Skip to main content
. 2019 Mar 27;10:267. doi: 10.3389/fgene.2019.00267

Table 1.

A brief view of common machine learning algorithms.

Regression based Examples
Logistic regression • Use parametric regressions to estimate the probabilities of dichotomous outputs (Dasgupta et al., 2011) Cox, 1958; Yu et al., 2014; Niriella et al., 2018
Neural Network • Use multi-layers of non-parametric regressions and transformations to model input data to outputs (Mehta et al., 2019) Rosenblatt, 1962; Montañez et al., 2015; Xue et al., 2018
Support vector machine (SVM) • Use non-parametric regressions to model input data for creating multi-dimensional hyperspaces to discriminate the outputs (Yu, 2010) Corinna and Vladimir, 1995; Abraham et al., 2014; Han, 2018
Regression based regularization
Lasso • Apply L1 penalized loss functions in regression (Okser et al., 2014) Tibshirani, 1996; Wei et al., 2013; Song et al., 2018
Elastic net • Apply L1 and L2 penalized loss functions in regression (Okser et al., 2014) Zou and Hastie, 2005; Abraham et al., 2013; Rashkin et al., 2018
Tree-based
Decision tree • Utilize binary decision splitting rule approaches to model the relationships between input data and outputs (Mehta et al., 2019) Quinlan, 1986; Geurts et al., 2009; Li et al., 2018
Random forest • Utilize an ensemble of randomized decision trees to model input data to outputs (Mehta et al., 2019) Breiman, 2001; Worachartcheewan et al., 2015; Dai et al., 2018

The examples include the founding papers and current examples as at December 2018.