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Abstract

Polyphenols are characterised structurally by two or more hydroxyl groups attached to one or more benzene rings, and pro-
vide the taste and colour characteristics of fruits and vegetables. They are radical scavengers and metal chelators, but due to
their low concentration in biological fluids in vivo their antioxidant properties seem to be related to enhanced endogenous
antioxidant capacity induced via signalling through the Nrf2 pathway. Polyphenols also seem to possess anti-inflammatory
properties and have been shown to enhance vascular function via nitric oxide-mediated mechanisms. As a consequence,
there is a rationale for supplementation with fruit-derived polyphenols both to enhance exercise performance, since excess
reactive oxygen species generation has been implicated in fatigue development, and to enhance recovery from muscle damage
induced by intensive exercise due to the involvement of inflammation and oxidative damage within muscle. Current evidence
would suggest that acute supplementation with ~300 mg polyphenols 1-2 h prior to exercise may enhance exercise capacity
and/or performance during endurance and repeated sprint exercise via antioxidant and vascular mechanisms. However, only
a small number of studies have been performed to date, some with methodological limitations, and more research is needed
to confirm these findings. A larger body of evidence suggests that supplementation with > 1000 mg polyphenols per day for
3 or more days prior to and following exercise will enhance recovery following muscle damage via antioxidant and anti-
inflammatory mechanisms. The many remaining unanswered questions within the field of polyphenol research and exercise
performance and recovery are highlighted within this review article.

Key Points

Fruit-derived polyphenols have antioxidant and anti-
inflammatory properties and so can enhance exercise
performance, since excess reactive oxygen species
generation has been implicated in fatigue development,
and enhance recovery from intensive exercise due to
the involvement of inflammation and oxidative damage
within muscle.

Consumption of ~300 mg polyphenols an hour prior to
exercise may enhance endurance and repeated sprint per-
formance, most likely due to improved muscle perfusion.
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1 Introduction

Many sports and activities involve strenuous eccentric mus-
cle contractions and explosive movements that can induce
muscle damage to varying degrees depending on the inten-
sity and duration of activity as well as the training status
of the individual. Prolonged endurance events such as
marathons and ultramarathons, triathlons and Ironman also
place extreme demands upon muscle and can also induce
ultrastructural damage and muscle soreness. It is therefore
important to identify effective strategies for supporting rapid
recovery between intensive training sessions especially dur-
ing pre-season, when multiple sessions are completed in the
same day, and between matches particularly in a tournament
setting. The purpose of this paper is to provide an over-
view of the growing evidence that fruit-derived polyphenol
supplementation enhances recovery from intensive exercise
with or without muscle damage, and may enhance exercise
performance.

2 Polyphenols

Polyphenols are ubiquitous within plants, where they are
produced as secondary metabolites and involved in a diverse
range of critical processes including growth, pigmentation,
pollination and resistance to pathogens and environmental
stressors [1]. They are characterised structurally by two
or more hydroxyl groups attached to one or more benzene
rings, and can be classified into four main families: lignans,
phenolic acids, stilbenes and flavonoids. Stilbenes consist
of 2Xx 6 carbon aromatic rings joined by a 2-carbon bridge
with a double bond and the parent compound is resveratrol.
Flavonoids consist of two aromatic rings linked through a
3-carbon chain, usually in the form of an oxygenated het-
erocycle; and can be sub-divided into a range of sub-classes

on the basis of the degree of oxidation of the oxygenated
heterocycle, including: flavanols, flavonols, flavanones, fla-
vones, isoflavones and anthocyanidins. Tannins are oligom-
ers and polymers of flavonoids, and can be grouped into
condensed tannins (proanthocyanidins) and hydrolysable
tannins (procyanidins). Table 1 provides a brief summary
of example compounds and key dietary sources of the differ-
ent polyphenol families. The taste and colour characteristics
of fruits and vegetables are strongly influenced by the poly-
phenol content. Both the quantity and variety of polyphenols
present are determined by the plant species, growing condi-
tions sometimes termed terroir (sunlight, water and nutri-
ent availability, temperature), post-harvest processing, and
transport and storage conditions [2—4]. There is therefore
considerable variability in the polyphenol content of foods
on the supermarket shelves, and in the many polyphenol-
rich fruit-derived supplements that are now commercially
available. For research purposes, in particular, it is therefore
essential that such natural variation can be accounted for by
testing each batch for polyphenol content and composition.

Polyphenol absorption and metabolism is highly com-
plex, not least because of the many thousands of different
polyphenol compounds present within plants, their possible
interactions within the food matrix [5] and their conjuga-
tion to form a large number of different metabolites upon
absorption. In addition, with the exception of flavanols and
proanthocyanidins, polyphenols are present as glycosides,
i.e. conjugated with sugar moieties within the plant. Antho-
cyanins can be absorbed intact (e.g. cyanidin-3-glycoside),
but many other polyphenols must be hydrolysed to split
the sugar group (glycone) from the polyphenol (aglycone)
before absorption [6]. This process occurs either via lactase
phloridzin hydrolase in the brush border of the small intes-
tine epithelial cells or via cytosolic p-glucosidase within the
epithelial cells, which requires uptake of the polar gluco-
sides into the epithelial cells via sodium-dependent glucose
transporters [7]. The aglycones can then be absorbed into

Table 1 Dietary sources of the

different polyphenol families
and sub-families
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Polyphenol family

Example compounds

Dietary source

Stilbenes Resveratrol
Lignans Enterodiol
Phenolic acids Cinnamic
Benzoic
Flavonoids Epicatechin,
Flavanols Catechins
Flavonols Quercetin
Flavones Luteolin
Flavanones Naringenin and hesperetins
Isoflavones Genistein
Anthocyanidins Cyanidin, malvidin, delphinidin
Proanthocyanidins B-type dimers
Procyanidins Ellagitannins
Gallotannins

Grapes
Seeds, whole grains, legumes

Caffeic acid—coffee
Gallic acid—tea

Cocoa

Green tea

Onions, apples, deep green vegetables
Parsley and other herbs

Citrus fruits

Soy products,

Cherries and berries

Cocoa

Pomegranate

Mango
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the circulation; however, they are subject to conjugation,
resulting in the formation of sulfate, glucuronide and/or
methylated metabolites both within the epithelial cells and
in the liver [8]. A large proportion of polyphenols are not
absorbed within the small intestine and continue to the colon
where they are acted upon by enzymes present within the
microbiota to release aglycones that then undergo ring fis-
sion to produce bioavailable metabolites such as phenolic
acids and hydroxycinnamates [8]. These substances can be
detected in the plasma some 12—48 h after polyphenol inges-
tion. Ingestion of a single polyphenol can give rise to many
different metabolites, which was clearly shown in an elegant
investigation where participants consumed 500 mg of '*C
labelled cyanidin-3-glycoside, and 17 different labelled
metabolites were detected in plasma over the subsequent
48 h [9]. Fruits and vegetables and fruit-derived polyphenol
supplements contain a blend of polyphenols, and thus the
pharmacokinetics and metabolism after ingestion of whole
foods or fruit-derived supplements are even more complex.
There is also a high degree of inter-individual variation
in bioavailability partly dictated by differences in the gut
microbiome [10]. To date the majority of studies that inves-
tigated the effects of polyphenol supplementation on either
recovery from intensive exercise or exercise performance
have not quantified plasma phenolic metabolites after sup-
plementation, except for several studies employing cocoa or
chocolate supplementation in which plasma epicatechin and
catechin concentrations were measured [11, 12]. Whilst a
number of published studies have measured acute changes in
plasma phenolic metabolites or the parent compounds after
single doses of Montmorency cherry [13], blueberry [14],
blackcurrant [15] and pomegranate [16], future work in this
field should ideally quantify exercise performance outcomes
alongside measurement of plasma phenolic metabolites.

2.1 Effects of Polyphenol Supplementation

Polyphenols possess radical scavenging properties related
to their chemical structure. Phenolic hydroxyl groups can
donate an electron to radicals and the polyphenol aro-
matic ring can then stabilise the resulting aroxyl radicals
[17]. Polyphenols are also metal chelators and hence can
reduce metal-catalysed free radical formation [18]. How-
ever, maximum plasma concentrations of conjugated and
unconjugated polyphenols have been estimated to range
from 0.1 to 22 umol L™! [19, 20]. When compared to the
concentration of plasma urate (150—450 umol L"), which is
also an important plasma compartment antioxidant, it seems
unlikely that plasma phenolics are effective direct antioxi-
dants in vivo. Many of the studies reviewed in this article
have quantified changes in the debunked [21] plasma total
antioxidant capacity (TAC) after polyphenol supplementa-
tion. However, TAC only quantifies the cumulative action of

small molecule antioxidants present in plasma, and ignores
the important contribution of intracellular enzymes such
as superoxide dismutase, catalase and peroxiredoxin. This
cannot therefore be regarded as a true measure of in vivo
antioxidant capacity. The increases in TAC observed after
polyphenol supplementation are likely to be almost entirely
dependent upon changes in plasma urate related to fructose
metabolism, and independent of changes in plasma pheno-
lics [22]. There is now growing evidence that phenolics are
able to upregulate endogenous antioxidant capacity via the
Nrf2/antioxidant response element (ARE) pathway. Nrf2 is
a master regulator of the antioxidant response through the
regulation of a wide range of antioxidant and phase II detoxi-
fication genes [23], and protects cells from stressors includ-
ing reactive oxygen species (ROS), and dietary xenobiotics
such as polyphenols [24]. Keapl is a cysteine-rich protein
that represses Nrf2 signalling by serving as a bridge between
Nrf2 and ubiquitination ligase cullin-3, which is required for
the ubiquitination of the protein and subsequent proteasomal
degradation [25, 26]. Oxidative stressors or electrophiles
induce covalent modification of Keapl cysteine residues
and therefore inhibit ubiquitination-dependent degrada-
tion and increase nuclear accumulation of Nrf2, resulting in
increased synthesis of downstream endogenous antioxidants
such as superoxide dismutase, catalase and peroxiredoxin
[27]. Although dietary polyphenols are not present in suf-
ficient quantity in vivo to contribute directly to antioxidant
function as radical scavengers, phenolics will be converted
to electrophilic quinones and hydroquinones upon exposure
to ROS, which are then able to interact with Keap 1 and
activate Nrf2 (for a review, see Huang et al. [24]). Paradoxi-
cally it seems that antioxidant effects of polyphenols arise
from their pro-oxidant action after in vivo exposure to ROS,
although much of the evidence for this is currently from
in vitro work, and there is a need for human in vivo studies
to verify this hypothesis. Polyphenols also seem to possess
anti-inflammatory properties and have been shown in vitro
to inhibit cyclo-oxygenase enzymes, COX1 and COX2 [28],
to reduce NF-KB expression signalling [29] and to inhibit
nuclear translocation of NF-KB [30].

In resting human studies, changes in plasma biomark-
ers of oxidative damage and inflammation support the
antioxidant and anti-inflammatory effects of fruit-derived
polyphenols including cherries [31], blueberries [32, 33],
blackcurrant [34], pomegranate [35] and cocoa [36]. There
is also consistent evidence that both acute and chronic sup-
plementation with polyphenols improves vascular function,
specifically endothelium-dependent vasodilation, which is
nitric oxide (NO) dependent and measured in vivo as flow-
mediated dilatation (FMD). A meta-analysis of 42 cocoa
studies found significant increases in FMD following acute
(3.2%) and chronic (1.3%) supplementation, respectively
[37]. A smaller number of studies have been performed to
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assess the acute or chronic effects of fruit polyphenols on
FMD, and these have mostly utilised grape-derived polyphe-
nols as well as pomegranate, chokeberry or blueberry. Rod-
riguez-Mateos et al. [14] showed that a range of blueberry
polyphenol doses (0.3—1.88 g polyphenols) increased FMD
in healthy men peaking at 1 h and this paralleled reduction
in neutrophil nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase activity. This suggests that reduced super-
oxide production and hence decreased conversion of NO to
peroxynitrite likely contributes to the increased vasodilation
response by improving NO bioavailability.

A number of studies have also found improvements in
endothelial-dependent vasodilatation after chronic supple-
mentation with fruit polyphenols especially amongst study
populations with impaired cardiovascular function (grape
juice [38, 39], red grapes [40], grape polyphenols [41], grape
seed [42], chokeberry juice [43]) or with low habitual fruit
and vegetable intake (blackcurrant [44]). A meta-analysis
revealed that after supplementation with a mix of flavonoids,
the absolute mean difference in % dilatation was A 2.33%
(based on 18 acute supplementation studies) and A 0.73%
with chronic supplementation (based on 14 studies) [45].
The optimal dose identified was 500 mg per day total flavo-
noids or 300 mg per day of procyanidins.

The improvement in FMD in response to acute and
chronic polyphenol supplementation is by definition a result
of increased NO bioavailability, since FMD is NO depend-
ent. These effects are likely achieved through a variety of
synergistic mechanisms. There is evidence from in vitro
studies that polyphenols induce endothelial nitric oxide
synthase 3 (eNOS) activation via signalling through oestro-
gen receptor-a via G protein, extracellular-signal-regulated
kinase (ERK) and phosphatidylinositide 3-kinase (PI3 K)
pathways [46]. In addition, polyphenols have been shown to
inhibit NADPH oxidase, one of the key sources of superox-
ide production [47], and to induce signalling through Nrf2,
thus increasing endogenous antioxidant capacity [48], both
of which will preserve NO bioavailability by reduced forma-
tion of peroxynitrite. In addition to the health benefits asso-
ciated with these antioxidant, anti-inflammatory and vasoac-
tive properties of polyphenols, they are also of relevance for
exercise performance and recovery from intensive exercise.

3 Fruit-derived Polyphenols and Exercise
Performance

3.1 Rationale

Exercise-induced fatigue has been extensively investi-

gated, but the mechanisms remain controversial due its

complex multifactorial nature and specificity to exercise
mode, intensity and duration. Fatigue may relate to: (i)
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depletion of muscle fuel substrates such as phosphocre-
atine (PCr) or glycogen, (ii) accumulation of metabolic
by-products such as ammonia and hydrogen ions, (iii) per-
turbation of ionic gradients between intra- and extracel-
lular compartments thus interfering with action potential
transmission, (iv) impaired excitation contraction coupling
via altered calcium sensitivity and sequestration to the
sarcoplasmic reticulum, (v) altered central drive due to
afferent feedback from the exercising muscle conveying
changes in the metabolic milieu (for a review, see Allen
et al. [49]). The ability to regulate and co-ordinate the
function of cardiovascular, respiratory, metabolic and neu-
romuscular systems is pivotal to ensure that the kinetics
of substrate supply and waste product removal match the
requirements of the specific exercise bout and thus perfor-
mance is preserved.

Skeletal muscle is a net producer of reactive oxygen spe-
cies from a variety of sources including the mitochondrial
respiratory chain and enzymatic sources such as NADPH
oxidase and xanthine oxidase [50]. Paramagnetic electron
spin resonance experiments demonstrate that ROS gener-
ation increases with exercise intensity [51, 52]. ROS are
important signalling molecules and have been implicated
in contraction-mediated increases in muscle glucose uptake
[53] and control of skeletal muscle blood flow [54]. For
instance, Durand et al. [55] found that hydrogen peroxide
caused vasodilation in exercising muscle. It appears that
under conditions of low oxidative stress and redox balance,
ROS promote optimal vasodilation and hyperaemia in exer-
cising muscle. However, under conditions of oxidative stress
or already disturbed redox balance, ROS generation during
exercise impairs blood flow and vasodilatory capacity [56].
Ryanodine receptors are the major calcium release channel
in the sarcoplasmic reticulum (SR), and due to the high num-
ber of cysteine residues in this protein, it is redox sensitive
[57], as is SR Ca2 + ATPase activity. Excess ROS generation
has been shown to impair calcium handling and sensitiv-
ity resulting in reduced contractile force development, thus
impairing exercise performance [50, 58]. Additionally, group
IIT and IV afferents are sensitive to ROS, so ROS production
within exercising muscle will be sensed by the somatosen-
sory cortex, which may result in altered efferent activity and
central drive to the muscle, contributing to the development
of central fatigue [59]. Therefore, during high intensity or
prolonged exercise where ROS generation exceeds the anti-
oxidant capacity and results in disturbed redox balance, it is
plausible that antioxidant supplementation may counteract
fatigue and enhance performance via enhanced perfusion of
the exercising muscle, better maintained excitation—contrac-
tion coupling and central drive. There is some empirical evi-
dence to support this view, since supplementation with anti-
oxidants such as N-acetyl cysteine [60—62] has been shown
to improve exercise performance. There is also evidence that
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acute (Table 2) or chronic (Table 3) supplementation with
fruit-derived polyphenols is ergogenic for performance.

3.2 Evidence of Enhanced Performance
3.2.1 Acute Polyphenol Supplementation

Pomegranate has been a key ingredient in the majority of
the relatively small number of studies in which the effects
of acute polyphenol supplementation (single dose <3 h
pre-exercise) have been investigated either consumed sin-
gly [63-65] or in combination with green tea and grape
polyphenols [66]. Consumption of 1 g of pomegranate
extract [63] 30 min pre-exercise or a combined supplement
of pomegranate, green tea and grape extract (290 mg poly-
phenols [66]) consumed 1 h pre-exercise enhanced time to
exhaustion whilst running at 90 and 100% of peak velocity
achieved at VO, max, and peak and average power output
during repeated cycle Wingate tests in recreationally active
individuals, respectively. However, trained cyclists [64] and
recreationally resistance-trained individuals [65] did not
derive significant performance benefit from consumption of
1 g of pomegranate extract. Specifically, time to exhaustion
at 100% VO, max workload was not enhanced by consump-
tion of pomegranate 2.5 h pre-exercise either at sea level or
at the equivalent of 1657 m altitude, despite a significant
increase in oxygen consumption in the altitude condition
after supplementation, and increased plasma nitrate concen-
tration after pomegranate supplementation [64]. Similarly,
bench and leg press repetitions to failure and average and
peak power during 10X 6 s sprints were not significantly
elevated by pomegranate supplementation (30 min pre-exer-
cise), although confidence interval-based statistics indicated
increased power output during the middle sprints, (S5 and
7 [65]) despite evidence of favourable vascular effects after
supplementation, with elevated brachial artery diameter and
flow post-exercise in the pomegranate condition [65]. Other
polyphenol-containing supplements have also shown mixed
results when used prior to exercise in an attempt to improve
performance. Trained cyclists experienced modest improve-
ments in end-sprint performance 1.5 h after ingestion of
Montmorency cherry concentrate [67]. Recreationally active
men also apparently derived ergogenic effects from supple-
mentation with ecklonia cava extract [68] and a combined
grape and apple polyphenol supplement [69], with increased
time to exhaustion during a maximal incremental treadmill
running test, and cycling at 70% maximum aerobic power,
respectively. Conversely, consumption of 900 mg cocoa fla-
vanols 3 h pre-exercise did not significantly enhance cycling
time trial performance in trained male cyclists [11].
Analysis of the limited published data currently avail-
able suggests that timing of consumption may also be an
important factor, since in those studies where supplements

were consumed within 1 h of exercise, ergogenic effects
were evident, but where the supplement was consumed >2 h
prior to exercise, performance was not improved. Unfortu-
nately, plasma phenolic concentrations were not measured
in these studies; however, extrapolation from other studies
(blueberry [70], Montmorency cherry [13], pomegranate
[16], grape [71] and cocoa flavanols [72]) would suggest
that elevations in plasma phenolics would be evident within
30 min of consumption with peak concentrations of sim-
ple phenolic metabolites likely within 1-2 h of ingestion.
These changes presumably underpin the observed ergogenic
effects, which are likely to involve inhibition of superoxide-
producing enzymes such as NADPH oxidase [14], enhanced
antioxidant enzyme activity [66] and vascular mechanisms
([63, 65, 66], see Sect. 3.3).

3.2.2 Chronic Polyphenol Supplementation

Chronic polyphenol consumption also seems to produce
ergogenic effects for recreationally active participants and
to a lesser extent for trained athletes. Consumption of oli-
gomerized lychee extract for 30 days (200 mg polyphe-
nols) enhanced running time to exhaustion at 80% heart
rate maximum [73], and red grape skin extract for 6 weeks
(1.17 g-day~!, 220 mg polyphenols [74]) improved 50-m
swimming time trial performance in recreationally active
participants. Blackcurrant powder (300, 105 mg antho-
cyanins) consumption for 7 days (~ 105 mg anthocyanins)
enhanced cycling time trial performance (16.1 km [75])
and high-intensity intermittent running distance to exhaus-
tion [76], and reduced fatigue index with repeated sprints
in recreationally active participants [77, 78], and in trained
individuals induced a small (0.8%) improvement in repeated
4-km cycling time trial performance [79]. Braakhuis et al.
[80] also found a possible improvement in 5-km time trial
performance for faster female runners after 3 weeks’ black-
currant polyphenol supplementation (300 mg anthocyanins)
during a period of intensified training, with evidence of per-
formance decrement with vitamin C supplementation in this
randomised crossover trial. However, 7 days of pomegranate
supplementation (1800 mg polyphenols) did not enhance
cycling time trial performance in trained male cyclists [81].
Nor did 2 weeks of dark chocolate supplementation (108 mg
catechins and 88 mg flavanols) enhance time to exhaustion
at 90% VO, max in recreationally active men, despite ele-
vated plasma free fatty acid concentrations and evidence of
reduced exercise-induced oxidative damage (F2-isoprostanes
and oxidised low-density lipoprotein cholesterol [82]).

For many of the studies it is not clear how long after the
last polyphenol dose exercise was performed. In other words,
it is hard to differentiate a chronic effect from the poten-
tial acute effects derived from supplementation within 2 h
of exercise. All reported studies involved supplementation
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Effects of polyphenol supplementation

Performance task

Supplementation protocol

Participant characteristics

Table 3 (continued)

References
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=heart

6 X 50 m swimming time trials 1 Performance (faster speed,

73 mg PP from 390 mg red grape skin

Recreationally active

RCT

Sadowska-Krepa et al. [74]

rate)

5) X 3 per

9) vs placebo (n=

day for 6 weeks

extract (n

Plasma total antioxidant capacity

and antioxidant enzyme activity (e.g.

glutathione reductase, catalase, super-

oxide dismutase)
| Blood creatine kinase activity

Time trial performance
Time to exhaustion

10 min cycling time trial after 50 min

500 ml pomegranate or placebo X 2 per

Trained male cyclists

Trinity et al. [81]

day for 7 days (~ 1800 mg PP per day)

12)
Crossover trial

(n

pre-load time to exhaustion at

VO, max power output
All at 31.5 °C and 55% humidity

Heart rate, stroke volume, cardiac

output

1 Increased, | decreased,=no change, CAT catalase, ex exercise, HR heart rate, HRmax maximal heart rate, PC protein carbonyls, PP polyphenol, RCT randomised controlled trial with parallel

groups, RPE rating of perceived exertion, SOD superoxide dismutase, SS steady state, VO,max maximum rate of oxygen consumption

for >7 days, which should provide sufficient time for
changes in gene and protein expression to occur within
tissue. However, to our knowledge there are currently no
data available from studies that combine measurement of
changes in muscle proteins in response to polyphenol sup-
plementation with changes in exercise performance. From
the available evidence, the most likely mechanisms appear
to be reduced exposure to or increased capacity to degrade
ROS and reactive nitrogen species (RNS) as evidenced by
reduced markers of oxidative damage [80, 82] or increased
antioxidant enzyme activity [74]. These responses seem to
occur in parallel with enhanced vascular function possibly
resulting in improved muscle perfusion and enhanced oxy-
gen extraction [83].

3.3 Mechanisms

The conflicting findings across studies with regard to the
effects of polyphenol supplementation are most likely due to
the differences in research design including: the supplement
composition, timing and dose of supplementation variation
in the studied population, and performance tasks employed
and therefore differences in the predominant processes con-
tributing to fatigue development. The ergogenic effects of
polyphenols seem to involve altered vascular function with
augmentation of the measured increases in brachial artery
diameter and blood flow after a 1 min occlusion, induced by
pomegranate supplementation, which paralleled the ergo-
genic effects for performance [63, 65]. Similarly, Richards
et al. [83] found that VO, max was enhanced by supple-
mentation with green tea-derived epigallocatechin (EGCG)
supplementation for 2 days (135 mg three times per day)
and a last dose 2 h pre-exercise. However, maximum cardiac
output was not affected by EGCG, which therefore implies
that the performance-enhancing effects were achieved via
increased arterio-venous oxygen difference, i.e. improved
oxygen extraction in the exercising muscle presumably cou-
pled with better spatial distribution of muscle perfusion.
Goncalves et al. [84] used nail-fold videocapillaroscopy of
the fourth finger of the left hand in a temperature-controlled
environment to assess microvascular function in triathletes
in response to consuming 300 ml-day~! of organic grape
juice (~ 1600 mg polyphenols) for 20 days. Functional cap-
illary density (capillaries with red cell flux), red blood cell
velocity and time to peak velocity after 1 min arterial occlu-
sion were all improved after grape juice supplementation,
supporting the likelihood of better tissue perfusion after
polyphenol supplementation, although this clearly needs to
be directly tested in muscle. The ergogenic effects of black-
currant supplementation are also proposed to be dependent
on vascular mechanisms, but until recently there has been
limited empirical data to support this assertion. Cook et al.
[85] found that 7 days of supplementation with 600 mg
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of blackcurrant powder (twice the daily dose provided in
the exercise performance studies [75-77, 79]) resulted in
increased femoral artery diameter during a sustained sub-
maximal maximum voluntary contraction (MVC) of the
knee extensors (30% MVC for 120 s). These effects were
accompanied by lower systolic and diastolic blood pressure
and lower total peripheral resistance estimated via beat—beat
finger blood pressure analysis.

The most plausible mechanisms for these apparent vascu-
lar effects are either reduced generation of ROS or improved
capacity to detoxify ROS via antioxidant systems. Such
reduced exposure to ROS will improve bioavailability of
the potent vasodilator NO, due to reduced production of per-
oxynitrite via the reaction of superoxide and NO. In vivo
and in vitro evidence demonstrate that phenolic metabolites
reduce NADPH oxidase activity, one of the key sources of
superoxide production during exercise [47]. This is corrobo-
rated by the evidence that acute polyphenol supplementation
protects against endurance exercise-induced oxidative dam-
age. Consumption of a black grape, raspberry and redcurrant
polyphenol blend (2000 mg polyphenols, including 1212 mg
anthocyanins) during 90 min of cycling at 70% VO, max
attenuated the exercise-induced elevation in plasma thiobar-
bituric acid-reacting substances (TBARS) and protein car-
bonyls in trained male cyclists [86]. Recreationally active
participants experienced a reduced F2-isoprostane response
to 2.5 h cycling at 60% VO, max when completed 2 h after
consuming 100 g of dark chocolate (~250 mg polyphenols
[12]). Lyall et al. [87] found that the increase in plasma pro-
tein carbonyls after 30 min rowing at 80% VO, max was
attenuated when blackcurrant powder (120 mg anthocya-
nins) was consumed immediately prior to exercise by recrea-
tionally active participants. However, none of these studies
included an assessment of exercise performance.

In addition, there is evidence that chronic polyphenol con-
sumption increases endogenous antioxidant system capacity
via signalling through Nrf2 and antioxidant response ele-
ment pathways (see Sect. 2) in a similar fashion to exercise
adaptation [88]. Chronic polyphenol supplementation lowers
exercise-induced oxidative stress, for instance 250 g blue-
berries consumed every day for 6 weeks with 375 g con-
sumed 2 h prior to a 2.5 h run at 72% VO, max attenuated
the exercise-induced increase in plasma F2-isoprostanes
and urinary oxidation products of RNA [89]. Young men
consuming a diet supplemented with anthocyanin-rich pur-
ple sweet potato leaves versus a low polyphenol diet for
7 days experienced reduced plasma protein carbonyls and
TBARS at rest and after 1 h exercise at 70% \'/O2 max [90].
Fuster-Munoz et al. [91] found that plasma malondialde-
hyde (MDA) and PC were reduced in endurance athletes
undergoing normal training when consuming 200 ml-day~!
of pomegranate juice for 21 days. The ergogenic effects of
polyphenols therefore seem to be underpinned by vascular

and antioxidant mechanisms. However, there is clearly a
need for well-designed studies that measure exercise per-
formance alongside robust measures of oxidative damage,
antioxidant enzyme content and activity, inflammatory pro-
cesses, macro- and micro-vascular function, and plasma phe-
nolics to confirm these ergogenic effects and the mediators
of these effects.

4 Fruit-derived Polyphenols and Recovery
after Intensive Exercise

4.1 Rationale

Exercise-induced muscle damage involves both mechani-
cal and biochemical processes. Muscle fibres are exposed
to high mechanical forces especially during explosive and/
or eccentric contractions, which can result in disruption to
the extracellular matrix, contractile proteins, sarcoplasmic
reticulum, t-tubules and sarcolemma. There is subsequent
disruption of calcium homeostasis with elevated resting
calcium concentration [92], which may then contribute to
further damage through activation of calcium sensitive pro-
teases such as calpain resulting in increased proteolysis of
susceptible proteins such as desmin and actin, thus wors-
ening the ultrastructural damage [92]. In addition, there is
increased generation of reactive oxygen species in an exer-
cise intensity- and mode-dependent fashion [51, 93], which
will cause oxidative modification of proteins and other
molecules resulting in altered function and damage. Such
processes will be particularly important contributing factors
to the initial damage induced by high-intensity prolonged
activities that do not involve eccentric muscle actions.

This initial damage, whether mechanical or biochemi-
cal, triggers a potent inflammatory response with damaged
fibres releasing pro-inflammatory cytokines, which serve
as chemo-attractants for neutrophils and macrophages and
activate ROS generating enzymes within the muscle [94].
Neutrophil infiltration and activation occurs within 2 h of
damage, generally peaking within 6-24 h and then rapidly
decreasing [95]. Neutrophils are rich in enzymes such as
NADPH oxidase, and release ROS and proteolytic enzymes
that may exacerbate the initial muscle damage [96], but also
facilitate regeneration by removal of debris and activation
of satellite cells [97]. Shortly after neutrophil infiltration,
macrophages derived from blood monocytes accumu-
late within the damaged tissue. Their role is to scavenge
debris and apoptotic cells and in addition release a range
of growth factors and other substances that trigger remod-
elling of extracellular matrix, contractile and vascular ele-
ments. Two macrophage populations have been identified:
M1 and M2. M1 macrophages are pro-inflammatory and
infiltrate muscle in the early stages of damage, and have been
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linked to proliferation of satellite cells [98]. It has been sug-
gested that phagocytosis of damaged myogenic cells by M1
macrophages triggers their conversion to M2 macrophages
[99]. These M2 macrophages release anti-inflammatory
cytokines (transforming growth factor-p and interleukin 10)
and release growth factors such as insulin-like growth factor
1 to support regeneration of the damaged tissue [100].

The central involvement of ROS generation and inflam-
mation within the muscle damage and healing process sug-
gests that polyphenol supplementation will influence these
processes and therefore the rate of recovery. Polyphenols
have been shown to inhibit activity of key ROS-generating
enzymes such as NADPH oxidase, serve as radical scaven-
gers, and with chronic supplementation also enhance endog-
enous antioxidant capacity. In addition, polyphenols have
been shown to inhibit cyclo-oxygenase activity and suppress
inflammation [101-103].

4.2 Evidence of Enhanced Functional Recovery

There is now a growing body of evidence that suggests
that fruit-derived polyphenol supplementation enhances
restoration of muscle function and reduces soreness after
intensive exercise (Table 4). The effects of Montmorency
cherry supplementation on recovery of muscle function or
exercise performance after intensive exercise have been
investigated in nine published studies thus far, of which five
studies found favourable effects [104—108]. These stud-
ies involved recreationally active men [104], recreational
runners [105] or trained athletes [106—108], so unlike the
acute performance effects of polyphenol supplementation,
it seems that beneficial effects on recovery are accessible
to both trained and less well-trained individuals. Nor does
the efficacy of the supplement seem to be influenced by the
mode of exercise used to induce muscle damage, since dif-
ferent approaches or muscle groups were damaged in each
of these studies (intensive knee extensor resistance exercise
[106]; eccentric elbow flexor exercise [104]; marathon run-
ning [105]; high-intensity stochastic cycling [108] or 90 min
repeated high-intensity shuttle running [107]). In these stud-
ies, Montmorency cherry was provided in the form of a juice
drink, which was consumed morning and evening for at least
3 days prior to exercise, and provided at least 1200 mg poly-
phenols per day. Conversely, in studies where recovery of
muscle function or exercise performance was not enhanced
[109-111, 120], either a lower (and presumably insufficient)
dose of Montmorency cherry was provided in powder form
(480 mg Montmorency cherry powder in a single dose [109];
733 mg polyphenols split into two doses [110]) or the inten-
sive exercise task did not induce a measurable decline in
muscle strength [110] or exercise performance [111], thus by
definition making it impossible to improve recovery. As well
as differences in dose and frequency of supplementation, it is
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possible that differences in post-harvest processing of cher-
ries between juice and powder production may induce vari-
ation in the polyphenol blend, and thus contribute to the dis-
crepancy in findings across studies utilising Montmorency
cherry powder [109, 110] versus juice [104-108, 111, 112].
In summary, consumption of Montmorency cherry juice
or concentrate providing 600 mg polyphenols morning
and evening for at least 3 days prior to exercise and during
recovery has consistently been shown to improve recovery
of muscle function. Further studies are required to identify
the optimal dose, frequency and duration of consumption.
The effect of Montmorency cherry supplementation on
muscle soreness after intensive exercise has been assessed in
eight studies, and soreness measured using a visual analogue
pain scale [104, 107, 112] or pressure pain tolerance [109]
was reduced in half of these studies. There is no clear pattern
to explain this variation across studies: in two studies favour-
able effects on both recovery of muscle strength and sore-
ness were evident [104, 107]; in others favourable effects on
muscle function but not soreness were observed [105, 106];
and Beals et al. [110] and McCormick et al. [111] found no
effects on either soreness or muscle function, but the exer-
cise protocol did not induce loss of muscle strength or sore-
ness. Lastly, Kuehl et al. [112] found significant reductions
in muscle soreness in runners who consumed Montmorency
cherry juice (1200 mg polyphenols) for 7 days prior to and
on the day of the Hood to Coast relay race, but changes in
muscle function were not assessed. Suppression of inflam-
mation induced by muscle damage is the proposed mecha-
nism by which polyphenol supplementation may attenuate
muscle soreness [113]. At present measures of serum mark-
ers of inflammation are available for some but not all studies,
and there seems to be no relationship between reduced sore-
ness after Montmorency cherry supplementation and serum
markers of inflammation. Levers et al. [109] found reduced
soreness but no effect on serum TNFa, IL1p, IL6 or ILS;
Kuehl et al. [112] and Connolly et al. [104] found reduc-
tions in soreness but no serum inflammatory marker data are
available. Howatson et al. [105] found reduced serum IL6
and C-reactive protein (CRP) after cherry supplementation
but no significant effect on soreness; only Bell et al. [107]
found reductions in both soreness and serum IL6 response,
but serum TNFa, IL1p, IL8 and CRP were not affected
by Montmorency cherry supplementation. Several studies
found no effects of Montmorency cherry supplementation
on serum markers of inflammation [106, 110, 111], but these
involved unilateral and/or relatively small muscle group
exercise, which did not result in elevations in systemic mark-
ers of inflammation. Therefore, the absence of polyphenol
effects in these studies is unsurprising. By definition, sore-
ness is a highly subjective measure even when pressure pain
tolerance is measured using an algometer, hence although
important for athlete performance it is difficult to reliably
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and objectively quantify. The quantification of inflamma-
tion within the damaged muscle itself, alongside measures
of muscle soreness, could be an important step forward in
understanding the effects of polyphenols.

Pomegranate juice consumption has also been shown
to enhance recovery of elbow flexor [114-116], and knee
extensor [116] muscle function after intensive exercise in
recreationally active men. However, Trombold et al. [115]
found that in resistance-trained men, pomegranate juice
(250 ml providing ~ 620 mg polyphenols) consumption
twice per day for 7 days prior to and after exercise resulted
in faster recovery of elbow flexor but not knee extensor iso-
metric strength compared to placebo, after muscle damage
was induced by eccentric elbow flexor and knee extensor
exercise. The knee extensors were relatively refractory to
muscle damage (15-20% reduction in isometric strength
vs. 25-35% loss of elbow flexor isometric strength) in this
population, which may contribute to the lack of polyphe-
nol effects in knee extensors in this population. In contrast,
Machin et al. [116] found that recovery of both elbow flexor
and knee extensor strength in recreationally active men was
enhanced by consumption of pomegranate concentrate pro-
viding 650 mg polyphenols either once or twice per day for
3 days prior to exercise, suggesting that the lower polyphe-
nol dose was equally effective.

Only Trombold et al. [115] found that pomegranate sup-
plementation reduced muscle soreness, specifically after
eccentric elbow flexor exercise in resistance-trained men,
but no serum markers of inflammation were measured in
this study. Trombold et al. [114] and Machin et al. [116]
measured muscle damage markers myoglobin (Mb) and/or
creatine kinase (CK) and found that the exercise-induced
increases were not affected by pomegranate supplementa-
tion. Serum markers of inflammation were measured in only
one study [114], and there were no effects of pomegranate
supplementation. However, as observed for Montmorency
cherry supplementation studies, damage to a relatively small
muscle group (elbow flexors) was not sufficient to induce
any change in serum IL6 or CRP, hence it is unsurprising
that polyphenol effects were not detectable.

Blueberry supplementation consumed in the form of a
smoothie on the day of exercise (1360 mg polyphenols) and
during 2 days of recovery (420 mg polyphenols per day)
enhanced recovery of knee extensor strength after unilateral
eccentric exercise in recreationally active women, but did not
reduce muscle soreness or serum IL6 although there was a
strong tendency for reduced oxidative modification of serum
proteins (protein carbonyls) [117]. Conversely, Peschek et al.
[118] found no effect of the addition of cocoa flavanols to
chocolate milk in the recovery of muscle strength or 5-km
time trial performance or muscle soreness in eight endur-
ance-trained males, when consumed 1 and 2 h after downhill
running. However, this finding in this randomised crossover

| Blood markers of muscle damage (Mb)

Effects of polyphenol supplementation

| Muscle soreness

Muscle damage protocol
8 X 8RM half squats

elderberry and pomegranate (219 mg

PP, 130 mg ellagic acid and deriva-
tives, 85 X anthone derivatives)
x 1 for 5 days (first dose on day of

1.5 g.d~! extract from mangosteen, black
exercise)

Supplementation protocol

Participant characteristics
Recreationally active (n=13)

Crossover trial
1 Increased, | decreased,=no change, CHO carbohydrate, CRP C reactive protein, CK creatine kinase, /L6 interleukin 6, ex exercise, incl including, LDH lactate dehydrogenase, Mb myoglobin,

PC protein carbonyls, PP polyphenol, RCT randomised controlled trial with parallel groups, RM repetition maximum, TBARS thiobarbituric acid reactive substances

Table 4 (continued)
Romain et al. [148]
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trial is confounded by the use of downbhill running to induce
muscle damage, with all second trials likely to be affected
by repeated bout effect, irrespective of treatment [119]. With
the exception of McCormick et al. [111], all other studies
reported here either adopted unilateral exercise for crossover
trials to minimise repeated bout effects or utilised parallel
group design to avoid repeated bout effects, although such
studies are susceptible to the high degree of inter-individual
variation evident in muscle damage and soreness responses.

4.3 Mechanisms of Action

Serum markers of oxidative damage (TBARS, MDA, lipid
hydroperoxides, F2-isoprostanes, protein carbonyls, nitroty-
rosine) were measured in five of the nine studies that found
favourable effects of polyphenol supplementation on recov-
ery of muscle function. Oxidative damage was suppressed
either significantly (TBARS [105]; protein carbonyls [106])
or there was a strong non-statistically significant trend (lipid
hydroperoxides [107]; protein carbonyls [117]) or in only
one study there was no effect (lipid hydroperoxides [108]).
A number of other studies have found reductions in oxidative
damage markers after intensive exercise with prior polyphe-
nol supplementation, although changes in muscle function
were not measured (Montmorency cherry, 1300 mg-day ™!
polyphenols [120]; blackcurrant, 240 mg anthocyanin [87];
pomegranate juice, 2560 mg-day~! polyphenols [121]). As
described earlier (Sect. 2.1), it seems unlikely that poly-
phenols serve as direct antioxidants due to their relatively
low concentration relative to endogenous antioxidants in
serum and tissue. It is more likely that chronic supplemen-
tation (>3 days) reduces serum markers of oxidative dam-
age via upregulation of endogenous antioxidants through
Nrf2 and antioxidant response element pathway signalling
[24, 122]. Tart cherry juice consumption has been shown
to increase hepatic superoxide dismutase and glutathione
peroxidase activity in mice [123]. Supplementation with
anthocyanins isolated from purple sweet potato increased
Nrf2 gene expression and Nrf2 nuclear translocation in rat
liver [124]. Charles et al. [125] recently demonstrated that
the age-related increases in oxidative stress and declines in
mitochondrial function in mice were prevented by supple-
mentation with an anthocyanin-rich extract derived from
red grapes. This was achieved both via reduced reactive
oxygen species generation as well as increased endogenous
antioxidant enzyme gene expression. Dark chocolate sup-
plementation for 3 months has also been shown to enhance
superoxide dismutase and catalase expression in muscle
of patients with heart failure and type 2 diabetes [48], and
more recently has been shown to reduce carbonylation of
proteins within skeletal muscle of healthy adults [126]. In
contrast, McLeay et al. [117] only commenced blueberry
supplementation 10 h prior to intensive exercise and hence
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increased endogenous antioxidant capacity is an unlikely
explanation of the enhanced restoration of muscle function
and a strong trend for lower serum protein carbonylation.
Blueberry supplementation has been shown to suppress neu-
trophil NADPH oxidase activity [14], one of the key sources
of superoxide production, which may contribute to the
observed effects. A range of polyphenols have been shown
to inhibit superoxide producing enzymes, such as NADPH
oxidase and xanthine oxidase (for review, see Maraldi [47]).

Polyphenols have been shown to inhibit cyclo-oxygenase
activity (COX1 and COX2) in similar fashion to non-steroi-
dal anti-inflammatory drugs, and there is extensive in vitro
and in vivo evidence of anti-inflammatory effects of poly-
phenols (for review see Peluso et al. [127]). The important
and complex contribution of inflammatory pathways to the
healing and remodelling process suggests the anti-inflamma-
tory effects of polyphenols may be a key component of the
mechanisms of action. Ten of the reviewed studies included
serum markers of inflammation, with polyphenol-induced
reductions in serum IL6 response to intensive exercise in five
studies [34, 105, 107, 108, 120]). However, muscle soreness
was attenuated in only one of these studies [107], whilst
recovery of muscle function was enhanced in both studies
where isometric force and inflammatory marker data were
available [105, 107]. In four studies [106, 110, 111, 114],
there was no effect of polyphenol supplementation on serum
markers of inflammation; however, the exercise protocol
employed did not induce elevation in any serum markers
in these studies. In the remaining studies, polyphenol sup-
plementation did not affect serum markers of inflammation
despite enhanced recovery of muscle function [117] and
reduced soreness [109]. The reliance on proxy serum mark-
ers of inflammation does not provide sufficient sensitivity to
understand processes taking place within the damaged mus-
cle itself. This point was clearly confirmed by Jajtner [128],
since supplementation with a proprietary blend of green and
black tea polyphenols suppressed IL8 protein expression in
human skeletal muscle after intensive exercise, but there was
no effect on circulating IL8 concentration. Myburgh et al.
[129] investigated the effect of grape seed-derived proantho-
cyanidolic oligomer (PCO) supplementation on the healing
process after hindlimb contusion injury in male Wistar rats.
PCO treated rats exhibited reduced neutrophil activation on
day 1, normal magnitude but earlier macrophage response
and earlier satellite cell activation. However, equivalent data
from studies with human participants are not yet available.

Sleep is an important component of an athlete’s pro-
gramme to ensure optimal recovery. However, use of stimu-
lant supplements, evening training sessions and matches,
travel and other aspects of an athlete’s busy life can compro-
mise both sleep quantity and quality. There is some evidence
to suggest that Montmorency cherry [130, 131] and Jerte
valley [132, 133] cherry supplementation improves sleep
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quality (assessed via accelerometry and sleep question-
naire), which may also contribute to the observed benefits
for recovery. Modulation of the pro-inflammatory cytokine
response to exercise has been suggested as one possi-
ble mechanism by which sleep quality may be improved,
as well as the melatonin content of cherries. Elevation of
urinary melatonin metabolites after 7 days’ cherry supple-
mentation in parallel with enhanced sleep quality supports
this assertion. However, in these studies supplements were
consumed in the morning and evening whereas melatonin
supplements are normally prescribed to be consumed prior
to sleep, and in addition the dose provided by cherries is
relatively low (85 ug vs. 2-3 mg clinical dose) and there is
some scepticism surrounding this proposition [134]. Nev-
ertheless, recent data from in vivo rat studies suggest that
co-ingestion of melatonin with caffeic acid and/or quercetin
enhances melatonin pharmacokinetics [135]. More human
in vivo studies are needed to verify the somniferous effects
of Montmorency cherry and other polyphenols and improve
understanding of the mechanism.

5 Methodological Limitations and Future
Work

The existing literature is flawed by a number of limitations
that preclude the identification of optimal polyphenol dosing
strategies for desired outcomes and also constrain under-
standing of the mechanisms of action. A key challenge in
utilising natural fruit-derived supplements is that the poly-
phenol blend is influenced by the plant species, growing
conditions and post-harvest processing. As a consequence,
the polyphenol content of supplements will vary from batch
to batch, but relatively few of the published studies provide
detailed composition of the batch specific polyphenol blend
consumed. This is essential for future work to ensure the
accuracy of dose response data and hence our ability to iden-
tify optimal polyphenol doses and blends.

Dietary controls are a further factor worthy of consid-
eration. Several of the reviewed studies incorporated some
element of dietary polyphenol restriction [11, 64, 67, 80, 82,
107, 120, 136], in attempts to reduce the background noise
that may be introduced by variation in dietary polyphenol
intake, but which may also maximise the effects produced by
polyphenol supplementation. Habitual polyphenol intake is
difficult to accurately quantify, since despite our knowledge
that polyphenol content of foods will be highly variable,
reliance on standard values is required (http://phenol-explo
rer.eu/ is an excellent resource for this purpose). Accuracy
is also influenced by the known proclivity for under- and
over-reporting of food intake using diet diaries. Population
estimates of average intakes are diverse depending upon the
plant content of diets, with total polyphenols ranging from

380 to 1400 mg [137], anthocyanins ~ 60 mg-day_l, flavonols
20-35 mg-day~!, catechins 18—50 mg-day~!, hydroxycin-
namic acids 800 mg-day_1 (coffee drinkers) (for a review, see
Manach et al. [138]) and proanthocyanidins ~95 mg-day ™
[139]. Many of the studies reviewed here provide>1 g of
polyphenols per day containing high levels of anthocyanins
(cherry, blueberry, blackcurrant 200-550 mg) or ellagitan-
nins (pomegranate 600 mg), which is many-fold higher than
habitual intake. For this reason and to ensure the ecological
validity of the data, it would seem that superimposing poly-
phenol supplementation onto the backdrop of habitual diet
is the most appropriate approach.

Polyphenol chemistry is highly complex, but to date,
studies in which the recovery and performance effects of
polyphenol supplementation have been assessed have not
included quantification of the plasma phenolics. Such meas-
urements may allow identification of the bioactive metab-
olites and inform optimisation of the polyphenol blends
consumed.

Our understanding of the mechanisms by which polyphe-
nols exert favourable effects on performance and recovery is
limited by the dearth of data on processes occurring within
muscle. Published studies have relied upon proxy markers
within serum to inform understanding of the antioxidant and
anti-inflammatory processes that seem likely to underpin the
beneficial effects observed. As described recently by Close
et al. [140], many of the serum markers of oxidative damage
are flawed and over-simplify the complexity of redox regula-
tion. Certainly, blood markers are a poor surrogate for direct
analysis of muscle tissue. To further progress understanding,
studies incorporating muscle biopsies are needed that allow
direct assessment of signalling via Nrf2 and ARE pathways
and changes in antioxidant enzyme activity in muscle after
polyphenol supplementation.

The controversy with regard to antioxidant vitamin sup-
plementation and training adaptation continues, with evi-
dence of no effect [141] or attenuation of adaptation [142]. It
is clear that ROS and inflammatory pathways are implicated
in the cell-signalling pathways that drive training adaptation,
so it is plausible that if these signals are suppressed by anti-
oxidant supplementation, ergolytic effects will result. How-
ever, in contrast to antioxidant vitamins and minerals, the
antioxidant effects of polyphenols do not seem to arise from
radical scavenging but rather from up-regulation of endog-
enous antioxidant systems. Different effects might therefore
be anticipated between vitamins and polyphenols; however,
there is a lack of empirical data. Taub et al. [126] recently
confirmed previous exercise mimetic observations in mice
[143], by which supplementation with 20 g of epicatechin-
rich cocoa for 3 months resulted in increased VO, max
and significant increases in skeletal muscle 5° adenosine
monophosphate-activated protein kinase (AMPK), PGCla
and citrate synthase protein levels. A small number of
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training studies with human participants have been per-
formed with isolated resveratrol supplementation with
largely detrimental consequences either for performance
[144—-147] or cellular level [145, 147] adaptation. However,
no studies have yet been published in which the effects of
a fruit-derived blend of polyphenols on training adaptation
have been investigated.

6 Practical Application

From a practical perspective, this review provides data to
allow sport nutrition and sport science practitioners to make
recommendations to coaches and athletes regarding the effi-
cacy of polyphenols to improve performance and aid recov-
ery from their chosen sport or training discipline. The results
from several studies suggest that acute and chronic polyphe-
nol supplementation is associated with an improvement of
performance with no reported adverse side effects. Addi-
tionally, it appears that supplementation with fruit-derived
polyphenols will assist in the recovery of muscle function
and reduce muscle soreness following intensive exercise.

In particular, athletes participating in sports that involve
time trials (cycling) and repeated sprints (field and court
sports) may experience performance gains when ingesting
an acute dose of polyphenols (1-2 h prior to competition) or
supplementing polyphenols chronically (1-6 weeks prior to
competition). Similarly, athletes participating in training ses-
sions that involve the completion of repeated sprints (6—30 s)
and repeated high-intensity interval training bouts may con-
sider supplementing with polyphenols as improvements dur-
ing training may translate to sporting performance although
this remains to be experimentally demonstrated. Since per-
formance effects were of similar magnitude for acute and
chronic supplementation, current evidence would suggest
that acute supplementation with ~300 mg polyphenols 1-2 h
prior to exercise may be ergogenic. Whilst research supports
the use of polyphenols in conjunction with high-intensity
training, there is currently a lack of evidence to support its
use in conjunction with resistance training.

As athletes’ training and competition schedules increase,
the optimisation of recovery post-exercise is imperative. The
compounding effects of successive training sessions and/or
competitive bouts on physiological and physical function
may be attenuated with the use of polyphenols. Current evi-
dence would suggest that supplementation with > 1000 mg
polyphenols per day for 3 or more days prior to and fol-
lowing exercise will enhance recovery following sporting
events that induce muscle damage, such as heavy resistance
training, and for tournament sports that involve successive
matches or rounds with short recovery periods. Consumption
of 450 g blueberries, 120 g blackcurrants or 300 g Mont-
morency cherries would approximately provide this dose
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[3]. Practitioners should consider their athletes’ personal
taste preferences and lifestyle demands when recommending
individual supplementation protocols to ensure compliance.

7 Conclusions

In summary, there is growing evidence that acute and
chronic supplementation with fruit-derived polyphenols
may enhance exercise performance, with the mechanisms
most likely to be related to antioxidant and vascular effects.
However, this research is at an early stage and more work
is required to optimise dosing strategies and to determine
the specific modes, intensities and durations of exercise for
which ergogenic effects may be achieved. There is a larger
body of evidence that suggests that chronic polyphenol con-
sumption enhances recovery from intensive exercise. More
research is still required to identify the optimal dose and
blend of polyphenols to support recovery, and ideally future
studies will measure processes within muscle as well as
plasma phenolic concentrations so that the specific bioactive
compounds and the mechanisms of action can be identified.
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