in serum PCSK9 concentration and 
the decrease in liver LDL-R may contribute to the increase 
in the serum concentration of cholesterol after lipectomy. 
PCSK9 is expressed in other organs including lungs [48]. 
Thus, it is not excluded that production of PCSK9 by lungs 
contributes also to the increase in serum concentration of 
this protein. However, the effect of lipectomy on regulation 
of lung PCSK9 expression requires further studies.

Taking into account the results of previous studies in 
which HNF1α and HNF4α were shown to be transcrip-
tional activators of gene encoding PCSK9 in liver [23, 25, 
49], and our hereby presented findings, we hypothesize that 
these hepatocyte nuclear factors through transcriptional 
up-regulation of gene encoding PCSK9 might contribute 
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to the hypercholesterolemia observed in lipectomized rats. 
The hypothesis is based on: (a) the fact that gene encoding 
PCSK9 is a target of HNFs [23, 25, 49], (b) strong posi-
tive correlation between hnf1α and pcsk9 expression found 
in liver, (c) strong negative correlation between HNFs and 
LDL-R protein levels determined by western blot, and (d) 
strong negative correlation between serum PCSK9 concen-
tration and liver LDL-R level.

Pivotal role of HNFs (especially HNF4α) in maintaining 
cholesterol homeostasis comes also from the experimental 
data obtained with liver Hnf4α −/− mice. For instance, serum 
cholesterol concentrations were shown to be significantly 
reduced in liver specific Hnf4α −/− mice [20]. Similarly, 
acute loss of liver Hnf4α in mice, generated by adenovi-
rus expressing small hairpin RNA corresponding to Hnf4α, 
leads to hypocholesterolemia [21]. These results suggest that 
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liver Hnf4α plays an important role in regulation of serum 
cholesterol concentrations. Yin et al. [21] suggests that the 
decrease in serum cholesterol concentration in mice after 
acute loss of liver Hnf4α is caused by inhibition of: (a) de 
novo cholesterol biosynthesis, (b) VLDL secretion, and (c) 
HDL formation. The results presented here indicate that 
HNFs may affect serum cholesterol concentration via regu-
lation of serum PCSK9 level and consequently LDL-R level 
in hepatocytes. It means that up-regulation of liver HNFs in 
lipectomized rats may lead to increase of serum cholesterol 
concentration through decrease in LDL-R and increase in 
cholesterol synthesis.

In addition to its role in degradation of LDL-R, PCSK9 
promotes degradation of VLDL-R [50] and fatty acid 
translocase (also known as CD36), what contributes to 
decrease in VLDL and long chain fatty acid [51] uptake. 
Thus, high level of serum PCSK9, promoting VLDL-R and 
CD36 degradation, could also contribute to elevated serum 
VLDL–cholesterol and FFA level (Fig. 1b) leading to hyper-
triglyceridemia found in lipectomized rats [17, 18].

As already mentioned in the “Introduction” section, up-
regulation of gene encoding HNF4α was also observed in 
lipectomized obese rats [17]. Given the pivotal role of HNFs 
in up-regulation of gene encoding PCSK9, one would expect 
elevated concentration of serum PCSK9 and cholesterol. 
Surprisingly, lipectomy performed in this experimental 
model has no significant effect on serum concentration of 
total, LDL- and HDL-cholesterol [17]. Since serum PCSK9 
concentrations (as well as pcsk9 regulation) has not been 
presented by Ling and co-workers [17], the reasons for the 
discrepancy between results presented here and Ling and 
co-workers [17] is unknown. We can speculate that different 
diets used in our experiments (normal laboratory diet) and in 
Ling and co-workers experiments (high fat and cholesterol 
diet) could be the reason.

Besides parallel up-regulation of genes encoding liver 
HNFs and PCSK9, the role of HNFs in regulation of gene 
encoding PCSK9 was confirmed by the results presented 
in Fig. 6, which shows that silencing of HNF1α with small 
interfering RNA (siRNA) led to the decrease in in PCSK9 
mRNA levels in HepG2 cells. However, the reasons behind 
the increased expressions of Hnf1α and Hnf4α in the rat 
liver after surgical removal of adipose tissue are still unclear. 
The expression of gene encoding Hnf4α was postulated to 
be down-regulated by cytokines including IL-1β [52, 53], 
and removal of adipose tissue was shown to be reflected 
by a decrease in the circulating levels of pro-inflammatory 
cytokines [54, 55]. Thus, it can be hypothesized that surgical 
removal of adipose tissue in rats may result in a decrease in 
cytokine levels, which in turn leads to increase in the expres-
sion of Hnf4α gene.

In view of the pivotal role of HNF1α and HNF4α in 
the lipid metabolism and maintenance of serum choles-
terol concentration in lipectomized rats, one may ask how 
these findings translate onto humans subjected to liposuc-
tion (or humans with lipodystrophy). At present we can 
only hypothesize that similar to the lipectomized rats, 
patients after liposuction may present with: (a) increased 
liver levels of HNF1α, HNF4α, and PCSK9; (b) increased 
circulating PCSK9 concentration; and (c) decreased liver 
level of LDL-R and resultant increase of serum cholesterol 
concentration. In fact, Ybarra et al. [12] showed that lipo-
suction removal of subcutaneous abdominal fat in normal-
overweight subjects results in an increase in circulating (a) 
total cholesterol; (b) LDL-cholesterol; and (c) ApoB-100 
and LDL-cholesterol/ ApoB-100 ratio. This observation 
is in line with our hereby presented findings. Moreover, 
elevated concentrations of serum total and LDL-choles-
terol concentrations were also found in some patients 
with lipodystrophy [13, 14]. However, in the most studies 
reported so far, abdominal liposuction did not have signifi-
cant effect on circulating cholesterol concentration [3–7] 
or even decrease in the serum cholesterol concentrations 
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Fig. 6   Subsequent inhibition of HNF1α and PCSK9 expression in 
HepG2 cells. silencing of HNF1α expression by two different siRNA 
(a) resulted in decrease of PSCK9 mRNA expression (b). Lipo-
fectamine-treated cells were used as control. Graphs represent the 
mean ± SD of data from 6 cell plates in three separate experiments. 
a.u. arbitrary units.*p < 0.05
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of was found [8–11]. Moreover, no changes in serum total 
and LDL-cholesterol concentrations in some patients with 
lipodystrophy were also observed [15, 56]. Thus, at pre-
sent it would be inappropriate to speculate if the changes 
taking place in humans subjected to liposuction are similar 
to those observed in our partially lipectomized rats.

In conclusion, our study showed that partial surgical 
removal of WAT in rats is associated with the coordinated 
up-regulation of liver genes encoding Hnf1α, Hnf4α and 
PCSK9. These changes are associated with increased cir-
culating PCSK9 concentration, and decrease in liver LDL-
R. Consequently, the post-lipectomy increase in circulat-
ing cholesterol concentration may result from decreased 
uptake of cholesterol by LDL-R in rat liver. The above 
mentioned mechanism of post-lipectomy hypercholester-
olemia is summarized on Fig. 7. Although our findings 
provide a new insight into post-lipectomy catabolism 
of cholesterol in experimental model, further studies 
are needed to determine an association between hyper-
cholesterolemia, circulating PCSK9 concentrations and 
up-regulation of genes encoding PCSK9, HNF1α, and 
HNF4α in humans subjected to liposuction or patients 
with lipodystrophy.
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