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Abstract 

Background:  Hidden Markov models of haplotype inheritance such as the Li and Stephens model allow for compu-
tationally tractable probability calculations using the forward algorithm as long as the representative reference panel 
used in the model is sufficiently small. Specifically, the monoploid Li and Stephens model and its variants are linear in 
reference panel size unless heuristic approximations are used. However, sequencing projects numbering in the thou-
sands to hundreds of thousands of individuals are underway, and others numbering in the millions are anticipated.

Results:  To make the forward algorithm for the haploid Li and Stephens model computationally tractable for these 
datasets, we have created a numerically exact version of the algorithm with observed average case sublinear runtime 
with respect to reference panel size k when tested against the 1000 Genomes dataset.

Conclusions:  We show a forward algorithm which avoids any tradeoff between runtime and model complexity. Our 
algorithm makes use of two general strategies which might be applicable to improving the time complexity of other 
future sequence analysis algorithms: sparse dynamic programming matrices and lazy evaluation.
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Background
Probabilistic models of haplotypes describe how varia-
tion is shared in a population. One application of these 
models is to calculate the probability P(o|H), defined as 
the probability of a haplotype o being observed, given 
the assumption that it is a member of a population rep-
resented by a reference panel of haplotypes H. This com-
putation has been used in estimating recombination rates 
[1], a problem of interest in genetics and in medicine. It 
may also be used to detect errors in genotype calls.

Early approaches to haplotype modeling used coales-
cent [2] models which were accurate but computation-
ally complex, especially when including recombination. 
Li and Stephens wrote the foundational computationally 
tractable haplotype model [1] with recombination. Under 
their model, the probability P(o|H) can be calculated 

using the forward algorithm for hidden Markov models 
(HMMs) and posterior sampling of genotype probabili-
ties can be achieved using the forward–backward algo-
rithm. Generalizations of their model have been used for 
haplotype phasing and genotype imputation [3–7].

The Li and Stephens model
Consider a reference panel H of k haplotypes sam-
pled from some population. Each haplotype hj ∈ H is a 
sequence (hj,1, . . . , hj,n) of alleles at a contiguous sequence 
1, . . . , n of genetic sites. Classically [1], the sites are bial-
lelic, but the model extends to multiallelic sites [8].

Consider an observed sequence of alleles 
o = (o1, . . . , on) representing another haplotype. The 
monoploid Li and Stephens model (LS) [1] specifies a 
probability that o is descended from the population rep-
resented by H. LS can be written as a hidden Markov 
model wherein the haplotype o is assembled by copy-
ing (with possible error) consecutive contiguous subse-
quences of haplotypes hj ∈ H .
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Definition 1  (Li and Stephens HMM) Define xj,i as 
the event that the allele oi at site i of the haplotype o 
was copied from the allele hj,i of haplotype hj ∈ H . Take 
parameters

and from them define the transition and recombination 
probabilities

We will write µi(j) as shorthand for p(oi|xj,i) . We 
will also define the values of the initial probabilities 
p(xj,1, o1|H) =

µ1(j)
k

 , which can be derived by noting that 
if all haplotypes have equal probabilities 1k of randomly 
being selected, and that this probability is then modified 
by the appropriate emission probability.

Let P(o|H) be the probability that haplotype o was pro-
duced from population H. The forward algorithm for hid-
den Markov models allows calculation of this probability 
in O(nk2) time using an n× k dynamic programming 
matrix of forward states

The probability P(o|H) will be equal to the sum 
∑

j pn[j] 
of all entries in the final column of the dynamic program-
ming matrix. In practice, the Li and Stephens forward 
algorithm is O(nk) (see "Efficient dynamic programming" 
section).

Li and Stephens like algorithms for large populations
The O(nk) time complexity of the forward algorithm 
is intractable for reference panels with large size k. The 
UK Biobank has amassed k = 500, 000 array samples. 
Whole genome sequencing projects, with a denser dis-
tribution of sites, are catching up. Major sequencing 
projects with k = 100, 000 or more samples are nearing 
completion. Others numbering k in the millions have 
been announced. These large population datasets have 
significant potential benefits: They are statistically likely 
to more accurately represent population frequencies and 

(1)
ρ∗
i−1→i probability of any recombination

between sites i − 1 and i

(2)
µi probability of a mutation from

one allele to another at site i

(3)
p(xj,i|xj′,i−1)

=

{

1− (k − 1)ρi if j = j′

ρi if j �= j′
where ρi =

ρ∗
i−1→i

k − 1

(4)

p(oi|xj,i)

=

{

1− (A− 1)µi if oi = hj,i
µi if oi �= hj,i

where A = number of alleles

(5)pi[j] = P(xj,i, o1, . . . , oi|H)

those employing genome sequencing can provide phas-
ing information for rare variants.

In order to handle datasets with size k even fractions 
of these sizes, modern haplotype inference algorithms 
depend on models which are simpler than the Li and 
Stephens model or which sample subsets of the data. For 
example, the common tools Eagle-2, Beagle, HAPI-UR 
and Shapeit-2 and -3 [3–7] either restrict where recom-
bination can occur, fail to model mutation, model long-
range phasing approximately or sample subsets of the 
reference panel.

Lunter’s “fastLS” algorithm [8] demonstrated that hap-
lotypes models which include all k reference panel haplo-
type could find the Viterbi maximum likelihood path in 
time sublinear in k, using preprocessing to reduce redun-
dant information in the algorithm’s input. However, his 
techniques do not extend to the forward and forward–
backward algorithms.

Our contributions
We have developed an arithmetically exact forward algo-
rithm whose expected time complexity is a function of 
the expected allele distribution of the reference panel. 
This expected time complexity proves to be significantly 
sublinear in reference panel size. We have also developed 
a technique for succinctly representing large panels of 
haplotypes whose size also scales as a sublinear function 
of the expected allele distribution.

Our forward algorithm contains three optimizations, 
all of which might be generalized to other bioinformat-
ics algorithms. In "Sparse representation of haplotypes" 
section, we rewrite the reference panel as a sparse matrix 
containing the minimum information necessary to 
directly infer all allele values. In "Efficient dynamic pro-
gramming" section, we define recurrence relations which 
are numerically equivalent to the forward algorithm but 
use minimal arithmetic operations. In "Lazy evaluation 
of dynamic programming rows", we delay computation 
of forward states using a lazy evaluation algorithm which 
benefits from blocks of common sequence composed of 
runs of major alleles. Our methods apply to other mod-
els which share certain redundancy properties with the 
monoploid Li and Stephens model.

Sparse representation of haplotypes
The forward algorithm to calculate the probability P(o|H) 
takes as input a length n vector o and a k × n matrix of 
haplotypes H. In general, any algorithm which is sublin-
ear in its input inherently requires some sort of preproc-
essing to identify and reduce redundancies in the data. 
However, the algorithm will truly become effectively sub-
linear if this preprocessing can be amortized over many 
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iterations. In this case, we are able to preprocess H into a 
sparse representation which will on average contain bet-
ter than O(nk) data points.

This is the first component of our strategy. We use a 
variant of column-sparse-row matrix encoding to allow 
fast traversal of our haplotype matrix H. This encoding 
has the dual benefit of also allowing reversible size com-
pression of our data. We propose that this is one good 
general data representation on which to build other com-
putational work using very large genotype or haplotype 
data. Indeed, extrapolating from our single-chromosome 
results, the 1000 Genomes Phase 3 haplotypes across all 
chromosomes should simultaneously fit uncompressed in 
11 GB of memory.

We will show that we can evaluate the Li and Stephens 
forward algorithm without needing to uncompress this 
sparse matrix.

Sparse column representation of haplotype alleles
Consider a biallelic genetic site i with alleles {A,B} . Con-
sider the vector h1,i, h2,i, . . . , hk ,i ∈ {A,B}k of alleles of 
haplotypes j at site i. Label the allele A, B which occurs 
more frequently in this vector as the major allele 0, and 
the one which occurs less frequently as the minor allele 1. 
We then encode this vector by storing the value A or B of 
the major allele 0, and the indices j1, j2, . . . of the haplo-
types which take on allele value 1 at this site.

We will write φi for the subvector hj1,i, hj2,i, . . . of alleles 
of haplotypes consisting of those haplotypes which pos-
sess the minor allele 1 at site i. We will write |φi| for the 
multiplicity of the minor allele. We call this vector φi the 
information content of the haplotype cohort H at the site 
i.

Relation to the allele frequency spectrum
Our sparse representation of the haplotype reference 
panel benefits from the recent finding [9] that the dis-
tribution over sites of minor allele frequencies is biased 
towards low frequencies.1

Clearly, the distribution of |φi| is precisely the allele fre-
quency spectrum. More formally,

Lemma 1  Let E[f ](k) be the expected mean minor allele 
frequency for k genotypes. Then

(6)E

[

1

n

n
∑

i=1

|φi|

]

= E[f ](k)

Corollary 1  If O(E[f ]) < O(k) , then O(
∑

i
|φi|)

< O(nk) in expected value.

Dynamic reference panels
Adding or rewriting a haplotype is constant time per site 
per haplotype unless this edit changes which allele is the 
most frequent. It can be achieved by addition or removal 
or single entries from the row-sparse-column representa-
tion, wherein, since our implementation does not require 
that the column indices be stored in order, these opera-
tions can be made O(1) . This allows our algorithm to 
extend to uses of the Li and Stephens model where one 
might want to dynamically edit the reference panel. The 
exception occurs when φi = k

2—here it is not absolutely 
necessary to keep the formalism that the indices stored 
actually be the minor allele.

Implementation
For biallelic sites, we store our φi ’s using a length-n vector 
of length |φi| vectors containing the indices j of the haplo-
types hj ∈ φi and a length-n vector listing the major allele 
at each site (see Fig. 1 panel iii) Random access by key i to 
iterators to the first elements of sets φi is O(1) and itera-
tion across these φi is linear in the size of φi . For multial-
lelic sites, the data structure uses slightly more space but 
has the same speed guarantees.

Generating these data structures takes O(nk) time but 
is embarrassingly parallel in n. Our “*.slls” data structure 
doubles as a succinct haplotype index which could be dis-
tributed instead of a large vcf record (though genotype 
likelihood compression is not accounted for). A vcf → slls 
conversion tool is found in our github repository.

Efficient dynamic programming
We begin with the recurrence relation of the clas-
sic forward algorithm applied to the Li and Stephens 
model [1]. To establish our notation, recall that we 
write pi[j] = P(xj,i, o1, . . . , oi|H) , that we write µi(j) 
as shorthand for p(oi|xj,i) and that we have initialized 
p1[j] = p(xj,1, o1|H) =

µ1(j)
k

 . For i > 1 , we may then write:

We will reduce the number of summands in (8) and 
reduce the number indices j for which (7) is evaluated. 
This will use the information content defined in "Sparse 
column representation of haplotype alleles" section.

(7)pi[j] = µi(j)
(

(1− kρi)pi−1[j] + ρiSi−1

)

(8)Si =

k
∑

j=1

pi[j]

1  We observe similar results in our own analyses in "Minor allele frequency 
distribution for the 1000 Genomes dataset" section.
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Lemma 2  The summation (8) is calculable using strictly 
fewer than k summands.

Proof  Suppose first that µi(j) = µi for all j. Then

Now suppose that µi(j) = 1− µi for some set of j. We 
must then correct for these j. This gives us

The same argument holds when we reverse the roles of µi 
and 1− µi . Therefore we can choose which calculation to 
perform based on which has fewer summands. This gives 
us the following formula:

where

� �

(9)

Si =

k
∑

j=1

pi[j] = µi

k
∑

j=1

(

(1− kρi)pi−1[j] + ρiSi−1

)

(10)= µi((1− kρi)Si−1 + kρiSi−1) = µiSi−1

(11)Si = µiSi−1 +
1− µi − µi

1− µi

∑

j where µi(j)�=µi

pi[j]

(12)Si = αSi−1 + β
∑

j∈φi

pi[j]

(13)α = µi β =
1− 2µi

1− µi
if φi have allele a

(14)

α = 1− µi β =
2µi − 1

µi
if φi do not have allele a

We note another redundancy in our calculations. For 
the proper choices of µ′

i,µ
′′
i  among µi, 1− µi , the recur-

rence relations (7) are linear maps R → R

of which there are precisely two unique maps, fi corre-
sponding to the recurrence relations for those xj such 
that j ∈ φi , and Fi to those such that j /∈ φi.

Lemma 3  If j /∈ φi and j /∈ φi−1 , then Si can be calcu-
lated without knowing pi−1[j] and pi[j] . If j /∈ φi−1 and 
j′ �= j , then pi[j′] can be calculated without knowing 
pi−1[j].

Proof  Equation (12) lets us calculate Si−1 with-
out knowing any pi−1[j] for any j /∈ φi−1 . From Si−1 
we also have fi and Fi . Therefore, we can calculate 
pi[j

′] = fi(pi−1[j
′]) or Fi(pi−1[j

′]) without knowing pi−1[j] 
provided that j′ �= j . This then shows us that we can cal-
culate pi[j′] for all j′ ∈ φi without knowing any j such that 
j /∈ φi and j /∈ φi−1 . Finally, the first statement follows 
from another application of (12) (Fig. 2). � �

Corollary 2  The recurrences (8) and the minimum set 
of recurrences (7) needed to compute (8) can be evaluated 
in O(|φi|) time, assuming that pi−1[j] have been computed 
∀j ∈ φi.

We address the assumption on prior calculation of the 
necessary pi−1[j] ’s in "Lazy evaluation of dynamic pro-
gramming rows" section.

Time complexity
Recall that we defined E[f ](k) as the expected mean 
minor allele frequency in a sample of size k. Suppose that 
it is comparatively trivial to calculate the missing pi−1[j] 

(15)fi : x �−→ µ′
i(1− kρ)x + µ′

iρSi−1

(16)Fi : x �−→ µ′′
i (1− kρ)x + µ′′

i ρSi−1

G A T T A C A G A T T A C A

G A C T A C A G A A T A C T
G A C T A C A G G T T C T A
A C T T A C T G A T G A C A
A A T A A C A C A T T A C A
G C T T G C T G A T T A C A
A A T T A A A G A T T A C A
G C T T A C A G A T T A C A

G A T T A C A G A T T A C A

G A C T A C A G A A T A C T
G A C T A C A G G T T C T A
A C T T A C T G A T G A C A
A A T A A C A C A T T A C A
G C T T G C T G A T T A C A
A A T T A A A G A T T A C A
G C T T A C A G A T T A C A

G A T T A C A G A T T A C A

3 3 1 4 5 6 3 4 2 1 3 2 2 1
4 5 2       5
6 7

Fig. 1  Information content of array of template haplotypes. (i) Reference panel {h1, . . . , h5} with mismatches to haplotype o shown in yellow. (ii) 
Alleles at site i of elements of φi(oi) in black. (iii) Vectors to encode φi(oi) at each site
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values. Then by Corollary 2 the procedure in Eq. (12) has 
expected time complexity O

(
∑

i |φi|
)

= O

(

nE[f ](k)
)

.

Lazy evaluation of dynamic programming rows
Corollary 2 was conditioned on the assumption that spe-
cific forward probabilities had already been evaluated. 
We will describe a second algorithm which performs this 
task efficiently by avoiding performing any arithmetic 
which will prove unnecessary at future steps.2

Equivalence classes of longest major allele suffixes

Lemma 4  Suppose that hj /∈ φℓ ∪ φℓ+1 ∪ . . . ∪ φi−1 . 
Then the dynamic programming matrix entries 
pℓ[j], pℓ+1[j], . . . , pi−1[j] need not be calculated in order 
to calculate Sℓ, Sℓ+1, . . . , Si−1.

Proof  By repeated application of Lemma (3).�  �

Corollary 3  Under the same assumption on j, 
pℓ[j], pℓ+1[j], . . . , pi−1[j] need not be calculated in order 
to calculate Fℓ+1, . . . , Fi . This is easily seen by definition 
of Fi.

Lemma 5  Suppose that pℓ−1[j] is known, and 
xj /∈ φℓ ∪ φℓ+1 ∪ . . . ∪ φi−1 . Then pi−1[j] can be calcu-
lated in the time which it takes to calculate Fi−1 ◦ . . . ◦ Fℓ.

Proof  pi−1[j] = Fi−1 ◦ . . . ◦ Fℓ(pℓ−1[j])�  �

It is immediately clear that calculating the pi[j] lends well 
to lazy evaluation. Specifically, the xj /∈ φi are data which 
need not be evaluated yet at step i. Therefore, if we can 
aggregate the work of calculating these data at a later iter-
ation of the algorithm, and only if needed then, we can 
potentially save a considerable amount of computation.

Definition 2  (Longest major allele suffix classes) Define 
Eℓ→i−1 = φℓ−1 ∩

[

⋃i−1
ι=ℓ φι

]c
 That is, let Eℓ→i−1 be the 

class of all haplotypes whose sequence up to site i − 1 
shares the suffix from ℓ to i − 1 inclusive consisting only 
of major alleles, but lacks any longer suffix composed 
only of major alleles.

Remark 1  Eℓ→i−1 is the set of all hj where pℓ−1[j] was 
needed to calculate Sℓ−1 but no p(·)[j] has been needed to 
calculate any S(·) since.

Note that for each i, the equivalence classes Eℓ→i−1 
form a disjoint cover of the set of all haplotypes hj ∈ H .

Remark 2  ∀hj ∈ Eℓ→i−1 , pi−1[j] = Fi−1 ◦ . . . ◦ Fℓ(pℓ−1[j])

Definition 3  Write Fa→b as shorthand for Fb ◦ . . . ◦ Fa.

The lazy evaluation algorithm
Our algorithm will aim to:

1.	 Never evaluate pi[j] explicitly unless hj ∈ φi.
2.	 Amortize the calculations pi[j] = fi ◦ Fi−1 ◦ . . .

◦Fℓ(pℓ−1[j]) over all hj ∈ Eℓ→i−1.
3.	 Share the work of calculating subsequences of com-

positions of maps Fi−1 ◦ . . . ◦ Fℓ with other composi-
tions of maps Fi′−1 ◦ . . . ◦ Fℓ′ where ℓ′ ≤ ℓ and i′ ≥ i.

To accomplish these goals, at each iteration i, we main-
tain the following auxiliary data. The meaning of these 
are clarified by reference to Figs. 3, 4 and 5.

1.	 The partition of all haplotypes hj ∈ H into equiva-
lence classes Eℓ→i−1 according to longest major allele 
suffix of the truncated haplotype at i − 1 . See Defini-
tion 2 and Fig. 3.

2.	 The tuples Tℓ = (Eℓ→i−1, Fℓ→m,m) of equiva-
lence classes Eℓ→i−1 stored with linear map pre-
fixes Fℓ→m = Fm ◦ . . . ◦ Fℓ of the map Fℓ→i−1 which 
would be necessary to fully calculate pi[j] for the j 
they contain, and the index m of the largest index in 
this prefix. See Fig. 5.

3.	 The ordered sequence m1 > m2 > . . . , in reverse 
order, of all distinct 1 ≤ m ≤ i − 1 such that m is 
contained in some tuple. See Figs. 3, 5.

4.	 The maps Fmin{ℓ}→mmin , . . . , Fm2+1→m1 , Fm1+1→i−1 
which partition the longest prefix Fi−1 ◦ . . . ◦ Fmin{ℓ} 
into disjoint submaps at the indices m. See Fig.  3. 

(i) (ii)

Fig. 2  Work done to calculate the sum of haplotype probabilities at a 
site for the conventional and our sublinear forward algorithm. Using 
the example that at site i, φi(oi) = {h3} , we illustrate the number 
of arithmetic operations used in (i) the conventional O(nk) Li and 
Stephens HMM recurrence relations. ii Our procedure specified in 
Eq. (12). Black lines correspond to arithmetic operations; operations 
which cannot be parallelized over j are colored yellow

2  This approach is known as lazy evaluation.
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These are used to rapidly extend prefixes Fℓ→m into 
prefixes Fℓ→i−1.

Finally, we will need the following ordering on tuples Tℓ 
to describe our algorithm:

Definition 4  Impose a partial ordering < on the 
Tℓ = (Eℓ→i−1, Fℓ→m,m) by Tℓ < Tℓ′ iff m < m′ . See Fig. 4.

We are now ready to describe our lazy evaluation algo-
rithm which evaluates pi[j] = fi ◦ Fℓ→i−1(pℓ−1[j]) just-
in-time while fulfilling the aims listed at the top of this 
section, by using the auxiliary state data specified above.

Fig. 3  Longest major allele suffix classes, linear map compositions. Illustrations clarifying the meanings of the equivalence classes Eℓ→i−1 (left) and 
the maps Fa→b . Indices m are sites whose indices are b’s in stored maps of the form Fa→b

Fig. 4  Partial ordering of tuples of (equivalence class, linear map, index) used as state information in our algorithm. The ordering of the tuples 
Tℓ = (Eℓ→i−1, Fℓ→m ,m) . Calculation of the depth d of an update which requires haplotypes contained in the equivalence classes defining the two 
tuples shown in solid yellow



Page 7 of 12Rosen and Paten ﻿Algorithms Mol Biol           (2019) 14:11 

The algorithm is simple but requires keeping track of a 
number of intermediate indices. We suggest referring to 
the Figs. 3, 4 and 5 as a visual aid. We state it in six steps 
as follows.

Step 1:	� Identifying the tuples containing φ—O(φi) 
time complexity

Identify the subset U(φ) of the tuples Tℓ for which there 
exists some hj ∈ φi such that hj ∈ Eℓ→i−1.

Step 2:	� Identifying the preparatory map suffix calcula-
tions to be performed—O(φi) time complexity

Find the maximum depth d of any Tℓ ∈ U(φ) 
with respect to the partial ordering above. 
Equivalently, find the minimum m such that 
Tℓ = (Eℓ→i−1, Fℓ→m,m) ∈ U(φ) . See Fig. 4.

Step 3:	� Performing preparatory map suffix calcula-
tions—O(d) time complexity

1	 O(d) : Let m1, . . . ,md be the last d indices m in the 
reverse ordered list of indices m1,m2, . . . . By itera-
tively composing the maps Fm1+1→i−1, Fm2+1→m1 
which we have already stored, construct the telescop-
ing suffixes Fm1+1→i−1, Fm2+1→i−1, . . . , Fmd+1→i−1 
needed to update the tuples (Eℓ→i−1, Fℓ→m,m) to 
(Eℓ→i−1, Fℓ→i−1, i − 1).

2	 O(d) : For each m1 ≤ mi ≤ md , choose an arbi-
trary (Eℓ→i−1, Fℓ→mi ,mi) and update it to 
(Eℓ→i−1, Fℓ→i−1, i − 1).

Fig. 5  Key steps involved in calculating pi[j] by delayed evaluation. An illustration of the manipulation of the tuple T2 = (Eℓ→i−1, Fℓ→m ,m) by the 
lazy evaluation algorithm, and how it is used to calculate pi[j] from pℓ−1[j] just-in-time. In this case, we wish to calculate p6[2] . This is a member of 
the equivalence class E2→5 , since it hasn’t needed to be calculated since time 1. In step 4 of the algorithm, we therefore must update the whole 
tuple T2 by post-composing the partially completed prefix F2→4 of the map F2→5 which we need using our already-calculated suffix map F5 . In step 
5, we use F2→5 to compute p6[2] = f6 ◦ F2→5(p1[j]) . In step 6, we update the tuple T2 to reflect its loss of h2 , which is now a member of E6→6
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Step 4:	� Performing the deferred calculations for 
the tuples containing hj ∈ φi—O(φi) time 
complexity

If not already done in Step 3.2, for every Tℓ ∈ U(φ) , 
extend its map element from (Eℓ→i−1, Fℓ→m,m) to 
(Eℓ→i−1, Fℓ→i−1, i − 1) in O(1) time using the maps cal-
culated in Step 3.1. See Fig. 5.

Step 5:	� Calculating pi[j] just-in-time—O(φi) time 
complexity

Note: The calculation of interest is performed here.
Using the maps Fℓ→i−1 calculated in Step 3.2 or 4, 

finally evaluate the value pi[j] = fi ◦ Fℓ→i−1(pℓ−1[j]) . See 
Fig. 5.

Step 6:	� Updating our equivalence class/update 
map prefix tuple auxiliary data struc-
tures—O(φi + d) time complexity

1.	 Create the new tuple (Ei→i, Fi→i = identity map , i).
2.	 Remove the hj ∈ φi from their equivalence classes 

Eℓ→i−1 and place them in the new equivalence class 
Ei→i . If this empties the equivalence class in question, 
delete its tuple. To maintain memory use bounded by 
number of haplotypes, our implementation uses an 
object pool to store these tuples.

3.	 If an index mi no longer has any corresponding tuple, 
delete it, and furthermore replace the stored maps 
Fmi−1+1→mi and Fmi+1 → mi+1 with a single map 
Fmi−1+1→mi+1 . This step is added to reduce the upper 
bound on the maximum possible number of composi-
tions of maps which are performed in any given step.

The following two trivial lemmas allow us to bound d 
by k such that the aggregate time complexity of the lazy 
evaluation algorithm cannot exceed O(nk) . Due to the 
irregularity of the recursion pattern used by the algo-
rithm, is likely not possible to calculate a closed-form 
tight bound on 

∑

i d , however, empirically it is asymp-
totically dominated by 

∑

i φi as shown in the results 
which follow.

Lemma 6  The number of nonempty equivalence classes 
Eℓ→i−1 in existence at any iteration i of the algorithm is 
bounded by the number of haplotypes k.

Proof  Trivial but worth noting. � �

Lemma 7  The number of unique indices m in existence 
at any iteration i of the algorithm is bounded by the num-
ber of nonempty equivalence classes Eℓ→i−1.

Results
Implementation
Our algorithm was implemented as a C++ library located 
at https​://githu​b.com/yohei​rosen​/subli​near-Li-Steph​ens. 
Details of the lazy evaluation algorithm will be found there.

We also implemented the linear time forward algo-
rithm for the haploid Li and Stephens model in C++ 
as to evaluate it on identical footing. Profiling was per-
formed using a single Intel Xeon X7560 core running at 
2.3 GHz on a shared memory machine. Our reference 
panels H were the phased haplotypes from the 1000 
Genomes [10] phase 3 vcf records for chromosome 22 
and subsamples thereof. Haplotypes o were randomly 
generated simulated descendants.

Minor allele frequency distribution for the 1000 Genomes 
dataset
We found it informative to determine the allele frequency 
spectrum for the 1000 Genomes dataset which we will 
use in our performance analyses. We simulated haplo-
types o of 1,000,000 bp length on chromosome 22 and 
recorded the sizes of the sets φi(oi) for k = 5008 . These 
data produced a mean |φi(oi)| of 59.9, which is 1.2% of the 
size of k. We have plotted the distribution of |φi(oi)| which 
we observed from this experiment in (Fig. 6). It is skewed 
toward low frequencies; the minor allele is unique at 71% 
of sites, and it is below 1% frequency at 92% of sites.

Comparison of our algorithm with the linear time forward 
algorithm
In order to compare the dependence of our algorithm’s 
runtime on haplotype panel size k against that of the 
standard linear LS forward algorithm, we measured 
the CPU time per genetic site of both across a range of 
haplotype panel sizes from 30 to 5008. This analysis was 
achieved as briefly described above. Haplotype panels 
spanning the range of sizes from 30 to 5008 haplotypes 
were subsampled from the 1000 Genomes phase 3 vcf 
records and loaded into memory in both uncompressed 
and our column-sparse-row format. Random sequences 
were sampled using a copying model with mutation and 
recombination, and the performance of the classical for-
ward algorithm was run back to back with our algorithm 
for the same random sequence and same subsampled 
haplotype panel. Each set of runs was performed in tripli-
cate to reduce stochastic error.

Figure  7 shows this comparison. Observed time com-
plexity of our algorithm was O(k0.35) as calculated from 
the slope of the line of best fit to a log–log plot of time 
per site versus haplotype panel size.

For data points where we used all 1000 Genomes pro-
ject haplotypes ( k = 5008 ), on average, time per site 

https://github.com/yoheirosen/sublinear-Li-Stephens
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is 37 μs for our algorithm and 1308 μs for the linear LS 
algorithm. For the forthcoming 100,000 Genomes Pro-
ject, these numbers can be extrapolated to 251 μs for our 
algorithm and 260,760 μs for the linear LS algorithm.

Lazy evaluation of dynamic programming rows
We also measured the time which our algorithm spent 
within the d-dependent portion of the lazy evaluation 
subalgorithm. In the average case, the time complexity 
of our lazy evaluation subalgorithm does not contribute 
to the overall algebraic time complexity of the algorithm 
(Fig. 8, right). The lazy evaluation runtime also contrib-
utes minimally to the total actual runtime of our algo-
rithm (Fig. 8, left).

Sparse haplotype encoding
Generating our sparse vectors
We generated the haplotype panel data structures from 
"Sparse representation of haplotypes" section using the 

vcf-encoding tool vcf2slls which we provide. We 
built indices with multiallelic sites, which increases their 
time and memory profile relative to the results in "Minor 
allele frequency distribution for the 1000 Genomes data-
set" section but allows direct comparison to vcf records. 
Encoding of chromosome 22 was completed in 38 min on 
a single CPU core. Use of M CPU cores will reduce runt-
ime proportional to M.

Size of sparse haplotype index
In uncompressed form, our whole genome *.slls 
index for chromosome 22 of the 1000 genomes dataset 
was 285 MB in size versus 11 GB for the vcf record using 
uint16_t’s to encode haplotype ranks. When com-
pressed with gzip, the same index was 67 MB in size ver-
sus 205 MB for the vcf record.

In the interest of speed (both for our algorithm and the 
O(nk) algorithm) our experiments loaded entire chromo-
some sparse matrices into memory and stored haplotype 

Fig. 6  Biallelic site minor allele frequency distribution from 1000 Genomes chromosome 22. Note that the distribution is skewed away from 
the 1

f
 distribution classically theorized. The data used are the genotypes of the 1000 Genomes Phase 3 VCF, with minor alleles at multiallelic sites 

combined

Fig. 7  Runtime per site for conventional linear algorithm vs our sparse-lazy algorithm. Runtime per site as a function of haplotype reference panel 
size k for our algorithm (blue) as compared to the classical linear time algorithm (black). Both were implemented in C++ and benchmarked using 
datasets preloaded into memory. Forward probabilities are calculated for randomly generated haplotypes simulated by a recombination–mutation 
process, against random subsets of the 1000 genomes dataset
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indices as uint64_t’s. This requires on the order of 1 
GB memory for chromosome 22. For long chromosomes 
or larger reference panels on low memory machines, the 
algorithm can operate by streaming sequential chunks of 
the reference panel.

Discussions and Conclusion
To the best of our knowledge, ours is the first forward 
algorithm for any haplotype model to attain sublinear 
time complexity with respect to reference panel size. Our 
algorithms could be incorporated into haplotype infer-
ence strategies by interfacing with our C++ library. This 
opens the potential for tools which are tractable on hap-
lotype reference panels at the scale of current 100,000 to 
1,000,000+ sample sequencing projects.

Applications which use individual forward probabilities
Our algorithm attains its runtime specifically for the 
problem of calculating the single overall probability 
P(o|H , ρ,µ) and does not compute all nk forward prob-
abilities. We can prove that if m many specific forward 
probabilities are also required as output, and if the time 
complexity of our algorithm is O(

∑

i |φi|) , then the time 
complexity of the algorithm which also returns the m for-
ward probabilities is O(

∑

i |φi| +m).
In general, haplotype phasing or genotype imputation 

tools use stochastic traceback or other similar sampling 
algorithms. The standard algorithm for stochastic trace-
back samples states from the full posterior distribution 
and therefore requires all forward probabilities. The algo-
rithm output and lower bound of its speed is therefore 
O(nk) . The same is true for many applications of the for-
ward–backward algorithm.

There are two possible approaches which might allow 
runtime sublinear in k for these applications. Using 
stochastic traceback as an example, first is to devise an 
O(f (m)) sampling algorithm which uses m = g(k) for-
ward probabilities such that O(f ◦ g(k)) < O(k) . The sec-
ond is to succinctly represent forward probabilities such 
that nested sums of the nk forward probabilities can be 
queried from O(φ) < O(nk) data. This should be pos-
sible, perhaps using the positional Burrows–Wheeler 
transform [11] as in [8], since we have already devised 
a forward algorithm with this property for a different 
model in [12].

Generalizability of algorithm
The optimizations which we have made are not strictly 
specific to the monoploid Li and Stephens algorithm. 
Necessary conditions for our reduction in the time com-
plexity of the recurrence relations are

Condition 1  The number of distinct transition probabili-
ties is constant with respect to number of states k.

Condition 2  The number of distinct emission probabili-
ties is constant with respect to number of states k.

Favourable conditions for efficient time complexity of 
the lazy evaluation algorithm are

Condition 1  The number of unique update maps added 
per step is constant with respect to number of states k.

Condition 2  The update map extension operation is 
composition of functions of a class where composition is 
constant-time with respect to number of states k.

Fig. 8  Runtime per site for the overall algorithm and for the recursion-depth dependent portion. Time per site for the lazy evaluation subalgorithm 
(yellow) vs. the full algorithm (blue). The experimental setup is the same as previously described, with the subalgorithm time determined by 
internally timing the recursion-depth d dependent portions of the lazy evaluation subalgorithm.
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The reduction in time complexity of the recurrence 
relations depends on the Markov property, however we 
hypothesize that the delayed evaluation needs only the 
semi-Markov property.

Other haplotype forward algorithms
Our optimizations are of immediate interest for other 
haplotype copying models. The following related algo-
rithms have been explored without implementation.

Example 1  (Diploid Li and Stephens) We have yet to 
implement this model but expect average runtime at least 
subquadratic in reference panel size k. We build on the 
statement of the model and its optimizations in [13]. We 
have found the following recurrences which we believe 
will work when combined with a system of lazy evalua-
tion algorithms:

Lemma 8  The diploid Li and Stephens HMM may be 
expressed using recurrences of the form

which use on the intermediate sums defined as

where α(·),β(·), γ(·) depend only on the diploid genotype oi.

Implementing and verifying the runtime of this exten-
sion of our algorithm will be among our next steps.

Example 2  (Multipopulation Li and Stephens) [14] We 
maintain separate sparse haplotype panel representations 
φA
i (oi) and φB

i (oi) and separate lazy evaluation mecha-
nisms for the two populations A and B. Expected runtime 
guarantees are similar.

This model, and versions for > 2 populations, will be 
important in large sequencing cohorts (such as NHLBI 
TOPMed) where assuming a single related population is 
unrealistic.

(17)
pi[j1, j2] = αppi−1[j1, j2] + βp(Si−1(j1)+ Si−1(j2))+ γpSi−1

(18)

Si := αcSi−1 + βc
∑

j∈φi

Si−1(j)

+ γc
∑

(j1,j2)∈φ
2

i

pi−1[j1, j2] O(|φi|
2)

(19)

Si(j) := αcSi−1 + βcSi−1(j)

+ γc
∑

j2∈φi

pi−1[j, j2] forO(k|φi|)many j

Example 3  (More detailed mutation model) It may also 
be desirable to model distinct mutation probabilities for 
different pairs of alleles at multiallelic sites. Runtime is 
worse than the biallelic model but remains average case 
sublinear.

Example 4  (Sequence graph Li and Stephens analogue) 
In [12] we described a hidden Markov model for a haplo-
type-copying with recombination but not mutation in the 
context of sequence graphs. Assuming we can decom-
pose our graph into nested sites then we can achieve a 
fast forward algorithm with mutation. An analogue of 
our row-sparse-column matrix compression for sequence 
graphs is being actively developed within our research 
group.

While a haplotype HMM forward algorithm alone 
might have niche applications in bioinformatics, we 
expect that our techniques are generalizable to speed-
ing up other forward algorithm-type sequence analysis 
algorithms.
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