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   Abstract: Background: Cancer is a complex disease with a lucid etiology and in understanding the 
causation, we need to appreciate this complexity. 
Objective: Here we are aiming to gain insights into the genetic associations of prostate cancer through 
a network-based systems approach using the BC3Net algorithm. 
Methods: Specifically, we infer a prostate cancer Gene Regulatory Network (GRN) from a large-scale 
gene expression data set of 333 patient RNA-seq profiles obtained from The Cancer Genome Atlas 
(TCGA) database. 
Results: We analyze the functional components of the inferred network by extracting subnetworks 
based on biological process information and interpret the role of known cancer genes within each pro-
cess. Furthermore, we investigate the local landscape of prostate cancer genes and discuss pathologi-
cal associations that may be relevant in the development of new targeted cancer therapies. 
Conclusion: Our network-based analysis provides a practical systems biology approach to reveal the 
collective gene-interactions of prostate cancer. This allows a close interpretation of biological activity 
in terms of the hallmarks of cancer. 
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1. INTRODUCTION 

 Prostate cancer is among the most frequently diagnosed 
cancers and the 5th leading cause of cancer mortality world-
wide for males [1]. Of the male population aged 50 and over, 
an estimated 40% have slow-growing prostate cancer. The 
incidence rate increases with age such that ageing is one of 
the several risk factors which also include: ethnicity, familial 
and genetic influences [2]. The survival rate of prostate can-
cer is improving which may be attributable to the increased 
monitoring of biomarkers such as prostate-specific antigen 
(PSA). PSA has allowed for the detection of prostate cancer 
in its primitive stage during which treatment may be most 
effective. However, the use of PSA as a diagnostic tool is far 
from ideal, mainly due to the over- detection of slow grow-
ing, non-fatal variants of the disease, the treatment of which 
causing more harm than good [3]. This slow growing pheno-
type typically results in death with prostate cancer rather 
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than from the disease. Indeed this translates into the unique 
survival statistics of prostate cancer where in the UK, the 
one- five- and ten-year survival rates in 2011 have grown to 
94%, 85% and 84% respectively [4]. 
 As cancer progresses, oncogenes and tumour suppressor 
genes can undergo gain or loss in function, through changes 
in our genome. These changes are in the form of mutations 
and copy number variations. Many genes have recently been 
identified as contributing to the sporadic onset of prostate 
cancer along with hereditary predispositions to the disease. 
For instance, in a study [5] major genes associated with pros-
tate cancer have been discussed, including ANX7, AR, 
ATBF1, BRCA1, BRCA2, CDKN1B, CHEK2, CYP17, 
CYP1B1, ELAC2, P53, PTEN and RAS. In general, cancer 
is understood to be a complex disease, because cancer is the 
result of mutations in many genes which may be involved in 
overlapping biological pathways that together form a com-
plex cellular network. For this reason, cancer can be seen as 
a network disease that can be best interpreted by a systems 
perspective [6, 7]. Examples of such approaches for different 
cancer types can be found in some studies [8-11]. 



Prostate Cancer Gene Regulatory Network Inferred from RNA-Seq Data Current Genomics, 2019, Vol. 20, No. 1    39 

 Owing to the fact that there is a poor separation between 
the lethal and non-lethal variants of prostate cancer, there is a 
growing need to determine reliable indicators that predict the 
best treatment for patients. With this in mind, our study aims 
to uncover the pathological associations of prostate cancer 
and to elucidate potential causes which may aid in biomarker 
discovery. Specifically, we infer a gene regulatory network 
(GRN) from a large-scale prostate cancer gene expression 
data set with the BC3Net algorithm [12]. Then, we apply a 
systems analysis of this GRN to provide insights into its 
functional and structural features by investigating, e.g., ma-
jor hub genes and biological processes. 
 We would like to note that we call the network inferred 
from gene expression data a Gene Regulatory Network 
(GRN) and not, e.g., a gene transcriptomic network because 
it is known that a GRN contains aside from transcription 
regulations also information about protein bindings, and for 
this reason, the term is frequently used in the literature [13-
17]. Hence, a GRN provides rich information about molecu-
lar regulations beyond transcription regulation. 
 This paper is organized as follows: First, we detail the 
methods and data used for the GRN inference and its analy-
sis. Next, we present our results followed by their interpreta-
tion and discussions. Finally, the paper is concluded with a 
brief summary. 

2. METHODS 

2.1. Gene Expression Data 

 The most common form of prostate cancer is known as 
prostate adenocarcinoma that is present in 9 out of 10 cases. 
The remaining subtype is considered a rare form of the dis-
ease, and for this reason, we base our analysis on the most 
common prostate cancer form. To infer the prostate cancer 
GRN, we obtained data from The Cancer Genome Atlas 
(TCGA) containing 383 unique patient samples. Each patient 
sample is used to generate a gene expression profile on an 
Illumina next-generation sequencing (NGS) platform using 
the RNAseq_V2 protocol [18]. To quantify the reads RPKM 
(Reads per Kilobase per Million) mapped reads are used 
[18]. In total, each of the 383 patient samples consists of 
20,531 gene expression values. On a technical note, we 
would like to remark that we repeated our analysis using 
TPM but found no differences in our results of the GRN.  
 The TCGA has a comprehensive system in place to iden-
tify biospecimen data of samples. Specifically, each sample 
is assigned a unique barcode detailing specific data elements. 
Fig. (1) provides an example. Each of these 9 elements can 
vary depending on the patient hence, it is vital to use utilise 
this information. 

2.2. Preprocessing 

 Before the GRN can be inferred from the data, several 
preprocessing steps are needed. First, only samples obtained 
from solid tumours would be used. The TCGA barcodes are 
assigned to each expression profile and can be used to speci-
fy the type of sample used in acquiring the genetic material 
needed for NGS. Therefore the 4th element of these barcodes 
should be ‘01’ as this signifies the sample was taken from a 
solid tumour. This step reduced the number of patients from 
383 to 333. 

 Networks are a description which provide a unique bal-
ance between simplicity and complexity. To maintain this 
harmony, we reduce the gene count, the next step in prepro-
cessing. To achieve this, the average gene expression levels 
were calculated for each gene. The lower quartile was then 
removed. A large portion of these genes had a mean intensity 
level of 0 and as a result. were likely to be not expressed at 
all. This step reduced the number of genes in the data set 
from 20,502 to 15,376. 
 The final step in preprocessing was to log-transform the 
data. This step should always be employed in gene expres-
sion data as the intensity values are usually drastically 
skewed on a linear scale [19]. 

2.3. BC3NET 

 To infer the prostate cancer network from the gene ex-
pression dataset, the BC3NET algorithm [12] is employed. 
This GRN inference method is a bagging version of C3NET 
[20] used to construct a mutual information based network. 
The C3NET algorithm works as follows: For each gene pair 
in the TCGA dataset, the mutual information is estimated. 
Then, for each gene in the dataset,, the maximal mutual in-
formation pair is selected and tested for significance control-
ling the family-wise error rate by a Bonferroni correction for 
multiple testing. 
 The above procedure is repeated for ! = 100, bootstrap 
datasets resulting in ! !!! networks. From this ensemble of 
! networks, an aggregate network G  !!  is formed by testing 
the statistical significance of occurrences of edges in {!!!}. 

2.4. Cancer Gene Census 

 For our analysis, we use the tier 1 subset of the Cancer 
Gene Census [21] (obtained on 22-09-2018). The tier 1 sub-
set consists of those genes with a documented and well-
established link to its relevant cancer. Indeed, for each of the 
genes in this list, cancer-associated mutations, translocations, 
amplifications, inversions duplication’s, deletions or genes 
affected by Copy Number Variations (CNV) are known. At 
the time of downloading, there was a total of 574 cancer cen-
sus genes, 534 of which were present within our TCGA 
prostate adenocarcinoma dataset. 

2.5. Network Attributes 

 We use various methods of evaluating the network struc-
ture. Next, we describe each technique used in our analysis. 

2.5.1. Degree Distribution 

 First, we evaluate the degree distribution, which simply 
measures the number of connections each node has. For an 
adjacency matrix A, of an undirected network, the degree of 
a node i equals the sum of the i  !! row, i.e., !! =   ! !!". 
From this, the degree distribution of the entire network can 
be obtained and tested if it follows a power law, such 
that:  !(!)~!!!, where !(!) is the percentage of genes of 
degree ! in the GRN and ! is the exponent of the power law 
distribution. 

2.5.2. Shortest Path Length 

 For the prostate cancer GRN, the shortest path length 
between pairs of genes, i.e., !(!! , !!), is calculated using the 
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Dijkstra distance [22]. The average shortest path length is 
calculated by:  

 !! =
!

!(!!!)
  !!! !(!! , !!)  

Here, ! is a graph and ! is the number of nodes in !. 

2.5.3. Edge Density 

 The edge density ! of a network is the number of edges 
in a network divided by the total number of possible edges. 
The number of possible edges within an undirected network 
is !(! − 1)/2, where n is the total number of genes within 
the network. The edge density is a further quantitative meas-
ure of the connected nature of a network and useful in com-
parisons between subnetworks. 

2.6. Gene Pair Enrichment Analysis 

 To investigate the functionality of the interconnected 
structure of the inferred prostate cancer GRN, we use a Gene 
Pair Enrichment Analysis (GPEA) [23]. The GPEA uses a 
hypergeometric test based on the edges of the network. This 
analysis is performed with the help of two annotation pack-
ages downloaded from Bioconductor [24], GO.db (version 
2.14) and org.Hs.eg.db (version 2.14). 

3. RESULTS 

3.1. Inferring the Prostate Cancer Gene Regulatory Net-
work 

 Using the TCGA gene expression dataset, we infer the 
prostate cancer GRN. In the following, we call this network 
!!"!!"#. The inferred network consists of 15,376 nodes 
(synonymous with genes) and 82,579 edges. The network is 
almost fully connected because 99.62% (15,318/15,376) of 
the genes can be reached from any gene. Hence, the Giant 
Connected Component (GCC) consists of 15,318 genes and 
82,544 edges. The average shortest path length between 
genes is 4.98 and the edge density of !!"!!"# is ! =
6.99×10!!". Analysing the degrees of the network reveals 
that the maximal degree is 96. Table 1 denotes the 9 highest 
degree genes, termed hub genes. 

 The topmost connected gene, PIK3C2A, functions in 
cellular proliferation, growth, survival and chemotaxis. In 
addition, it has been shown that actively lowering the levels 
of PIK3C2A reduced the proliferative ability of cancer cells 
in a number of cell lines [25]. Fig. (2) provides the subnet-
work of the highest connected gene, PIK3C2A (in blue), in-

cluding its 96 direct neighbours. Among these genes, there 
are 9 known cancer genes, highlighted in red. 

 
Table 1. Topmost degrees of genes within the prostate cancer 

gene regulatory network, !!"!!"#. 

- Gene Symbols Entrez ID Degree 

1 PIK3C2A 5286 96 

2 SCAF11 9169 90 

3 AURKAIP1 54998 86 

4 RIF1 55183 85 

5 NDUFA13 51079 84 

6 NOSIP 51070 79 

7 NAA10 8260 78 

8 CLTB 1212 75 

9 ASXL2 55252 75 

 
 The functional product of PIK3C2A is a member of the 
phosphoinositide 3-kinase protein family (PI3K). PI3K ki-
nases are known to be involved in: cellular proliferation, 
signalling pathways, cell survival, migration, tumour for-
mation, the progression of cancer and inter-cellular protein 
trafficking [26, 27]. PI3K kinases are composed of regulato-
ry subunits that catalyse the synthesis of phosphoinositides 
which are important mediators of signal transduction in the 
mentioned processes. Furthermore, these kinases interact 
with various growth factors including Epidermal Growth 
Factor Receptor (EGFR) and Insulin-like Growth Factors 
(IGF). It has been shown that there is strong evidence of the 
expression of EGFR in prostate cancer leading to disease 
relapse and progression to androgen independence [28]. Here 
100% of patients with metastatic prostate cancer expressed 
EGFR where an increased expression of this growth factor 
correlates with disease progression. For this reason, EGFR 
targeting could be relevant in the treatment of prostate can-
cer. IGF is also associated with tumorigenesis in prostate 
cancer where patients with an increased concentration of the 
genes functional product had a heightened risk of prostate 
cancer [29, 30]. PIK3C2A has a fundamental role in cell 
survival such that an mRNA threshold has been identified, 
below which the apoptotic (programmed cell death) process 
is switched on through the intrinsic cell death pathway [25].

 
Fig. (1). Example of a TCGA barcode. 1) Project title, 2) Tissue source site, 3) Study patient identifier, 4) Type of sample, 5) Order of sam-
ple in a sequence of samples, 6) Order of portion in a sequence of sample portions, 7) Molecular type of material for analysis, 8) Order of 
plate in 96-well plates and 9) Centre analysing the material. 



Prostate Cancer Gene Regulatory Network Inferred from RNA-Seq Data Current Genomics, 2019, Vol. 20, No. 1    41 

 
Fig. (2). Subnetwork of the topmost connected gene, PIK3C2A, shown in light-blue. Known cancer genes have been highlighted in red. (The 
color version of the figure is available in the electronic copy of the article). 

Finally, it was found that actively reducing the level of 
PIK3C2A within tumour cells resulted in decreased prolifer-
ation and cell viability. 

3.2. Functional Analysis of Biological Processes Using 
GPEA 

 The GPEA is performed using the R package, gpeaNet 
(version 1.0). This analysis highlights gene ontology terms 
with an enriched count of edges (interactions) among genes 
from the same gene ontology category. As multiple 
hypotheses are tested, the p-values have been adjusted by 
employing a Bonferroni correction. For the GPEA, we con-
sidered a total of 7,792 gene ontology terms from the catego-
ry biological processes of which 670 (8.60%) are significant, 
for ! = 0.05. To ensure only meaningful GO terms are test-
ed, each term must have at least a size greater than 2 and less 
than 1,000 genes. The 35 most significant terms from this 
analysis are shown in Table 2. Each term is described by its 
biological process, the number of genes enriched for that 
term and corresponding interactions, an adjusted p-value and 
the number of known cancer genes present for that subnet-
work. These GO terms describe important pathological pro-
cesses such as the mRNA metabolic process (661 edges), 
mitotic cell cycle (710 edges), translation (485 edges), viral 
transcription (266 edges), cellular component disassembly 
(318 edges), protein localisation to membrane (305 edges) 
and protein targeting (359 edges). 

 Interestingly, several of the 670 significant terms (not 
shown in Table 2) are known to be affected in prostate can-
cer while many are recognised as pathological trademarks of 
cancer. These terms include those associated with transcrip-
tion where several transcription factors are known to initiate 
prostate cancer. These genes include NKX3.1, a mutation in 
which may predispose to prostate carcinogenesis [31] and 
MXI1 that regulates MYC (a known cancer gene) and is also 
associated with prostate cancer [32]. Cell adhesion processes 
are also linked to prostate carcinogenesis involving genes 
such as E-cadherin, decreased expression of which is associ-
ated with poor prognosis [33], c-Cam vital for prostate de-
velopment and consistently found to have low expression 
levels in prostate cancer patients [34]. Finally, another im-
portant process is the growth factor (GF) response, e.g., in-
volving IGF, TGF!1 and EGF all of which are associated 
with advanced carcinoma and metastatic prostate cancer [30, 
35-37]. 

3.3. Cancer Gene Census 

 To further study the functional modules of the prostate 
cancer GRN, the manually curated cancer gene census list 
was used to specify those genes in which mutations are di-
rectly linked to cancer. At the time of downloading this list 
consisted of a total of 574 genes, 534 of which were present
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Table 2. Top most significant GO terms from a GPEA. 

GOID   Term   p-value   Size  Edges CG 

GO:0000184  nuclear-transcribed mRNA catabolic process, nonsense-mediated decay   0  117.00 259.00 5 

GO:0006414  translational elongation   0  105.00 268.00 3 

GO:0006415  translational termination   0  90.00 258.00 3 

GO:0006613  cotranslational protein targeting to membrane   0  106.00 267.00 4 

GO:0006614  SRP-dependent cotranslational protein targeting to membrane   0  104.00 267.00 4 

GO:0045047  protein targeting to ER   0  107.00 269.00 4 

GO:0070972  protein localization to endoplasmic reticulum   0  121.00 273.00 4 

GO:0072599  establishment of protein localization to endoplasmic reticulum   0  108.00 269.00 4 

GO:0006413  translational initiation   4.37e-316  149.00 283.00 8 

GO:0006612  protein targeting to membrane   1.94e-291  153.00 271.00 6 

GO:0019083  viral transcription   6.17e-290  149.00 266.00 12+ 

GO:0043624  cellular protein complex disassembly   6.31e-278  153.00 262.00 6 

GO:0019080  viral gene expression   3.37e-275  159.00 266.00 12+ 

GO:0043241  protein complex disassembly   3.63e-272  157.00 262.00 6 

GO:0000956  nuclear-transcribed mRNA catabolic process   1.91e-252  177.00 267.00 10+ 

GO:0032984  macromolecular complex disassembly   5.74e-247  177.00 263.00 15+ 

GO:0090150  establishment of protein localization to membrane   1.48e-244  213.00 294.00 13+ 

GO:0006402  mRNA catabolic process   6.46e-243  188.00 270.00 10 

GO:0016071  mRNA metabolic process   4.26e-232  597.00 661.00 33+ 

GO:0006401  RNA catabolic process   2.81e-222  213.00 276.00 12+ 

GO:0019058  viral life cycle   4.87e-212  238.00 289.00 17+ 

GO:0006412  translation   3.37e-207  459.00 485.00 26+ 

GO:0072657  protein localization to membrane   6.30e-206  263.00 305.00 17+ 

GO:0000278  mitotic cell cycle   1.57e-144  776.00 710.00 84+ 

GO:0022411  cellular component disassembly   5.04e-140  364.00 318.00 33+ 

GO:0022904  respiratory electron transport chain   4.44e-133  97.00 120.00 5 

GO:0045333  cellular respiration   6.56e-133  146.00 153.00 10+ 

GO:0022900  electron transport chain   5.63e-131  99.00 120.00 5 

GO:0044764  multi-organism cellular process   8.93e-128  637.00 537.00 64+ 

GO:0016032  viral process   3.64e-127  635.00 534.00 64+ 

GO:0072594  establishment of protein localization to organelle   1.65e-122  427.00 345.00 49+ 

GO:0044403  symbiosis, encompassing mutualism through parasitism   1.90e-117  678.00 557.00 64+ 

GO:0044419  interspecies interaction between organisms   1.90e-117  678.00 557.00 64+ 

GO:0044265  cellular macromolecule catabolic process   2.58e-114  704.00 576.00 53+ 

GO:0006605 protein targeting  2.57e-110 467.00 359.00 48+ 

Size corresponds to the number of genes, edges the interactions, p-value is the adjusted value (Bonferroni correction), CG which lists the number of known cancer genes for that term. 
The "+" denotes a significant test for enrichment of the GO term with cancer genes. 
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in our inferred !!"!!"#. This list is used to highlight known 
cancer genes for each gene ontology term in the GPEA anal-
ysis. A hypergeometric test (one-sided Fishers exact test) is 
preformed to test for enrichment of cancer genes. In Table 2, 
the significant terms (! = 0.05) are indicated by a "+" adja-
cent to the entry. 

3.4. Gene Ontology Terms 

 Next, we investigate two gene ontology terms extracted 
from the prostate cancer GRN and evaluate the genes which 
are present in these functional modules. Furthermore, the 
cancer gene census list is used to highlight known cancer 
genes within the networks. The investigated GO terms are 
GO:0000278 that represents the biological process of the 
mitotic cell cycle and GO:0002682 which describes the 
regulation of immune system process. 

3.4.1. GO:0000278: Mitotic Cell Cycle 

 Cancer can be considered the result of a break down in 
function of the cell cycle, where proteins, transcription fac-
tors and regulatory components play an important role. If, 
through multiple mutations, this process malfunctions, there 
is a high likelihood of tumour formation. Fig. (3) shows a 
sub-graph of !!"!!"# corresponding to the giant connected 
component of the gene ontology term GO:0000278 (Mitotic 
Cell Cycle). In total there are 776 genes with 710 interac-
tions and the giant connected component contains 342 genes 
and 625 interactions. Interestingly, the network was found to 
contain a total of 84 known cancer genes for which Fisher’s 
exact test indicates a significant enrichment (p-value of 
2.62×10!!"). Within the GCC, we found a total of 25 
known cancer genes (highlighted in red) and the network has 
an average degree of 3.65. Interestingly, there appeared a 
cluster of 3 cancer genes BLM, BUB1B and EZH2 which 
have a significantly higher average degree of 10. 
 Contained within this subnetwork there are several 
known cancer genes. For example: TP53, a tumour suppres-
sor gene which under mutagenic transformation occurs in 
over 50% of cancers [38]. TP53 is considered a master regu-
lator of diverse cellular processes that encodes for tumour 
protein p53, vital in the role of cancer prevention [39]. 
CLTC a gene which is in close proximity to TP53 currently 
has no association with prostate cancer. Although, Clathrin 
Heavy Chain (CHC), aliases of the CLTC gene, is required 
for p53 mediated transcription [40]. CHC, a cytosolic trans-
porter found in both the cytosol and the nucleus has been 
shown to enhance p53 reliant trans-activation by binding to 
p53 forming a p53-CHC molecule. Furthermore, the reduc-
tion of CHC/CLTC via RNA interference mitigates the tran-
scription of TP53. The p53-CHC molecule stabilises a com-
munication between p53 and p300, this promotes the tran-
scription of TP53 and translation to p53. For several decades 
TP53 has been studied for its potential in cancer therapies 
and several clinical trials using TP53 targeting have shown 
much promise [41, 42]. In prostate cancer, our subnetwork 
proposes a plausible targeting mechanism for TP53 through 
CLTC regulation. 
 Enhancer of Zeste Homolog 2 (EZH2) is also present in 
the GCC of this functional module and is known to be in-
volved in the progression of prostate cancer by promoting 

proliferation and invasiveness of tumour cells [43, 44]. Fur-
thermore, in a study of the effect of EZH2 in gastric cancer it 
was found that RNA interference of this gene up-regulated 
the p53 protein and down-regulated cyclin E, encoded by the 
CCNE1 gene [45]. CCNE1 is found in close proximity to the 
EZH2 gene and with the previous knowledge perhaps indi-
cates involvement in EZH2 expression and prostate cancer 
progression. BRCA2 is another well characterised cancer 
gene that recently has traits linked to prostate cancer. It can 
be seen that a connection to RAD21 exists and together they 
play a major role in DNA repair by homologous recombina-
tion [46]. Recently, BRCA2 has proven to be a reliable bi-
omarker for the prognosis of prostate cancer in that BRCA2 
is the most strongly associated prostate cancer pre-
disposition gene identified to date [47]. 

3.4.2. GO:0002682: Regulation of Immune System Process 

 The human immune system function is not limited by the 
war on infectious pathogens. In fact, its function extrapolates 
to maintaining tissue homeostasis and destroying damaged 
cells. As the immune system is usually highly effective in its 
purpose, it is strange that cancer has such a high incidence in 
humans [48]. In recent years tumourigenesis has been linked 
to mutations of genes involved in the immune response. Sev-
eral mouse models have been investigated in which manipu-
lation of the immune response has caused spontaneous 
tumours to form. We now know that the breakdown of the 
function of the immune system can play a major role in 
many cancers. Additionally, leukocytes have been identified 
as important regulators of cancer development. For this 
reason, we evaluate the regulation of the immune system 
process. 
 The giant connected component for this GO term is 
shown in Fig. (4). In total, this subnetwork contains 611 
genes with 895 interactions, and there are 131 known cancer 
genes present in this subnetwork. A Fisher’s exact test for 
enrichment was performed and found that the cancer genes 
were significantly enriched for this GO term with a p-value 
of 1.99×10!!!. The GCC contains 271 genes of which 38 
are known cancer genes. The average degree for this network 
was 3.05. 
 In prostate cancer, there is a wealth of literature that 
points towards an association of chronic inflammation and 
carcinogenesis [49]. Several genes found in our subnetwork 
play a role in the pathology of the inflammatory response, 
e.g., Interleukin 6 Signal Transducer (IL6ST) which has an 
interesting association with many cytokines involved in 
prostate cancer. IL6ST is a signal transducer of interleukin 6 
(IL6) and oncostatin M (OSM), which are growth factors for 
prostate cancer. Both of these GF’s have been shown to sig-
nificantly up-regulate Vascular Endothelial Growth Factor 
(VEGF) in prostate cancer cells which promotes the vascula-
ture to support tumour cell growth [50]. An important con-
cept in cancer pathology is that inflammation will promote 
the growth of new vasculature which tumour cells are com-
pletely dependant upon for survival. This is usually mediated 
through GF’s such as VEGF which is a well-known target 
for cancer therapies [51]. It has also been observed that high-
er levels of IL6 and OSM are present in metastatic prostate 
cancer. Therefore with this understanding IL6ST regulates 
IL6 and OSM within a cell which in turn up-regulates
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Fig. (3). Gene Ontology term GO:0000278 corresponding to the mitotic cell cycle. (The color version of the figure is available in the elec-
tronic copy of the article). 

 

 
Fig. (4). Gene Ontology term GO:0002682, regulation of immune system process. 
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VEGF, where high levels correlate to a well-defined vascular 
network, symptomatic of aggressive tumours. 
 In our subnetwork, there are several other important ob-
servations such as the presence of CD74, a receptor for mac-
rophage migration inhibitory factor (MIF). MIF is commonly 
found to be over-expressed in prostate cancer and with an 
over-expression of CD74 in tumour cells, has been shown to 
attenuate growth and invasion of prostate cancer cells [52]. 
FLT3, codes for a receptor tyrosine kinase that is activated 
by the FLT3-ligand. Targeting of FLT3 in immunotherapy 
treatments for prostate cancer has shown great promise in 
animal models. Here treatment of 30 microgram/day dose of 
FLT3-ligand resulted in significantly decreased tumour size 
(p < 0.0001) [53]. Another gene known to be associated 
with cancer and present in the GCC is Runt-related transcrip-
tion factor (RUNX1). RUNX1 is associated with a 2.76 fold 
increased risk of advanced stage prostate cancer and a 9.52 
fold greater risk of metastasis [54]. 

3.5. Local Landscape of Prostate Cancer Genes 

 Next, we examine 6 genes that are frequently observed in 
prostate cancer and 3 genes for which previous results indi-
cate an association. Specifically, the 6 genes known to be 
associated with prostate cancer are: ATM, BRCA1, BRCA2, 
BRIP1, CHEK2, PALB2 and the further 3 genes are: IL6, 
OSM and RAD21. Out of these 9 genes, 7 are known cancer 

genes contained within the cancer gene census list (BRCA1, 
BRCA2, BRIP1, RAD21, ATM, PALB2 and CHEK2). 

 For these 9 genes, a subnetwork was constructed by de-
termining all shortest paths that connect these genes, plus the 
first degree neighbours of the 9 genes. For future reference, 
this network will be referred to as !!!", shown in Fig. (5), 
with the known cancer genes highlighted as large nodes. 
Overall !!!" contains 86 genes (9 specific cancer genes and 
77 neighbours) and 164 interactions. 
 Interestingly, BRCA1, BRCA2 and BRIP1 are in !!!" 
grouped together. BRIP1 is involved in DNA repair by ho-
mologous recombination in a process that is dependent on 
the interaction with BRCA1 and therefore BRCA2. Further-
more to investigate the discovered interaction between 
RAD21 and BRCA2, (Fig. 3), the RAD21 gene was included 
in our analysis. There are a number of interactions linking 
RAD21 to BRCA2, the most strongly associated prostate 
cancer pre-disposition gene [47]. RAD21 over-expression is 
commonly observed in BRCA2 present prostate cancer [55], 
where RAD21 is a key component of a cohesion complex 
needed for several cellular processes. In fact, RAD21 over-
expression was present in 53% of the prostate tumours and is 
perhaps an equivalently useful biomarker in prostate cancer 
as BRCA2. It is also important to note that all of the men-
tioned genes are well known hallmarks of cancer as indicated 
by the cancer gene census list. 

 
Fig. (5). First degree neighbour network of 9 genes known to be implemented in prostate cancer. 
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 Two more purposely extracted genes, IL6 and OSM were 
used from the prostate cancer GRN. IL6 and OSM are regulat-
ed by IL6ST, a gene that was present in the sub-network 
shown in Fig. (4). Both IL6 and OSM are growth factors asso-
ciated with prostate cancer that together significantly up-
regulate the expression of VEGF [50]. In a meta-analysis of 
prostate cancer, VEGF is strongly associated with poor sur-
vival for patients (hazard ratio = 1.54) [56]. In recent years 
VEGF has been a hot topic in cancer research such that there 
is resounding evidence of its association with cancer progres-
sion, poor prognosis and survival in prostate cancer [50, 57, 
58]. Interestingly, both IL6 and OSM are interconnected in 
!!!". An additional analysis showed that VEGFA, VEGFB, 
VEGFC, IL6, OSM and IL6ST are connected indirectly 
through a 2nd degree neighbour network (results not shown). 

3.6. Connectivity and Edge Weight Comparison 

 For the construction of the prostate cancer GRN, 
!!"!!"#, an ensemble of 100 !!!!"# were generated and then 
aggregated to form the main network. An edge weight can be 
estimated for each gene pair that interacts with one another. 
This weight signifies the fraction of how often the edge was 
observed between two genes in the ensemble and, hence, 
represents a statistical interrelation of the data, showing 
which gene pairs have the strongest association. 

 The degree for each gene in !!"!!"# was classified into 
groups with increments of 5, for instance, those genes which 
had a degree between 0 and 5 were assigned to group 1. This 
was then plotted as the average edge weight per gene pair (y 
axis) against the Degree Groups (x axis) in the form of a 

boxplot in Fig. (6). A one way analysis of variance (ANO-
VA) was performed and found to be significant with a p-
value of 3.68×10!!". Indeed, from Fig. (6), we see that this 
significance is due to increasing values in the average edge 
weight. As a consequence of this, our results indicate that 
hub genes, for example PIK3C2A, have several interactions 
which show a strong association. Potentially, this could 
mean the interactions observed for high degree genes may be 
more reliant. 

CONCLUSION 

 Of the many observable interactions within our prostate 
cancer GRN, we focused here on discussing those that may 
be of clinical relevance. That is to say, several of these mo-
lecular associations present plausible mechanisms that may 
be used for targeted cancer therapies. For instance, the hub 
gene PIK3C2A can be inhibited by PI3K inhibitors acting on 
the alpha subunit of this protein. Furthermore, the IL6ST-
[IL6-OSM]-VEGF pathway presents a mechanism for ac-
tively reducing the VEGF abundance within prostate cancer 
cells. Here it was found that IL6 and OSM increased VEGF 
expression that is mediated by IL6ST. Importantly, the 
increased expression of VEGF within tumour cells is often 
attributed to poor prognosis and aggressive cancers. 

 In the current research, there is much focus on this 
growth factor and its role in cancer. The over-expression of 
VEGF in tumour cells has an angiogenic effect where the 
blood vessels allow the delivery of nutrients maintaining the 
continued cell division and survival, one of the hallmarks of 
cancer [59, 60]. 

 
Fig. (6). Boxplot of average edge-weight versus degree groups. Degree groups represent discrete groups of genes in !!"!!"# with increments 
of 5. 
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